Marco Ponassi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4989786/publications.pdf

Version: 2024-02-01

331670 330143 1,520 37 21 37 citations h-index g-index papers 38 38 38 2002 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Nitrocarbazole as a New Microtubule-Targeting Agent in Breast Cancer Treatment. Applied Sciences (Switzerland), $2021, 11, 9139$.	2.5	7
2	Synthesis, anticancer and antioxidant properties of new indole and pyranoindole derivatives. Bioorganic Chemistry, 2020, 105, 104440.	4.1	24
3	Is the Way to Fight Cancer Paved with Gold? Metal-Based Carbene Complexes with Multiple and Fascinating Biological Features. Pharmaceuticals, 2020, 13, 91.	3.8	45
4	Inhibition of Human Topoisomeraseâ€II by <i>N</i> , <i></i>	3.2	28
5	Hydrophilic and amphiphilic water-soluble dendrimer prodrugs suitable for parenteral administration of a non-soluble non-nucleoside HIV-1 reverse transcriptase inhibitor thiocarbamate derivative. European Journal of Pharmaceutical Sciences, 2018, 124, 153-164.	4.0	15
6	A novel calix[4]pyrrole derivative as a potential anticancer agent that forms genotoxic adducts with DNA. Scientific Reports, 2018, 8, 11075.	3.3	23
7	Tracking protons from respiratory chain complexes to ATP synthase c -subunit: The critical role of serine and threonine residues. Biochemical and Biophysical Research Communications, 2017, 482, 922-927.	2.1	2
8	Macromolecular Modelling and Docking Simulations for the Discovery of Selective GPER Ligands. AAPS Journal, 2016, 18, 41-46.	4.4	30
9	A calixpyrrole derivative acts as a GPER antagonist: mechanisms and models. DMM Disease Models and Mechanisms, 2015, 8, 1237-46.	2.4	32
10	Advances in GPCR Modeling Evaluated by the GPCR Dock 2013 Assessment: Meeting New Challenges. Structure, 2014, 22, 1120-1139.	3.3	149
11	A Comprehensive Mechanism of Fibrin Network Formation Involving Early Branching and Delayed Single- to Double-Strand Transition from Coupled Time-Resolved X-ray/Light-Scattering Detection. Journal of the American Chemical Society, 2014, 136, 5376-5384.	13.7	32
12	Human Sirtuins: An Overview of an Emerging Drug Target in Age-Related Diseases and Cancer. Current Drug Targets, 2013, 14, 653-661.	2.1	6
13	Structural Comparison of the Interaction of Tubulin with Various Ligands Affecting Microtubule Dynamics. Current Cancer Drug Targets, 2012, 12, 658-666.	1.6	15
14	Crystals of the hydrogenase maturation factor HypF N-terminal domain grown in microgravity, display improved internal order. Journal of Crystal Growth, 2011, 314, 246-251.	1.5	2
15	Role of the Non-Receptor Tyrosine Kinase Fes in Cancer. Current Medicinal Chemistry, 2011, 18, 2913-2920.	2.4	12
16	Akt2-mediated phosphorylation of Pitx2 controls Ccnd1 mRNA decay during muscle cell differentiation. Cell Death and Differentiation, 2010, 17, 975-983.	11.2	35
17	Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors. Biochemical and Biophysical Research Communications, 2008, 365, 764-770.	2.1	19
18	Identification of a set of KSRP target transcripts upregulated by PI3K-AKT signaling. BMC Molecular Biology, 2007, 8, 28.	3.0	53

#	Article	IF	CITATIONS
19	The RNA-Binding Protein KSRP Promotes Decay of \hat{l}^2 -Catenin mRNA and Is Inactivated by PI3K-AKT Signaling. PLoS Biology, 2006, 5, e5.	5.6	132
20	Bishistidyl Heme Hexacoordination, a Key Structural Property in Drosophila melanogaster Hemoglobin. Journal of Biological Chemistry, 2005, 280, 27222-27229.	3.4	48
21	p38-Dependent Phosphorylation of the mRNA Decay-Promoting Factor KSRP Controls the Stability of Select Myogenic Transcripts. Molecular Cell, 2005, 20, 891-903.	9.7	212
22	The Three-Dimensional Structure of the Human NK Cell Receptor NKp44, a Triggering Partner in Natural Cytotoxicity. Structure, 2003, 11, 725-734.	3.3	89
23	Expression and crystallographic characterization of the extracellular domain of human natural killer cell triggering receptor NKp46. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2259-2261.	2.5	10
24	Structure of the human NK cell triggering receptor NKp46 ectodomain. Biochemical and Biophysical Research Communications, 2003, 309, 317-323.	2.1	30
25	Subunit Association and Conformational Flexibility in the Head Subdomain of Human CD81 Large Extracellular Loop. Biological Chemistry, 2002, 383, 1447-52.	2.5	50
26	Crystallization and preliminary crystallographic characterization of the extracellular Ig-like domain of human natural killer cell activating receptor NKp44. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1843-1845.	2.5	6
27	Expression of the rat homologue of the Drosophila fat tumour suppressor gene. Mechanisms of Development, 1999, 80, 207-212.	1.7	63
28	Identification of a Glioblastoma-Associated Tenascin-C Isoform by a High Affinity Recombinant Antibody. American Journal of Pathology, 1999, 154, 1345-1352.	3.8	104
29	The Human Homeodomain Protein OTX2 Binds to the Human Tenascin-C Promoter and Trans-Represses Its Activity in Transfected Cells. DNA and Cell Biology, 1997, 16, 559-567.	1.9	33
30	Human Tenascin Gene. Journal of Biological Chemistry, 1995, 270, 3429-3434.	3.4	52
31	The Glucagon Gene Is Transcribed in \hat{l}^2 -like Pancreatic Cells. Experimental Cell Research, 1995, 218, 460-468.	2.6	6
32	The first untranslated exon of the human tenascin-C gene plays a regulatory role in gene transcription. FEBS Letters, 1995, 369, 335-339.	2.8	11
33	Cell-Cycle Dependent Alternative Splicing of the Tenascin Primary Transcript. Cell Adhesion and Communication, 1994, 1, 307-317.	1.7	40
34	Steady-state levels of different tenascin mRNAs in various normal human tissues Cell Biology International, 1993, 17, 325-330.	3.0	11
35	Production and characterization of monoclonal antibodies specific for different epitopes of human tenascin. FEBS Letters, 1993, 332, 39-43.	2.8	68
36	A simple procedure for tenascin purification. FEBS Journal, 1992, 205, 545-549.	0.2	19

3

#	Article	IF	CITATIONS
37	Procedure for the purification of the fibronection proteolytic fragments containing the ED-B oncofetal domain. Analytical Biochemistry, 1991, 192, 372-379.	2.4	7