Genela Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4989617/publications.pdf

Version: 2024-02-01

567281 526287 2,014 27 15 27 h-index citations g-index papers 29 29 29 2156 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons. Neuron, 2004, 43, 133-143.	8.1	481
2	Midbrain dopamine neurons encode decisions for future action. Nature Neuroscience, 2006, 9, 1057-1063.	14.8	403
3	Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Progress in Neurobiology, 2003, 71, 439-473.	5.7	347
4	Coherent Phasic Excitation during Hippocampal Ripples. Neuron, 2011, 72, 137-152.	8.1	113
5	Ecology and neurobiology of toxin avoidance and the paradox of drug reward. Neuroscience, 2009, 160, 69-84.	2.3	99
6	Independent Coding of Movement Direction and Reward Prediction by Single Pallidal Neurons. Journal of Neuroscience, 2004, 24, 10047-10056.	3.6	95
7	Statistical Properties of Pauses of the High-Frequency Discharge Neurons in the External Segment of the Globus Pallidus. Journal of Neuroscience, 2007, 27, 2525-2538.	3.6	89
8	Dissociation between Postrhinal Cortex and Downstream Parahippocampal Regions in the Representation of Egocentric Boundaries. Current Biology, 2019, 29, 2751-2757.e4.	3.9	57
9	An Approach for Reliably Investigating Hippocampal Sharp Wave-Ripples In Vitro. PLoS ONE, 2009, 4, e6925.	2.5	54
10	Odor Concentration Change Coding in the Olfactory Bulb. ENeuro, 2019, 6, ENEURO.0396-18.2019.	1.9	46
11	Discharge Rate of Substantia Nigra Pars Reticulata Neurons Is Reduced In Non-Parkinsonian Monkeys With Apomorphine-Induced Orofacial Dyskinesia. Journal of Neurophysiology, 2004, 92, 1973-1981.	1.8	32
12	Striatal action-learning based on dopamine concentration. Experimental Brain Research, 2010, 200, 307-317.	1.5	31
13	Lack of Spike-Count and Spike-Time Correlations in the Substantia Nigra Reticulata Despite Overlap of Neural Responses. Journal of Neurophysiology, 2007, 98, 2232-2243.	1.8	28
14	Cannabinoids disrupt hippocampal sharp waveâ€ripples via inhibition of glutamate release. Hippocampus, 2012, 22, 1350-1362.	1.9	28
15	Spatial Rule Learning and Corresponding CA1 Place Cell Reorientation Depend on Local Dopamine Release. Current Biology, 2018, 28, 836-846.e4.	3.9	24
16	Anatomical funneling, sparse connectivity and redundancy reduction in the neural networks of the basal ganglia. Journal of Physiology (Paris), 2003, 97, 581-589.	2.1	22
17	The effects of motivation on response rate: A hidden semi-Markov model analysis of behavioral dynamics. Journal of Neuroscience Methods, 2011, 201, 251-261.	2.5	14
18	A Cellular Mechanism Underlying Enhanced Capability for Complex Olfactory Discrimination Learning. ENeuro, 2019, 6, ENEURO.0198-18.2019.	1.9	10

#	Article	IF	Citations
19	Physiological studies of information processing in the normal and Parkinsonian basal ganglia: pallidal activity in Go/No-Go task and following MPTP treatment. Progress in Brain Research, 2005, 147, 283-293.	1.4	8
20	Hippocampal sub-networks exhibit distinct spatial representation deficits in Alzheimer's disease model mice. Current Biology, 2021, 31, 3292-3302.e6.	3.9	8
21	Encoding by Response Duration in the Basal Ganglia. Journal of Neurophysiology, 2008, 100, 3244-3252.	1.8	7
22	The dopamine puzzle. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E75.	7.1	3
23	Animal Learning in a Multidimensional Discrimination Task as Explained by Dimension-Specific Allocation of Attention. Frontiers in Neuroscience, 2018, 12, 356.	2.8	3
24	Striatal cholinergic interneurons exert inhibition on competing default behaviours controlled by the nucleus accumbens and dorsolateral striatum. European Journal of Neuroscience, 2021, 53, 2078-2089.	2.6	3
25	Individual differences in experienced and observational decision-making illuminate interactions between reinforcement learning and declarative memory. Scientific Reports, 2021, 11, 5899.	3.3	3
26	Enhance Your Chance with the TANs: Tonically Active Neurons Support Learning in the Ventral Striatum. Neuron, 2014, 82, 941-943.	8.1	2
27	False Detection of Dynamic Changes in Pallidal Neuron Interactions by the Joint Peri-Stimulus Histogram Method. Advances in Behavioral Biology, 2002, , 181-187.	0.2	2