Jesse C Gatlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4989285/publications.pdf

Version: 2024-02-01

IFSSE C CATLIN

#	Article	IF	CITATIONS
1	Changes in Cytoplasmic Volume Are Sufficient to Drive Spindle Scaling. Science, 2013, 342, 853-856.	12.6	175
2	Condensin Regulates the Stiffness of Vertebrate Centromeres. Molecular Biology of the Cell, 2009, 20, 2371-2380.	2.1	129
3	Spindle Assembly in the Absence of a RanGTP Gradient Requires Localized CPC Activity. Current Biology, 2009, 19, 1210-1215.	3.9	86
4	Spindle Fusion Requires Dynein-Mediated Sliding of Oppositely Oriented Microtubules. Current Biology, 2009, 19, 287-296.	3.9	75
5	Nanoparticle Targeting and Cholesterol Flux Through Scavenger Receptor Type B-1 Inhibits Cellular Exosome Uptake. Scientific Reports, 2015, 5, 15724.	3.3	69
6	Growth Cone Collapse Induced by Semaphorin 3A Requires 12/15-Lipoxygenase. Journal of Neuroscience, 2002, 22, 4932-4941.	3.6	64
7	NPY and its involvement in axon guidance, neurogenesis, and feeding. Nutrition, 2008, 24, 860-868.	2.4	62
8	Myristoylated, Alanine-rich C-Kinase Substrate Phosphorylation Regulates Growth Cone Adhesion and Pathfinding. Molecular Biology of the Cell, 2006, 17, 5115-5130.	2.1	52
9	Ribozyme Cleavage Reveals Connections between mRNA Release from the Site of Transcription and Pre-mRNA Processing. Molecular Cell, 2005, 20, 747-758.	9.7	48
10	Microtubule motors in eukaryotic spindle assembly and maintenance. Seminars in Cell and Developmental Biology, 2010, 21, 248-254.	5.0	46
11	Directly probing the mechanical properties of the spindle and its matrix. Journal of Cell Biology, 2010, 188, 481-489.	5.2	43
12	Functional Overlap of Microtubule Assembly Factors in Chromatin-Promoted Spindle Assembly. Molecular Biology of the Cell, 2009, 20, 2766-2773.	2.1	38
13	Centrosomal clustering contributes to chromosomal instability and cancer. Current Opinion in Biotechnology, 2016, 40, 113-118.	6.6	37
14	Dynamic adhesions and MARCKS in melanoma cells. Journal of Cell Science, 2009, 122, 2300-2310.	2.0	33
15	Nucleoplasmin is a limiting component in the scaling of nuclear size with cytoplasmic volume. Journal of Cell Biology, 2019, 218, 4063-4078.	5.2	33
16	Eicosanoid Activation of Protein Kinase C Ϊμ. Journal of Biological Chemistry, 2003, 278, 21168-21177.	3.4	28
17	Growth cone responses to growth and chemotropic factors. European Journal of Neuroscience, 2008, 28, 268-278.	2.6	27
18	lsolation and Demembranation of <i>Xenopus</i> Sperm Nuclei. Cold Spring Harbor Protocols, 2018, 2018, 2018, pdb.prot099044.	0.3	24

JESSE C GATLIN

#	Article	IF	CITATIONS
19	Microtubule Growth Rates Are Sensitive to Global and Local Changes in Microtubule Plus-End Density. Current Biology, 2020, 30, 3016-3023.e3.	3.9	23
20	Spatially segregated transcription and translation in cells of the endomembrane-containing bacterium <i>Gemmata obscuriglobus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11067-11072.	7.1	21
21	Fabrication of Functional Biomaterial Microstructures by in Situ Photopolymerization and Photodegradation. ACS Biomaterials Science and Engineering, 2018, 4, 3078-3087.	5.2	18
22	Tauâ€based fluorescent protein fusions to visualize microtubules. Cytoskeleton, 2017, 74, 221-232.	2.0	15
23	Microfluidic Encapsulation of Demembranated Sperm Nuclei in <i>Xenopus</i> Egg Extracts. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot102913.	0.3	14
24	Microtubule-dependent pushing forces contribute to long-distance aster movement and centration in <i>Xenopus laevis</i> egg extracts. Molecular Biology of the Cell, 2020, 31, 2791-2802.	2.1	14
25	Instance-Level Microtubule Tracking. IEEE Transactions on Medical Imaging, 2020, 39, 2061-2075.	8.9	7
26	Induction of a Spindle-Assembly-Competent M Phase in Xenopus Egg Extracts. Current Biology, 2019, 29, 1273-1285.e5.	3.9	4
27	Use of Xenopus cell-free extracts to study size regulation of subcellular structures. International Journal of Developmental Biology, 2016, 60, 277-288.	0.6	3
28	Light-inducible activation of cell cycle progression in Xenopus egg extracts under microfluidic confinement. Lab on A Chip, 2019, 19, 3499-3511.	6.0	3
29	Concepts Organelle Scaling. , 2021, , 107-112.		1
30	The Cytoskeleton and Its Roles in Self-Organization Phenomena: Insights from Xenopus Egg Extracts. Cells, 2021, 10, 2197.	4.1	1
31	Mathematical modeling accurately predicts the dynamics and scaling of nuclear growth in discrete cytoplasmic volumes. Journal of Theoretical Biology, 2021, 533, 110936.	1.7	1
32	Microfluidic encapsulation of Xenopus laevis cell-free extracts using hydrogel photolithography. STAR Protocols, 2020, 1, 100221.	1.2	1
33	Data Harvesting from Fields of Spindles. Cell, 2009, 138, 426-428.	28.9	0