Frits A De Wolf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4988749/publications.pdf

Version: 2024-02-01

FRITE A DE MOLE

#	Article	IF	CITATIONS
1	Production of protein-based polymers in Pichia pastoris. Biotechnology Advances, 2019, 37, 642-666.	11.7	77
2	Precise Coating of a Wide Range of DNA Templates by a Protein Polymer with a DNA Binding Domain. ACS Nano, 2017, 11, 144-152.	14.6	48
3	Nanofibrillar hydrogel scaffolds from recombinant proteinâ€based polymers with integrin―and proteoglycanâ€binding domains. Journal of Biomedical Materials Research - Part A, 2016, 104, 3082-3092.	4.0	15
4	Enhanced stiffness of silkâ€like fibers by loop formation in the corona leads to stronger gels. Biopolymers, 2016, 105, 795-801.	2.4	1
5	Production in Pichia pastoris of complementary protein-based polymers with heterodimer-forming WW and PPxY domains. Microbial Cell Factories, 2016, 15, 105.	4.0	5
6	Cross-Linking and Bundling of Self-Assembled Protein-Based Polymer Fibrils via Heterodimeric Coiled Coils. Biomacromolecules, 2016, 17, 3893-3901.	5.4	10
7	Heparin as a Bundler in a Self-Assembled Fibrous Network of Functionalized Protein-Based Polymers. Biomacromolecules, 2016, 17, 2063-2072.	5.4	14
8	Production in <i>Pichia pastoris</i> of proteinâ€based polymers with small heterodimerâ€forming blocks. Biotechnology and Bioengineering, 2016, 113, 953-960.	3.3	4
9	Protein cross-linking tools for the construction of nanomaterials. Current Opinion in Biotechnology, 2016, 39, 61-67.	6.6	23
10	Physical and mechanical properties of thermosensitive xanthan/collagen-inspired protein composite hydrogels. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 125-133.	3.4	2
11	Fibrous Hydrogels for Cell Encapsulation: A Modular and Supramolecular Approach. PLoS ONE, 2016, 11, e0155625.	2.5	19
12	Reversible Temperature-Switching of Hydrogel Stiffness of Coassembled, Silk-Collagen-Like Hydrogels. Biomacromolecules, 2015, 16, 2506-2513.	5.4	28
13	Dilute Self-Healing Hydrogels of Silk-Collagen-Like Block Copolypeptides at Neutral pH. Biomacromolecules, 2014, 15, 699-706.	5.4	54
14	Synergistic Stiffening in Double-Fiber Networks. Biomacromolecules, 2014, 15, 1233-1239.	5.4	13
15	From Micelles to Fibers: Balancing Self-Assembling and Random Coiling Domains in pH-Responsive Silk-Collagen-Like Protein-Based Polymers. Biomacromolecules, 2014, 15, 3349-3357.	5.4	34
16	Design and self-assembly of simple coat proteins for artificial viruses. Nature Nanotechnology, 2014, 9, 698-702.	31.5	146
17	Genetically engineered silk–collagen-like copolymer for biomedical applications: Production, characterization and evaluation of cellular response. Acta Biomaterialia, 2014, 10, 3620-3629.	8.3	31
18	Pathway-dependent properties of a multi-stimuli sensitive biosynthetic hybrid network. Soft Matter, 2013, 9, 8737.	2.7	4

#	Article	IF	CITATIONS
19	Multi-responsive physical gels formed by a biosynthetic asymmetric triblock protein polymer and a polyanion. Soft Matter, 2013, 9, 8923.	2.7	13
20	Disulfide bond-stabilized physical gels of an asymmetric collagen-inspired telechelic protein polymer. Soft Matter, 2013, 9, 6391.	2.7	8
21	Enhanced rigidity and rupture strength of composite hydrogel networks of bio-inspired block copolymers. Soft Matter, 2013, 9, 6936.	2.7	9
22	Pearl-necklace complexes of flexible polyanions with neutral–cationic diblock copolymers. Soft Matter, 2013, 9, 6406.	2.7	9
23	Fibril Formation by pH and Temperature Responsive Silk-Elastin Block Copolymers. Biomacromolecules, 2013, 14, 48-55.	5.4	23
24	Coating of Single DNA Molecules by Genetically Engineered Protein Diblock Copolymers. Small, 2012, 8, 3491-3501.	10.0	46
25	Tuning of Collagen Triple-Helix Stability in Recombinant Telechelic Polymers. Biomacromolecules, 2012, 13, 1250-1258.	5.4	11
26	Self-Assembly of Silk-Collagen-like Triblock Copolymers Resembles a Supramolecular Living Polymerization. ACS Nano, 2012, 6, 133-140.	14.6	34
27	Secretion of elastinâ€like polypeptides with different transition temperatures by <i>Pichia pastoris</i> . Biotechnology Progress, 2012, 28, 242-247.	2.6	20
28	Shape-Memory Effects in Biopolymer Networks with Collagen-Like Transient Nodes. Biomacromolecules, 2011, 12, 2285-2292.	5.4	51
29	Secreted production of collagenâ€inspired gelâ€forming polymers with high thermal stability in <i>Pichia pastoris</i> . Biotechnology and Bioengineering, 2011, 108, 2517-2525.	3.3	17
30	Hydrogels of collagen-inspired telechelic triblock copolymers for the sustained release of proteins. Journal of Controlled Release, 2010, 147, 298-303.	9.9	35
31	Triggered Templated Assembly of Protein Polymersomes. Angewandte Chemie - International Edition, 2010, 49, 9947-9950.	13.8	15
32	Secreted production of self-assembling peptides in Pichia pastoris by fusion to an artificial highly hydrophilic protein. Journal of Biotechnology, 2010, 146, 66-73.	3.8	10
33	Fracture and Self-Healing in a Well-Defined Self-Assembled Polymer Network. Macromolecules, 2010, 43, 3542-3548.	4.8	121
34	Kinetics of network formation by telechelic polypeptides with trimeric nodes. Soft Matter, 2010, 6, 416-422.	2.7	14
35	Influence of molecular size on gel-forming properties of telechelic collagen-inspired polymers. Soft Matter, 2010, 6, 4681.	2.7	16
36	Secreted production of an elastin-like polypeptide by Pichia pastoris. Applied Microbiology and Biotechnology, 2009, 85, 293-301.	3.6	35

#	Article	IF	CITATIONS
37	Polypeptide Nanoribbon Hydrogels Assembled through Multiple Supramolecular Interactions. Langmuir, 2009, 25, 12899-12908.	3.5	18
38	Precision Gels from Collagen-Inspired Triblock Copolymers. Biomacromolecules, 2009, 10, 1106-1113.	5.4	66
39	Triblock Protein Copolymers Forming Supramolecular Nanotapes and pH-Responsive Gels. Macromolecules, 2009, 42, 1002-1009.	4.8	59
40	Formation of nanotapes by co-assembly of triblock peptide copolymers and polythiophenes in aqueous solution. Soft Matter, 2009, 5, 1668.	2.7	13
41	Physical gels of telechelic triblock copolymers with precisely defined junction multiplicity. Soft Matter, 2009, 5, 2057.	2.7	58
42	"Clickable―elastins: elastin-like polypeptides functionalized with azide or alkyne groups. Chemical Communications, 2009, , 4022.	4.1	42
43	Dilute gels with exceptional rigidity from self-assembling silk-collagen-like block copolymers. Soft Matter, 2009, 5, 4191.	2.7	27
44	Temperature-controlled positioning of fusion proteins in microreactors. Soft Matter, 2009, 5, 2261.	2.7	12
45	Elastin-like polypeptides of different molecular weights show independent transition temperatures when mixed. Soft Matter, 2009, 5, 4305.	2.7	26
46	Nanoribbons Selfâ€Assembled from Triblock Peptide Polymers and Coordination Polymers. Angewandte Chemie - International Edition, 2008, 47, 4192-4195.	13.8	54
47	One-Step Photochemical Attachment of NHS-Terminated Monolayers onto Silicon Surfaces and Subsequent Functionalization. Langmuir, 2008, 24, 7931-7938.	3.5	78
48	Biosynthesis of an Amphiphilic Silk-Like Polymer. Biomacromolecules, 2008, 9, 1705-1711.	5.4	38
49	Covalent Microcontact Printing of Proteins for Cell Patterning. Chemistry - A European Journal, 2006, 12, 6290-6297.	3.3	118
50	Reduced Proteolysis of Secreted Gelatin and Yps1-Mediated α-Factor Leader Processing in a Pichia pastoris kex2 Disruptant. Applied and Environmental Microbiology, 2005, 71, 2310-2317.	3.1	50
51	Covalently Attached Monolayers on Crystalline Hydrogen-Terminated Silicon:Â Extremely Mild Attachment by Visible Light. Journal of the American Chemical Society, 2005, 127, 2514-2523.	13.7	224
52	Chapter V Collagen and gelatin. Progress in Biotechnology, 2003, , 133-218.	0.2	17
53	Endogenous prolyl 4-hydroxylation in and its use for the production of hydroxylated recombinant gelatin. FEMS Yeast Research, 2002, 1, 291-298.	2.3	4
54	Endogenous prolyl 4-hydroxylation inHansenula polymorphaand its use for the production of hydroxylated recombinant gelatin. FEMS Yeast Research, 2002, 1, 291-298.	2.3	22

#	Article	IF	CITATIONS
55	Interaction of β-Lactoglobulin with Small Hydrophobic Ligands As Monitored by Fluorometry and Equilibrium Dialysis:Â Nonlinear Quenching Effects Related to Proteinâ^'Protein Association. Journal of Agricultural and Food Chemistry, 2001, 49, 2609-2618.	5.2	83
56	Regiospecific effect of 1-octanol on cis - trans isomerization of unsaturated fatty acids in the solvent-tolerant strain Pseudomonas putida S12. Applied Microbiology and Biotechnology, 2001, 57, 541-547.	3.6	33
57	Secreted production of a custom-designed, highly hydrophilic gelatin in Pichia pastoris. Protein Engineering, Design and Selection, 2001, 14, 447-454.	2.1	121
58	Expression and secretion of human α1(I) procollagen fragment by Hansenula polymorpha as compared to Pichia pastoris. Enzyme and Microbial Technology, 2000, 26, 640-644.	3.2	26
59	High-yield secretion of recombinant gelatins byPichia pastoris. Yeast, 1999, 15, 1087-1096.	1.7	233
60	Verapamil competes with doxorubicin for binding to anionic phospholipids resulting in increased internal concentrations and rates of passive transport of doxorubicin. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1238, 137-146.	2.6	23
61	Transport Studies of Doxorubicin in Model Membranes Indicate a Difference in Passive Diffusion across and Binding at the Outer and Inner Leaflet of the Plasma Membrane. Biochemistry, 1994, 33, 13761-13768.	2.5	110
62	Phosphatidylglycerol dependent protein translocation across theEscherichia coliinner membrane is inhibited by the anti-cancer drug doxorubicin. FEBS Letters, 1993, 324, 113-116.	2.8	22
63	Role of anionic phospholipids in the interaction of doxorubicin and plasma membrane vesicles: Drug binding and structural consequences in bacterial systems. Biochemistry, 1993, 32, 6688-6695.	2.5	48
64	Effect of doxorubicin on the order of the acyl chains of anionic and zwitterionic phospholipids in liquid-crystalline mixed model membranes: Absence of drug-induced segregation of lipids into extended domains. Biochemistry, 1992, 31, 9252-9262.	2.5	30
65	Characterization of the interaction of doxorubicin with (poly)phosphoinositides in model systems Evidence for specific interaction with phosphatidylinositol-monophosphate and -diphosphate. FEBS Letters, 1991, 288, 237-240.	2.8	22
66	Binding of doxorubicin to cardiolipin as compared to other anionic phospholipids—An evaluation of electrostatic effects. Bioscience Reports, 1991, 11, 275-284.	2.4	23
67	Comparable interaction of doxorubicin with various acidic phospholipids results in changes of lipid order and dynamics. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1990, 1096, 67-80.	3.8	65
68	Studies on well-coupled Photosystem I-enriched subchloroplast vesicles — energy-dependent switching between two different active states of the proton-translocation adenosine triphosphatase. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 936, 475-486.	1.0	1
69	Studies on well-coupled Photosystem I-enriched subchloroplast vesicles — characteristics and reinterpretation of single-turnover cyclic electron transfer. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 936, 487-503.	1.0	16
70	The antimycin sensitivity of flash-induced ATP synthesis in photosystem I-enriched subchloroplast vesicles. FEBS Letters, 1988, 235, 278-282.	2.8	3
71	Studies on well-coupled Photosystem-I-enriched subchloroplast vesicles. Kinetic aspects of flash-induced energy transduction. Biochimica Et Biophysica Acta - Bioenergetics, 1986, 851, 295-312.	1.0	4
72	The significance of interfacial charge and proton displacements for the mechanism of energy transduction in biomembranes. Bioelectrochemistry, 1986, 16, 273-285.	1.0	15

#	Article	IF	CITATIONS
73	Studies on well-coupled Photosystem I-enriched subchloroplast vesicles. Neutral red as a probe for external surface charge rather than internal protonation. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 809, 204-214.	1.0	16
74	Single-turnover flash-induced ATP synthesis in photosystem I-enriched subchloroplast vesicles. FEBS Letters, 1985, 192, 271-274.	2.8	6
75	Octavolateral projections to the torus semicircularis of the trout, Salmo Gairdneri. Neuroscience Letters, 1983, 38, 209-213.	2.1	26