Ying Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4988723/publications.pdf

Version: 2024-02-01

117625 123424 4,307 70 34 61 citations h-index g-index papers 79 79 79 3609 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Three-dimensional feature matching improves coverage for single-cell proteomics based on ion mobility filtering. Cell Systems, 2022, 13, 426-434.e4.	6.2	49
2	Label-Free Profiling of up to 200 Single-Cell Proteomes per Day Using a Dual-Column Nanoflow Liquid Chromatography Platform. Analytical Chemistry, 2022, 94, 6017-6025.	6.5	39
3	Hanging drop sample preparation improves sensitivity of spatial proteomics. Lab on A Chip, 2022, 22, 2869-2877.	6.0	12
4	Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell. Chemical Science, 2021, 12, 1001-1006.	7.4	165
5	Adapting a Low-Cost and Open-Source Commercial Pipetting Robot for Nanoliter Liquid Handling. SLAS Technology, 2021, 26, 311-319.	1.9	17
6	MicroPOTS Analysis of Barrett's Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress. Journal of Proteome Research, 2021, 20, 2195-2205.	3.7	12
7	Surfactant-assisted one-pot sample preparation for label-free single-cell proteomics. Communications Biology, 2021, 4, 265.	4.4	46
8	Cellâ€Typeâ€Specific Proteomics Analysis of a Small Number of Plant Cells by Integrating Laser Capture Microdissection with a Nanodroplet Sample Processing Platform. Current Protocols, 2021, 1, e153.	2.9	17
9	In-Depth Mass Spectrometry-Based Single-Cell and Nanoscale Proteomics. Methods in Molecular Biology, 2021, 2185, 159-179.	0.9	6
10	High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip. Nature Communications, 2021, 12, 6246.	12.8	76
11	Automated mass spectrometry imaging of over 2000 proteins from tissue sections at $100-\hat{1}\frac{1}{4}$ m spatial resolution. Nature Communications, 2020, 11, 8.	12.8	178
12	Improved Single-Cell Proteome Coverage Using Narrow-Bore Packed NanoLC Columns and Ultrasensitive Mass Spectrometry. Analytical Chemistry, 2020, 92, 2665-2671.	6.5	141
13	Near-Single-Cell Proteomics Profiling of the Proximal Tubular and Glomerulus of the Normal Human Kidney. Frontiers in Medicine, 2020, 7, 499.	2.6	12
14	Sensitive Top-Down Proteomics Analysis of a Low Number of Mammalian Cells Using a Nanodroplet Sample Processing Platform. Analytical Chemistry, 2020, 92, 7087-7095.	6.5	38
15	"Development and application of analytical detection techniques for droplet-based microfluidics―A review. Analytica Chimica Acta, 2020, 1113, 66-84.	5.4	61
16	Picoflow Liquid Chromatography–Mass Spectrometry for Ultrasensitive Bottom-Up Proteomics Using 2-μm-i.d. Open Tubular Columns. Analytical Chemistry, 2020, 92, 4711-4715.	6.5	55
17	Accurate Identification of Deamidation and Citrullination from Global Shotgun Proteomics Data Using a Dual-Search Delta Score Strategy. Journal of Proteome Research, 2020, 19, 1863-1872.	3.7	16
18	A DNA tetrahedral structure-mediated ultrasensitive fluorescent microarray platform for nucleic acid test. Sensors and Actuators B: Chemical, 2020, 321, 128538.	7.8	26

#	Article	IF	CITATIONS
19	Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography–Mass Spectrometry for High-Throughput Single-Cell Proteomics. Analytical Chemistry, 2020, 92, 10588-10596.	6.5	105
20	An Improved Boosting to Amplify Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics. Molecular and Cellular Proteomics, 2020, 19, 828-838.	3.8	121
21	High-Throughput Single Cell Proteomics Enabled by Multiplex Isobaric Labeling in a Nanodroplet Sample Preparation Platform. Analytical Chemistry, 2019, 91, 13119-13127.	6.5	156
22	New mass spectrometry technologies contributing towards comprehensive and high throughput omics analyses of single cells. Analyst, The, 2019, 144, 794-807.	3.5	67
23	Ultrasmall sample biochemical analysis. Analytical and Bioanalytical Chemistry, 2019, 411, 5349-5350.	3.7	2
24	Automated Nanoflow Two-Dimensional Reversed-Phase Liquid Chromatography System Enables In-Depth Proteome and Phosphoproteome Profiling of Nanoscale Samples. Analytical Chemistry, 2019, 91, 9707-9715.	6.5	36
25	Nanoliter Quantitative High-Throughput Screening with Large-Scale Tunable Gradients Based on a Microfluidic Droplet Robot under Unilateral Dispersion Mode. Analytical Chemistry, 2019, 91, 4995-5003.	6.5	36
26	Carrier-Assisted Single-Tube Processing Approach for Targeted Proteomics Analysis of Low Numbers of Mammalian Cells. Analytical Chemistry, 2019, 91, 1441-1451.	6.5	24
27	Benchtop-compatible sample processing workflow for proteome profiling of < 100 mammalian cells. Analytical and Bioanalytical Chemistry, 2019, 411, 4587-4596.	3.7	46
28	Nanowell-mediated multidimensional separations combining nanoLC with SLIM IM-MS for rapid, high-peak-capacity proteomic analyses. Analytical and Bioanalytical Chemistry, 2019, 411, 5363-5372.	3.7	13
29	Single-cell proteomics reveals changes in expression during hair-cell development. ELife, 2019, 8, .	6.0	80
30	Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nature Communications, 2018, 9, 882.	12.8	384
31	A Microfluidic Droplet Array System for Cell-Based Drug Combination Screening. Methods in Molecular Biology, 2018, 1771, 203-211.	0.9	9
32	Manipulating Femtoliter to Picoliter Droplets by Pins for Single Cell Analysis and Quantitative Biological Assay. Analytical Chemistry, 2018, 90, 5810-5817.	6.5	43
33	Nanoliter-Scale Oil-Air-Droplet Chip-Based Single Cell Proteomic Analysis. Analytical Chemistry, 2018, 90, 5430-5438.	6.5	167
34	Subnanogram proteomics: Impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples. International Journal of Mass Spectrometry, 2018, 427, 4-10.	1.5	67
35	Proteome Profiling of 1 to 5 Spiked Circulating Tumor Cells Isolated from Whole Blood Using Immunodensity Enrichment, Laser Capture Microdissection, Nanodroplet Sample Processing, and Ultrasensitive nanoLCâ \in MS. Analytical Chemistry, 2018, 90, 11756-11759.	6.5	60
36	Nanoproteomics comes of age. Expert Review of Proteomics, 2018, 15, 865-871.	3.0	42

#	Article	IF	Citations
37	Proteomic Analysis of Single Mammalian Cells Enabled by Microfluidic Nanodroplet Sample Preparation and Ultrasensitive NanoLCâ€MS. Angewandte Chemie - International Edition, 2018, 57, 12370-12374.	13.8	186
38	Spatially Resolved Proteome Mapping of Laser Capture Microdissected Tissue with Automated Sample Transfer to Nanodroplets. Molecular and Cellular Proteomics, 2018, 17, 1864-1874.	3.8	105
39	Nanowell-mediated two-dimensional liquid chromatography enables deep proteome profiling of <1000 mammalian cells. Chemical Science, 2018, 9, 6944-6951.	7.4	33
40	Spatially Resolved Proteome Profiling of <200 Cells from Tomato Fruit Pericarp by Integrating Laser-Capture Microdissection with Nanodroplet Sample Preparation. Analytical Chemistry, 2018, 90, 11106-11114.	6.5	31
41	Proteomic Analysis of Single Mammalian Cells Enabled by Microfluidic Nanodroplet Sample Preparation and Ultrasensitive NanoLCâ€MS. Angewandte Chemie, 2018, 130, 12550-12554.	2.0	31
42	Femtomole-Scale High-Throughput Screening of Protein Ligands with Droplet-Based Thermal Shift Assay. Analytical Chemistry, 2017, 89, 6678-6685.	6.5	19
43	3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11837-11845.	8.0	30
44	Droplet-Based Multivolume Digital Polymerase Chain Reaction by a Surface-Assisted Multifactor Fluid Segmentation Approach. Analytical Chemistry, 2017, 89, 822-829.	6.5	64
45	The capillary gap sampler, a new microfluidic platform for direct coupling of automated solid-phase microextraction with ESI-MS. Analytical and Bioanalytical Chemistry, 2017, 409, 6873-6883.	3.7	10
46	Direct Surface and Droplet Microsampling for Electrospray Ionization Mass Spectrometry Analysis with an Integrated Dual-Probe Microfluidic Chip. Analytical Chemistry, 2017, 89, 9009-9016.	6.5	31
47	Nonâ€tapered PTFE capillary as robust and stable nanoelectrospray emitter for electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2016, 30, 62-67.	1.5	4
48	Microdroplet chain array for cell migration assays. Lab on A Chip, 2016, 16, 4658-4665.	6.0	37
49	Multimodal microchannel and nanowell-based microfluidic platforms for bioimaging. , 2016, , .		0
50	Printing 2-Dimentional Droplet Array for Single-Cell Reverse Transcription Quantitative PCR Assay with a Microfluidic Robot. Scientific Reports, 2015, 5, 9551.	3.3	91
51	Swan Probe: A Nanoliter-Scale and High-Throughput Sampling Interface for Coupling Electrospray lonization Mass Spectrometry with Microfluidic Droplet Array and Multiwell Plate. Analytical Chemistry, 2014, 86, 10796-10803.	6.5	56
52	Coupling liquid chromatography/mass spectrometry detection with microfluidic droplet array for label-free enzyme inhibition assay. Analyst, The, 2014, 139, 191-197.	3.5	27
53	Nanoliter-Scale Protein Crystallization and Screening with a Microfluidic Droplet Robot. Scientific Reports, 2014, 4, 5046.	3.3	68
54	Analytical detection techniques for droplet microfluidicsâ€"A review. Analytica Chimica Acta, 2013, 787, 24-35.	5.4	296

#	Article	IF	CITATIONS
55	A multifunctional microfluidic droplet-array chip for analysis by electrospray ionization mass spectrometry. Lab on A Chip, 2013, 13, 1876.	6.0	33
56	Improving the sensitivity of confocal laser induced fluorescence detection to the sub-picomolar scale for round capillaries by laterally shifting the laser focus point. Analyst, The, 2013, 138, 4642.	3.5	11
57	Cell-Based Drug Combination Screening with a Microfluidic Droplet Array System. Analytical Chemistry, 2013, 85, 6740-6747.	6.5	117
58	Sequential Operation Droplet Array: An Automated Microfluidic Platform for Picoliter-Scale Liquid Handling, Analysis, and Screening. Analytical Chemistry, 2013, 85, 6723-6731.	6.5	84
59	Automated highâ€speed <scp>CE</scp> system for multiple samples. Electrophoresis, 2013, 34, 557-561.	2.4	10
60	Microfluidic droplet-array liquid–liquid chromatography based on droplet trapping technique. Lab on A Chip, 2012, 12, 4350.	6.0	9
61	Droplet-Based Microfluidic Flow Injection System with Large-Scale Concentration Gradient by a Single Nanoliter-Scale Injection for Enzyme Inhibition Assay. Analytical Chemistry, 2012, 84, 446-452.	6.5	95
62	Valveless gated injection for microfluidic chip-based liquid chromatography system with polymer monolithic column. Journal of Chromatography A, 2012, 1246, 123-128.	3.7	11
63	Microfluidic sequential injection analysis system based on polydimethylsiloxane (PDMS) chip with integrated pneumatic-actuated valves. Science China Chemistry, 2012, 55, 531-536.	8.2	2
64	Nanoliter droplet array for microRNA detection based on enzymatic stem-loop probes ligation and SYBR Green real-time PCR. Talanta, 2011, 85, 1760-1765.	5.5	21
65	Nanolitre droplet array for real time reverse transcription polymerase chain reaction. Lab on A Chip, 2011, 11, 1545.	6.0	55
66	Multifunctional Picoliter Droplet Manipulation Platform and Its Application in Single Cell Analysis. Analytical Chemistry, 2011, 83, 7570-7576.	6.5	86
67	Highâ€speed separation of proteins by sodium dodecyl sulfateâ€capillary gel electrophoresis with partial translational spontaneous sample injection. Electrophoresis, 2011, 32, 2898-2903.	2.4	13
68	Automated Microfluidic Screening Assay Platform Based on DropLab. Analytical Chemistry, 2010, 82, 9941-9947.	6.5	80
69	Fabrication of low-melting-point alloy microelectrode and monolithic spray tip for integration of glass chip with electrospray ionization mass spectrometry. Talanta, 2010, 81, 1069-1075.	5.5	17
70	Integrated Droplet Analysis System with Electrospray Ionization-Mass Spectrometry Using a Hydrophilic Tongue-Based Droplet Extraction Interface. Analytical Chemistry, 2010, 82, 8361-8366.	6.5	80