
Edgar Gutiérrez-FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/498797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fully Biobased Superpolymers of 2,5-Furandicarboxylic Acid with Different Functional Properties: From Rigid to Flexible, High Performant Packaging Materials. ACS Sustainable Chemistry and Engineering, 2020, 8, 9558-9568.	6.7	88
2	Evidence of a 2D-Ordered Structure in Biobased Poly(pentamethylene furanoate) Responsible for Its Outstanding Barrier and Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 17863-17871.	6.7	47
3	Structure Development in Polymers during Fused Filament Fabrication (FFF): An in Situ Small- and Wide-Angle X-ray Scattering Study Using Synchrotron Radiation. Macromolecules, 2019, 52, 9715-9723.	4.8	45
4	Polymorphism in Nonâ€Fullerene Acceptors Based on Indacenodithienothiophene. Advanced Functional Materials, 2021, 31, 2103784.	14.9	33
5	Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated Donor–Acceptor Conjugated Polymers. Angewandte Chemie - International Edition, 2021, 60, 19679-19684.	13.8	29
6	Structure dependent photostability of ITIC and ITIC-4F. Materials Advances, 2020, 1, 2846-2861.	5.4	25
7	The Importance of Quantifying the Composition of the Amorphous Intermixed Phase in Organic Solar Cells. Advanced Materials, 2020, 32, e2005241.	21.0	21
8	Semi-paracrystallinity in semi-conducting polymers. Materials Horizons, 2022, 9, 1196-1206.	12.2	18
9	Y6 Organic Thinâ€Film Transistors with Electron Mobilities of 2.4 cm ² V ^{â^'1} s ^{â^'1} via Microstructural Tuning. Advanced Science, 2022, 9, e2104977.	11.2	16
10	Morphology and Ferroelectric Properties of Semiconducting/Ferroelectric Polymer Bilayers. Macromolecules, 2019, 52, 7396-7402.	4.8	12
11	Gold(III) Porphyrin Was Used as an Electron Acceptor for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 11708-11717.	8.0	11
12	Quantitative assessment by local probe methods of the mechanical and electrical properties of inkjet-printed PEDOT:PSS thin films over Indium Tin Oxide substrates. Organic Electronics, 2019, 70, 258-263.	2.6	8
13	Laser nanostructuring of thin films of PEDOT:PSS on ITO: Morphology, molecular structure and electrical properties. Applied Surface Science, 2020, 509, 145350.	6.1	8
14	Photophysical and structural modulation of poly(3-hexylthiophene) nanoparticles via surfactant-polymer interaction. Polymer, 2021, 218, 123515.	3.8	8
15	Functional nanostructured surfaces induced by laser on fullerene thin films. Applied Surface Science, 2019, 476, 668-675.	6.1	7
16	Straightforward Patterning of Functional Polymers by Sequential Nanosecond Pulsed Laser Irradiation. Nanomaterials, 2021, 11, 1123.	4.1	7
17	Polyethylene three-dimensional nano-networks: How lateral chains affect metamaterial formation. Polymer, 2021, 212, 123145.	3.8	7
18	Comparing the microstructure and photovoltaic performance of 3 perylene imide acceptors with similar energy levels but different packing tendencies. Journal of Materials Chemistry C, 2022, 10, 1698-1710.	5.5	7

#	Article	IF	CITATIONS
19	Synergistic Effect of Fullerenes on the Laser-Induced Periodic Surface Structuring of Poly(3-Hexyl) Tj ETQq1 1 0.7	843]4 rg[4.5	3T /Overlock
20	Self-assembly of block copolymers under non-isothermal annealing conditions as revealed by grazing-incidence small-angle X-ray scattering. Journal of Synchrotron Radiation, 2020, 27, 1278-1288.	2.4	5
21	Preparation, Physical Properties, and Applications of Water-Based Functional Polymer Inks. Polymers, 2021, 13, 1419.	4.5	4
22	Confinement effects in one-dimensional nanoarrays of polymer semiconductors and their photovoltaic blends. Polymer, 2019, 163, 13-19.	3.8	2
23	Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated Donor–Acceptor Conjugated Polymers. Angewandte Chemie, 2021, 133, 19831-19836.	2.0	2
24	Photoinduced Resist-free Imprinting (PRI) in fullerene thin films as revealed by Grazing Incidence Small-angle X-ray scattering. Applied Surface Science, 2021, 548, 149254.	6.1	0