
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4986986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seasonal Changes in the Plant Growth-Inhibitory Effects of Rosemary Leaves on Lettuce Seedlings. Plants, 2022, 11, 673.	3.5	5
2	Allelopathic effects of the revegetation species Juniperus sabina L. in semiarid areas of China. Landscape and Ecological Engineering, 2021, 17, 245-251.	1.5	0
3	Evaluation of Isoflavones as Allelochemicals with Strong Allelopathic Activities of Kudzu Using Protoplast Co-Culture Method with Digital Image Analysis. American Journal of Plant Sciences, 2021, 12, 376-393.	0.8	8
4	Isophoroneâ€induced lightâ€independent lipid peroxidation and loss of cell membrane integrity. Weed Biology and Management, 2021, 21, 11-18.	1.4	2
5	Therapeutic peptides of <i>Mucuna pruriens</i> L.: Antiâ€genotoxic molecules against human hepatocellular carcinoma and hepatitis C virus. Food Science and Nutrition, 2021, 9, 2908-2914.	3.4	11
6	Allelopathic activities of three carotenoids, neoxanthin, crocin and β-carotene, assayed using protoplast co-culture method with digital image analysis. Plant Biotechnology, 2021, 38, 101-107.	1.0	4
7	Field multi-omics analysis reveals a close association between bacterial communities and mineral properties in the soybean rhizosphere. Scientific Reports, 2021, 11, 8878.	3.3	14
8	Effects of Salinity on the Macro- and Micronutrient Contents of a Halophytic Plant Species (Portulaca oleracea L.). Land, 2021, 10, 481.	2.9	14
9	Variation in the Physical and Functional Properties of Yam (Dioscorea spp.) Flour Produced by Different Processing Techniques. Foods, 2021, 10, 1341.	4.3	7
10	Evaluation of Growth, Yield, and Biochemical Attributes of Bitter Gourd (Momordica charantia L.) Cultivars under Karaj Conditions in Iran. Plants, 2021, 10, 1370.	3.5	7
11	Elucidation of the Characteristics of Soil Sickness Syndrome in Japanese Pear and Construction of Countermeasures Using the Rhizosphere Soil Assay Method. Agronomy, 2021, 11, 1468.	3.0	2
12	Determination of the Allelopathic Potential of Cambodia's Medicinal Plants Using the Dish Pack Method. Sustainability, 2021, 13, 9062.	3.2	7
13	L-Canavanine, a Root Exudate From Hairy Vetch (Vicia villosa) Drastically Affecting the Soil Microbial Community and Metabolite Pathways. Frontiers in Microbiology, 2021, 12, 701796.	3.5	7
14	Ultrafine bubble water mitigates plant growth in damaged soil. Bioscience, Biotechnology and Biochemistry, 2021, 85, 2466-2475.	1.3	3
15	Evaluation of Allelopathic Potentials from Medicinal Plant Species in Phnom Kulen National Park, Cambodia by the Sandwich Method. Sustainability, 2021, 13, 264.	3.2	4
16	Indigo as a Plant Growth Inhibitory Chemical from the Fruit Pulp of Couroupita guianensis Aubl Agronomy, 2020, 10, 1388.	3.0	7
17	Design and chemical synthesis of root gravitropism inhibitors: Bridged analogues of ku-76 have more potent activity. Phytochemistry, 2020, 179, 112508.	2.9	3
18	Potential of Octanol and Octanal from Heracleum sosnowskyi Fruits for the Control of Fusarium oxysporum f. sp. lycopersici. Sustainability, 2020, 12, 9334.	3.2	2

#	Article	IF	CITATIONS
19	Relationship between species composition and growth environment in the arid zone of southwest Morocco. Euro-Mediterranean Journal for Environmental Integration, 2020, 5, 1.	1.3	0
20	Exploring Rice Root Microbiome; The Variation, Specialization and Interaction of Bacteria and Fungi In Six Tropic Savanna Regions in Ghana. Sustainability, 2020, 12, 5835.	3.2	12
21	Recent Advances in Saffron Soil Remediation: Activated Carbon and Zeolites Effects on Allelopathic Potential. Plants, 2020, 9, 1714.	3.5	10
22	Evaluation of Allelopathic Activity of Chinese Medicinal Plants and Identification of Shikimic Acid as an Allelochemical from Illicium verum Hook. f Plants, 2020, 9, 684.	3.5	11
23	Metabolome Analysis Identified Okaramines in the Soybean Rhizosphere as a Legacy of Hairy Vetch. Frontiers in Genetics, 2020, 11, 114.	2.3	13
24	The Impact of Salt Concentration on the Mineral Nutrition of Tetragonia tetragonioides. Agriculture (Switzerland), 2020, 10, 238.	3.1	14
25	Evaluation of Potential Volatile Allelopathic Plants from Bangladesh, with Sapindus mukorossi as a Candidate Species. Agronomy, 2020, 10, 49.	3.0	3
26	Plant Growth Inhibitory Activities and Volatile Active Compounds of 53 Spices and Herbs. Plants, 2020, 9, 264.	3.5	12
27	Study of Allelopathic Interaction of Essential Oils from Medicinal and Aromatic Plants on Seed Germination and Seedling Growth of Lettuce. Agronomy, 2020, 10, 163.	3.0	34
28	Application of the protoplast co-culture method for evaluation of allelopathic activities of volatile compounds, safranal and tulipalin A. Results in Chemistry, 2020, 2, 100030.	2.0	4
29	Influence of organic inputs with mineral fertilizer on maize yield and soil microbial biomass dynamics in different seasons in a tropical acrisol. Environmental Sustainability, 2020, 3, 45-57.	2.8	1
30	Arbuscular Mycorrhizal Fungi Associated with Rice (Oryza sativa L.) in Ghana: Effect of Regional Locations and Soil Factors on Diversity and Community Assembly. Agronomy, 2020, 10, 559.	3.0	25
31	Allelopathic Potentiality of Euphorbia hypericifolia L. on Germination and Seedling Development of Sympatric Crops and Weeds. International Annals of Science, 2020, 10, 134-150.	0.4	2
32	Essential structural features of (2Z,4E)-5-phenylpenta-2,4-dienoic acid for inhibition of root gravitropism. Phytochemistry, 2020, 172, 112287.	2.9	3
33	Development and Evaluation of Mulching Boards Fabricated from Bagasse. Transactions of the Materials Research Society of Japan, 2020, 45, 9-13.	0.2	2
34	The Rhizosphere Soil Assay Method to Evaluate the Risk of Soil Sickness Syndrome for Japanese Pear. Horticultural Research (Japan), 2020, 19, 21-27.	0.1	3
35	æ¹åœã«ãҌãʿá,‹æਝٜ‰©ã®é–"接課導é~²è¡›æ©Ÿæ§‹ã®æœ€å‰ç·š. Kagaku To Seibutsu, 2020, 58, 325-329.	0.0	0
36	The Effect of Roots Mixed in Soil on the Occurrence of Soil Sickness Syndrome in Japanese Pear. Horticultural Research (Japan), 2020, 19, 373-379.	0.1	2

#	Article	IF	CITATIONS
37	Caffeine: The Allelochemical Responsible for the Plant Growth Inhibitory Activity of Vietnamese Tea (Camellia sinensis L. Kuntze). Agronomy, 2019, 9, 396.	3.0	10
38	Screening for Plant Volatile Emissions with Allelopathic Activity and the Identification of L-Fenchone and 1,8-Cineole from Star Anise (Illicium verum) Leaves. Plants, 2019, 8, 457.	3.5	10
39	Comparative effects of allyl and methyl isothiocyanates on aflatoxin production and growth of <i>Aspergillus flavus</i> . Mycotoxins, 2019, 69, 81-83.	0.2	2
40	Potential Allelopathic Candidates for Land Use and Possible Sustainable Weed Management in South Asian Ecosystem. Sustainability, 2019, 11, 2649.	3.2	11
41	Evaluation of Biological Response of Lettuce (Lactuca sativa L.) and Weeds to Safranal Allelochemical of Saffron (Crocus sativus) by Using Static Exposure Method. Molecules, 2019, 24, 1788.	3.8	17
42	Evaluation of canavanine as an allelochemical in etiolated seedlings of Vicia villosa Roth: protoplast co-culture method with digital image analysis. In Vitro Cellular and Developmental Biology - Plant, 2019, 55, 296-304.	2.1	8
43	Plant Growth Inhibitory Activity of Goniothalamus andersonii Bark Incorporated with Soil on Selected Plants. , 2019, 09, .		Ο
44	First Broad Screening of Allelopathic Potential of Wild and Cultivated Plants in Turkey. Plants, 2019, 8, 532.	3.5	6
45	Medicinal Plants Used in the Ejisu-Juaben Municipality, Southern Ghana: An Ethnobotanical Study. Medicines (Basel, Switzerland), 2019, 6, 1.	1.4	64
46	Phytotoxic analysis of coastal medicinal plants and quantification of phenolic compounds using HPLC. Plant Biosystems, 2019, 153, 767-774.	1.6	10
47	Assessment of allelopathic potential of goniothalamin allelochemical from Malaysian plant Goniothalamus andersonii J. Sinclair by sandwich method. Allelopathy Journal, 2019, 46, 25-40.	0.5	4
48	Evaluation of weed suppression by ground cover plants and evaluation of azetidine-2-carboxylic acid as an allelochemical from <i>Liriope muscari</i> (Decne.) L.H.Bailey. Journal of Weed Science and Technology, 2019, 64, 147-154.	0.1	0
49	Contribution to weed science through allelopathic research. Journal of Weed Science and Technology, 2019, 64, 95-99.	0.1	Ο
50	Organic and chemical fertilizer input management on maize and soil productivity in two agro-ecological zones of Ghana. Environmental Sustainability, 2018, 1, 437-447.	2.8	1
51	Nitrogen Mineralization and Microbial Biomass Dynamics in Different Tropical Soils Amended with Contrasting Organic Resources. Soil Systems, 2018, 2, 63.	2.6	10
52	Allelopathy of Wild Mushrooms—An Important Factor for Assessing Forest Ecosystems in Japan. Forests, 2018, 9, 773.	2.1	4
53	Involvement of Carnosic Acid in the Phytotoxicity of Rosmarinus officinalis Leaves. Toxins, 2018, 10, 498.	3.4	22
54	Comparison of Closed Chamber and Eddy Covariance Methods to Improve the Understanding of Methane Fluxes from Rice Paddy Fields in Japan. Atmosphere, 2018, 9, 356.	2.3	20

#	Article	IF	CITATIONS
55	Evaluation of an Anthocyanin, Cyanidin 3,5-di-O-glucoside, as an Allelochemical in Red Callus of a Mangrove Sonneratia ovata, Using Protoplast Co-Culture Bioassay Method with Digital Image Analysis. Journal of Plant Studies, 2018, 7, 1.	0.3	7
56	Exploring Farmers' Indigenous Knowledge of Soil Quality and Fertility Management Practices in Selected Farming Communities of the Guinea Savannah Agro-Ecological Zone of Ghana. Sustainability, 2018, 10, 1034.	3.2	24
57	Allelopathy for Sustainable Weed Management. , 2018, , 166-190.		8
58	Effect of Soaking Treatment on Anthocyanin, Flavonoid, Phenolic Content and Antioxidant Activities of <i>Dioscorea alata</i> Flour. Indonesian Journal of Chemistry, 2018, 18, 656.	0.8	5
59	Alternative approach to management of Rhizopus rot of peach (Prunus persica L.) using the essential oil of Thymus vulgaris (L.). Mycosphere, 2018, 9, 510-517.	6.1	4
60	Toxic Chemicals from Invasive Alien Plants. Toxinology, 2017, , 25-36.	0.2	2
61	Exploring Alternative Use of Medicinal Plants for Sustainable Weed Management. Sustainability, 2017, 9, 1468.	3.2	16
62	Impacts of Fertilization Type on Soil Microbial Biomass and Nutrient Availability in Two Agroecological Zones of Ghana. Agronomy, 2017, 7, 55.	3.0	9
63	Determination of Allelopathic Potential in Mahogany (Swietenia macrophylla King) Leaf Litter Using Sandwich Method. Indonesian Journal of Biotechnology, 2017, 21, 93.	0.4	4
64	Influence of Different Plant Materials in Combination with Chicken Manure on Soil Carbon and Nitrogen Contents and Vegetable Yield. Pedosphere, 2016, 26, 510-521.	4.0	18
65	Genetic Diversity and Symbiotic Phenotype of Hairy Vetch Rhizobia in Japan. Microbes and Environments, 2016, 31, 121-126.	1.6	11
66	Phytochemical analysis, antimicrobial and antioxidant activities of Euphorbia golondrina L.C. Wheeler (Euphorbiaceae Juss.): an unexplored medicinal herb reported from Cameroon. SpringerPlus, 2016, 5, 264.	1.2	14
67	Toxic Chemicals from Invasive Alien Plants. , 2016, , 1-13.		Ο
68	Transcriptomic Evaluation of Plant Growth Inhibitory Activity of Goniothalamin from the Malaysian Medicinal Plant <i>Goniothalamus andersonii</i> . Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	2
69	Cyanamide Phytotoxicity in Soybean (<i>Glycine max</i>) Seedlings involves Aldehyde Dehydrogenase Inhibition and Oxidative Stress. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	1
70	Evaluation of allelopathic activity of 178 Caucasian plant species. International Journal of Basic and Applied Sciences, 2015, 5, 75.	0.2	8
71	Allelopathy in a Leguminous Mangrove Plant, Derris indica: Protoplast Co-culture Bioassay and Rotenone Effect. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	8
72	Effect of Purine Alkaloids on the Proliferation of Lettuce Cells Derived from Protoplasts. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	10

#	Article	IF	CITATIONS
73	Identification of Octanal as Plant Growth Inhibitory Volatile Compound Released from <i>Heracleum sosnowskyi</i> Fruit. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	16
74	Allelopathic activities of selected Mucuna pruriens on the germination and initial growth of lettuce. International Journal of Basic and Applied Sciences, 2015, 4, 475-481.	0.2	6
75	Angelicin as the Principal Allelochemical in Heracleum sosnowskyi Fruit. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	10
76	Determination of allelopathic potentials in plant species in Sino-Japanese floristic region by sandwich method and dish pack method. International Journal of Basic and Applied Sciences, 2015, 4, 381.	0.2	16
77	Identification of Safranal as the Main Allelochemical from Saffron (<i>Crocus sativus</i>). Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	14
78	Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Soybean Plants Carrying the <i>Rj4</i> Allele. Applied and Environmental Microbiology, 2015, 81, 6710-6717.	3.1	62
79	Allelopathy in a leguminous mangrove plant, Derris indica: protoplast co-culture bioassay and rotenone effect. Natural Product Communications, 2015, 10, 747-50.	0.5	4
80	Effect of purine alkaloids on the proliferation of lettuce cells derived from protoplasts. Natural Product Communications, 2015, 10, 751-4.	0.5	8
81	Angelicin as the principal allelochemical in Heracleum sosnowskyi fruit. Natural Product Communications, 2015, 10, 767-70.	0.5	5
82	Identification of octanal as plant growth inhibitory volatile compound released from Heracleum sosnowskyi fruit. Natural Product Communications, 2015, 10, 771-4.	0.5	11
83	Identification of safranal as the main allelochemical from saffron (Crocus sativus). Natural Product Communications, 2015, 10, 775-7.	0.5	11
84	Transcriptomic evaluation of the enhanced plant growth-inhibitory activity caused by derivatization of <i>cis</i> -cinnamic acid. Journal of Pesticide Sciences, 2014, 39, 85-90.	1.4	5
85	An inverse relationship between allelopathic activity and salt tolerance in suspension cultures of three mangrove species, Sonneratia alba, S. caseolaris and S. ovata: development of a bioassay method for allelopathy, the protoplast co-culture method. Journal of Plant Research, 2014, 127, 755-761.	2.4	14
86	AFLP and PBA polymorphisms in an endangered medicinal plant, Rhazya stricta, in Pakistan. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, 199-206.	0.8	3
87	Phytotoxic substances with allelopathic activity may be central to the strong invasive potential of Brachiaria brizantha. Journal of Plant Physiology, 2014, 171, 525-530.	3.5	32
88	Determination of allelopathic potential in some medicinal and wild plant species of Iran by dish pack method. Theoretical and Experimental Plant Physiology, 2014, 26, 189-199.	2.4	28
89	The possible role of organic acids as allelochemicals in <i>Tamarindus indica</i> L. leaves. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2014, 64, 511-517.	0.6	7
90	<i>cis</i> -Cinnamic Acid Selective Suppressors Distinct from Auxin Inhibitors. Chemical and Pharmaceutical Bulletin, 2014, 62, 600-607.	1.3	6

#	Article	IF	CITATIONS
91	Phylogeographic study of 10 herbaceous plants native in Japan based on intraspecific chloroplast DNA variation. Journal of the Japanese Society of Revegetation Technology, 2014, 40, 72-77.	0.1	4
92	Mitigation of Replant Failure of Japanese Pear by Topsoil Dressing and Mulching. Horticultural Research (Japan), 2014, 13, 229-234.	0.1	2
93	Design and synthesis of conformationally constrained analogues of cis-cinnamic acid and evaluation of their plant growth inhibitory activity. Phytochemistry, 2013, 96, 223-234.	2.9	14
94	Substituent effects of cis-cinnamic acid analogues as plant growh inhibitors. Phytochemistry, 2013, 96, 132-147.	2.9	18
95	Influence of the nitrogen form on <i>in vitro</i> organogenesis in <i>Equisetum arvense</i> . Weed Biology and Management, 2013, 13, 151-155.	1.4	1
96	Root-specific induction of early auxin-responsive genes in Arabidopsis thaliana by cis-cinnamic acid. Plant Biotechnology, 2013, 30, 465-471.	1.0	13
97	Screening of the Growth-Inhibitory Effects of 168 Plant Species against Lettuce Seedlings. American Journal of Plant Sciences, 2013, 04, 1095-1104.	0.8	18
98	Quantification of Cyanamide in Young Seedlings of <i>Vicia</i> Species, <i>Lens culinaris</i> , and <i>Robinia pseudo-acacia</i> by Gas Chromatography-Mass Spectrometry. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1416-1418.	1.3	12
99	Evaluation of the In Vivo Antioxidant Activity of Mucuna pruriens DC. var. utilis by Using Caenorhabditis elegans. Food Science and Technology Research, 2012, 18, 227-233.	0.6	2
100	Key structural features of cis-cinnamic acid as an allelochemical. Phytochemistry, 2012, 84, 56-67.	2.9	33
101	Plant Growth Inhibitor from the Malaysian Medicinal Plant Goniothalamus andersonii and Related Species. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	2
102	Screening of 170 Peruvian plant species for allelopathic activity by using the Sandwich Method. Weed Biology and Management, 2012, 12, 1-11.	1.4	19
103	Plant growth inhibitor from the Malaysian medicinal plant Goniothalamus andersonii and related species. Natural Product Communications, 2012, 7, 1197-8.	0.5	4
104	Microarray analysis of Arabidopsis plants in response to allelochemical l-DOPA. Planta, 2011, 233, 231-240.	3.2	50
105	Development of an in vitro System for the Evaluation of Allelopathic Activities of Asparagus Calluses. Japanese Society for Horticultural Science, 2011, 80, 82-88.	0.8	5
106	9G-10 Tree shape and response under the microgravity and closed ecosystem environment. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2011, 2010.23, 431-432.	0.0	0
107	Assessment of Allelopathic Activities in Female and Male Individuals of Asparagus Seedlings and Regenerants. Japanese Society for Horticultural Science, 2011, 80, 169-174.	0.8	0
108	Isolation and identification of potent allelopathic substances in rattail fescue. Plant Growth Regulation, 2010, 60, 127-131.	3.4	20

#	Article	IF	CITATIONS
109	Contribution of militarine and dactylorhin A to the plant growthâ€inhibitory activity of a weedâ€suppressing orchid, <i>Bletilla striata</i> . Weed Biology and Management, 2010, 10, 202-207.	1.4	13
110	Quantitative Evaluation of Allelopathic Potentials in Soils: Total Activity Approach. Weed Science, 2010, 58, 258-264.	1.5	27
111	Carbon sources of natural cyanamide inVicia villosasubsp.varia. Natural Product Research, 2010, 24, 1637-1642.	1.8	Ο
112	Biosynthetic origin of the nitrogen atom in cyanamide inVicia villosasubsp.varia. Soil Science and Plant Nutrition, 2009, 55, 235-242.	1.9	2
113	Identification and activity of ethyl gallate as an antimicrobial compound produced by <i>Geranium carolinianum</i> . Weed Biology and Management, 2009, 9, 169-172.	1.4	19
114	Role of Volatile Chemicals from Plants as Allelochemicals. Journal of Japan Association on Odor Environment, 2009, 40, 158-165.	0.0	0
115	Limited distribution of natural cyanamide in higher plants: Occurrence in Vicia villosa subsp. varia, V. cracca, and Robinia pseudo-acacia. Phytochemistry, 2008, 69, 1166-1172.	2.9	29
116	Tissue culture system for <i>in vitro</i> tuber formation in <i>Equisetum arvense</i> . Weed Biology and Management, 2008, 8, 219-223.	1.4	2
117	Microarray expression profiling of Arabidopsis thaliana L. in response to allelochemicals identified in buckwheat. Journal of Experimental Botany, 2008, 59, 3099-3109.	4.8	67
118	Response of Exotic Invasive Weed Alternanthera philoxeroides to Environmental Factors and Its Competition with Rice. Rice Science, 2007, 14, 49-55.	3.9	18
119	Adsorption of 2,4-Dichlorophenoxyacetic Acid by an Andosol. Journal of Environmental Quality, 2007, 36, 101-109.	2.0	16
120	Specific and total activities of the allelochemicals identified in buckwheat. Weed Biology and Management, 2007, 7, 164-171.	1.4	78
121	Role of Catechol Structure in the Adsorption and Transformation Reactions of l-Dopa in Soils. Journal of Chemical Ecology, 2007, 33, 239-250.	1.8	42
122	Antifungal Effects of Volatile Compounds from Black Zira (Bunium persicum) and Other Spices and Herbs. Journal of Chemical Ecology, 2007, 33, 2123-2132.	1.8	107
123	The expansion of geographical distribution of a naturalized weed, Papaver dubium L. in Japan. Journal of Weed Science and Technology, 2007, 53, 134-137.	0.1	2
124	Evidence of cyanamide production in hairy vetchVicia villosa. Natural Product Research, 2006, 20, 429-433.	1.8	12
125	A Novel Bioassay Method to Evaluate the Allelopathic Activity in Rhizosphere Soil on Asparagus (Asparagus officinalis L.). Horticultural Research (Japan), 2006, 5, 443-446.	0.1	8
126	Activated Carbon Utilization to Reduce Allelopathy that Obstructs the Continuous Cropping of Asparagus (Asparagus of officinalis L.). Horticultural Research (Japan), 2006, 5, 437-442.	0.1	12

#	Article	IF	CITATIONS
127	Plant growth inhibitory activity of Lycoris radiata Herb. and the possible involvement of lycorine as an allelochemical. Weed Biology and Management, 2006, 6, 221-227.	1.4	30
128	Quantification of Cyanamide Contents in Herbaceous Plants. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2310-2312.	1.3	16
129	Direct quantitative determination of cyanamide by stable isotope dilution gas chromatography–mass spectrometry. Journal of Chromatography A, 2005, 1098, 138-143.	3.7	17
130	Evaluation of the allelopathic activity of five Oxalidaceae cover plants and the demonstration of potent weed suppression by Oxalis species. Weed Biology and Management, 2005, 5, 128-136.	1.4	10
131	Changes in Chemical Structure and Biological Activity of L-DOPA as Influenced by an Andosol and Its Components. Soil Science and Plant Nutrition, 2005, 51, 477-484.	1.9	26
132	Adsorption and Transformation Reactions of L-DOPA in Soils. Soil Science and Plant Nutrition, 2005, 51, 819-825.	1.9	15
133	Plant Growth Inhibition By Cis-Cinnamoyl Glucosides and Cis-Cinnamic Acid. Journal of Chemical Ecology, 2005, 31, 591-601.	1.8	39
134	Allelopathic Potential of Robinia pseudo-acacia L Journal of Chemical Ecology, 2005, 31, 2179-2192.	1.8	80
135	L-3-(3,4-Dihydroxyphenyl)alanine (L-DOPA), an allelochemical exuded from velvetbean (Mucuna) Tj ETQq1 1 0.7	84314 rgE 3.4	3T /gyerlock 1
136	cis-Cinnamoyl Glucoside as a Major Plant Growth Inhibitor Contained in Spiraea prunifolia. Plant Growth Regulation, 2005, 46, 125-131.	3.4	15
137	A volatile plant growth inhibitor from Spiraea thunbergii. Journal of Weed Science and Technology, 2005, 50, 144-145.	0.1	2
138	Role of allelopathy in invasion of an exotic plant Robinia pseudo-acacia L Journal of Weed Science and Technology, 2004, 49, 98-99.	0.1	3
139	Assessment method for allelopathic effect from leaf litter leachates. Weed Biology and Management, 2004, 4, 19-23.	1.4	74
140	Allelopathic effect of leaf debris, leaf aqueous extract and rhizosphere soil of Ophiopogon japonicus Ker-Gawler on the growth of plants. Weed Biology and Management, 2004, 4, 43-48.	1.4	18
141	Effects of quercetin and its seven derivatives on the growth of Arabidopsis thaliana and Neurospora crassa. Biochemical Systematics and Ecology, 2004, 32, 631-635.	1.3	86
142	Growth inhibitory alkaloids from mesquite (Prosopis juliflora (Sw.) DC.) leaves. Phytochemistry, 2004, 65, 587-591.	2.9	58
143	Germination growth response of different plant species to the allelochemical L-3,4-dihydroxyphenylalanine (L-DOPA). Plant Growth Regulation, 2004, 42, 181-189.	3.4	29
144	Differential allelopathic expression of bark and seed of Tamarindus indica L Plant Growth Regulation, 2004, 42, 245-252.	3.4	30

#	Article	IF	CITATIONS
145	Plant growth inhibitory activity of Ophiopogon japonicus Ker-Gawler and role of phenolic acids and their analogues: a comparative study. Plant Growth Regulation, 2004, 43, 245-250.	3.4	12
146	Structure-activity relationships of alkaloids from mesquite (Prosopis juliflora (Sw.) DC.). Plant Growth Regulation, 2004, 44, 207-210.	3.4	17
147	Phytotoxic cis-cinnamoyl glucosides from Spiraea thunbergii. Phytochemistry, 2004, 65, 731-739.	2.9	73
148	Impact Assessment of Transgenic Kiwifruit on Allelopathic Effect and Soil Microflora. Horticultural Research (Japan), 2004, 3, 349-354.	0.1	4
149	Screening of allelopathic activity from major native, invasive and Brazilian weeds by Plant Box method Journal of Weed Science and Technology, 2004, 49, 169-183.	0.1	4
150	Title is missing!. Plant Growth Regulation, 2003, 40, 49-52.	3.4	36
151	Tamarindus indica L. leaf is a source of allelopathic substance. Plant Growth Regulation, 2003, 40, 107-115.	3.4	31
152	Allelopathic competence of Tamarindus indica L. root involved in plant growth regulation. Plant Growth Regulation, 2003, 41, 139-148.	3.4	20
153	First isolation of natural cyanamide as a possible allelochemical from hairy vetch Vicia villosa. Journal of Chemical Ecology, 2003, 29, 275-283.	1.8	91
154	Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management, 2003, 3, 233-241.	1.4	141
155	Allelopathic activity of buckwheat: isolation and characterization of phenolics. Weed Science, 2003, 51, 657-662.	1.5	85
156	Soil drenching with water extracts of Oxalis articulata Savigny suppress Fusarium wilt of tomato. Weed Biology and Management, 2003, 3, 184-188.	1.4	4
157	Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from Velvet bean (Mucuna pruriens) and Hairy vetch (Vicia villosa). Uchu Seibutsu Kagaku, 2003, 17, 6-13.	0.3	47
158	Allelopathy of floodplain vegetation species in the middlecourse of Tama River. Journal of Weed Science and Technology, 2003, 48, 117-129.	0.1	11
159	Allelopathic flavonoids from buckwheat (Fagopyrum tataricum Gaertn.). Journal of Weed Science and Technology, 2003, 48, 158-159.	0.1	0
160	ã,¢ãf¬ãfãf'ã,∙ãf¼ç‰©è³ªã®è¾²æ¥å^©ç"∵. Kagaku To Seibutsu, 2002, 40, 98-100.	0.0	0
161	Effect of hairy vetch (Vicia villosa Roth) in paddy fields on weed suppression and rice yield Journal of Weed Science and Technology, 2002, 47, 168-174.	0.1	7
162	Growth and Yield of Tomatoes in Hairy Vetch-Incorporated and -Mulched Field Japanese Journal of Farm Work Research, 2002, 37, 231-240.	0.2	16

#	Article	IF	CITATIONS
163	Allelopathy of buckwheat: Assessment of allelopathic potential of extract of aerial parts of buckwheat and identification of fagomine and other related alkaloids as allelochemicals. Weed Biology and Management, 2002, 2, 110-115.	1.4	51
164	Allelopathic activity of leaching from dry leaves and exudate from roots of ground cover plants assayed on agar. Weed Biology and Management, 2002, 2, 133-142.	1.4	36
165	Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry, 2002, 61, 693-698.	2.9	112
166	Title is missing!. Plant Growth Regulation, 2002, 37, 113-117.	3.4	27
167	Screening and Future Exploitation of Allelopathic Plants as Alternative Herbicides with Special Reference to Hairy Vetch. The Journal of Crop Improvement: Innovations in Practiceory and Research, 2001, 4, 257-275.	0.4	66
168	Effects of aqueous extracts of Oxalis spp. on spore germination and mycelial growth of plant pathogenic fungi. Journal of Weed Science and Technology, 2001, 46, 100-101.	0.1	3
169	Plant growth inhibitory activity of L-canavanine and its mode of action. Journal of Chemical Ecology, 2001, 27, 19-31.	1.8	18
170	Allelochemicals of the tropical weed Sphenoclea zeylanica. Phytochemistry, 2000, 55, 131-140.	2.9	21
171	Characteristics of Growth Inhibitory Effect of L-3, 4-Dihydroxyphenylalanine (L-DOPA) on Cucumber Seedlings Journal of Weed Science and Technology, 1999, 44, 132-138.	0.1	18
172	Allelopathic Activity and Oxalate Content in Oxalate-rich Plants Journal of Weed Science and Technology, 1999, 44, 316-323.	0.1	5
173	Three plant growth inhibiting saponins from Duranta repens. Phytochemistry, 1999, 52, 1223-1228.	2.9	36
174	Screening for Allelopathic Activity among Weeds and Medicinal Plants Using the "Sandwich Method" Journal of Weed Science and Technology, 1998, 43, 258-266.	0.1	8
175	Exudation of Allelopathic Compound from Plant Roots of Sweet Vernalgrass (Anthoxanthum) Tj ETQq1 1 0.7843	14 rgBT /C	Overlock 10
176	Effects of Soil Factors on Manifestation of Allelopathy in Cytisus scoparius. Journal of Weed Science and Technology, 1995, 39, 222-228.	0.1	5
177	Survey of Japanese medicinal plants for the detection of allelopathic properties Journal of Weed Science and Technology, 1991, 36, 36-42.	0.1	17
178	L-3,4-dihydroxyphenylalanine as an allelochemical candidate from Mucuna pruriens (L). DC. var. utilis Agricultural and Biological Chemistry, 1991, 55, 617-618.	0.3	50
179	l-3,4-Dihydroxyphenylalanine as an Allelochemical Candidate fromMucuna pruriens(L.) DC. var.utilis. Agricultural and Biological Chemistry, 1991, 55, 617-618.	0.3	37
180	Allelopathic effect of Mucuna pruriens on the appearance of weeds Journal of Weed Science and Technology, 1991, 36, 43-49.	0.1	4

#	Article	IF	CITATIONS
181	Biophylaxis of the plant.4.Allelopathy of the plant Kagaku To Seibutsu, 1990, 28, 471-478.	0.0	2
182	Survey of Japanese weeds and crops for the detection of water-extractable allelopathic chemicals using RICHARDS' function fitted to lettuce germination test Journal of Weed Science and Technology, 1990, 35, 362-370.	0.1	12
183	Partial Purification and Study of Some Properties of Rice Germ Lipoxygenase. Agricultural and Biological Chemistry, 1980, 44, 443-445.	0.3	17