List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4986986/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management, 2003, 3, 233-241.	1.4	141
2	Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry, 2002, 61, 693-698.	2.9	112
3	Antifungal Effects of Volatile Compounds from Black Zira (Bunium persicum) and Other Spices and Herbs. Journal of Chemical Ecology, 2007, 33, 2123-2132.	1.8	107
4	First isolation of natural cyanamide as a possible allelochemical from hairy vetch Vicia villosa. Journal of Chemical Ecology, 2003, 29, 275-283.	1.8	91
5	Effects of quercetin and its seven derivatives on the growth of Arabidopsis thaliana and Neurospora crassa. Biochemical Systematics and Ecology, 2004, 32, 631-635.	1.3	86
6	Allelopathic activity of buckwheat: isolation and characterization of phenolics. Weed Science, 2003, 51, 657-662.	1.5	85
7	Allelopathic Potential of Robinia pseudo-acacia L Journal of Chemical Ecology, 2005, 31, 2179-2192.	1.8	80
8	Specific and total activities of the allelochemicals identified in buckwheat. Weed Biology and Management, 2007, 7, 164-171.	1.4	78
9	Assessment method for allelopathic effect from leaf litter leachates. Weed Biology and Management, 2004, 4, 19-23.	1.4	74
10	Phytotoxic cis-cinnamoyl glucosides from Spiraea thunbergii. Phytochemistry, 2004, 65, 731-739.	2.9	73
11	Microarray expression profiling of Arabidopsis thaliana L. in response to allelochemicals identified in buckwheat. Journal of Experimental Botany, 2008, 59, 3099-3109.	4.8	67
12	Screening and Future Exploitation of Allelopathic Plants as Alternative Herbicides with Special Reference to Hairy Vetch. The Journal of Crop Improvement: Innovations in Practiceory and Research, 2001, 4, 257-275.	0.4	66
13	Medicinal Plants Used in the Ejisu-Juaben Municipality, Southern Ghana: An Ethnobotanical Study. Medicines (Basel, Switzerland), 2019, 6, 1.	1.4	64
14	Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Soybean Plants Carrying the <i>Rj4</i> Allele. Applied and Environmental Microbiology, 2015, 81, 6710-6717.	3.1	62
15	Growth inhibitory alkaloids from mesquite (Prosopis juliflora (Sw.) DC.) leaves. Phytochemistry, 2004, 65, 587-591.	2.9	58
16	Allelopathy of buckwheat: Assessment of allelopathic potential of extract of aerial parts of buckwheat and identification of fagomine and other related alkaloids as allelochemicals. Weed Biology and Management, 2002, 2, 110-115.	1.4	51
17	L-3,4-dihydroxyphenylalanine as an allelochemical candidate from Mucuna pruriens (L). DC. var. utilis Agricultural and Biological Chemistry, 1991, 55, 617-618.	0.3	50
18	Microarray analysis of Arabidopsis plants in response to allelochemical l-DOPA. Planta, 2011, 233, 231-240.	3.2	50

#	Article	IF	CITATIONS
19	Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from Velvet bean (Mucuna pruriens) and Hairy vetch (Vicia villosa). Uchu Seibutsu Kagaku, 2003, 17, 6-13.	0.3	47
20	Role of Catechol Structure in the Adsorption and Transformation Reactions of l-Dopa in Soils. Journal of Chemical Ecology, 2007, 33, 239-250.	1.8	42
21	Plant Growth Inhibition By Cis-Cinnamoyl Glucosides and Cis-Cinnamic Acid. Journal of Chemical Ecology, 2005, 31, 591-601.	1.8	39
22	L-3-(3,4-Dihydroxyphenyl)alanine (L-DOPA), an allelochemical exuded from velvetbean (Mucuna) Tj ETQq0 0 0 rg	BT /Overlo 3.4	ck 10 Tf 50 6
23	l-3,4-Dihydroxyphenylalanine as an Allelochemical Candidate fromMucuna pruriens(L.) DC. var.utilis. Agricultural and Biological Chemistry, 1991, 55, 617-618.	0.3	37
24	Three plant growth inhibiting saponins from Duranta repens. Phytochemistry, 1999, 52, 1223-1228.	2.9	36
25	Allelopathic activity of leaching from dry leaves and exudate from roots of ground cover plants assayed on agar. Weed Biology and Management, 2002, 2, 133-142.	1.4	36
26	Title is missing!. Plant Growth Regulation, 2003, 40, 49-52.	3.4	36
27	Study of Allelopathic Interaction of Essential Oils from Medicinal and Aromatic Plants on Seed Germination and Seedling Growth of Lettuce. Agronomy, 2020, 10, 163.	3.0	34
28	Key structural features of cis-cinnamic acid as an allelochemical. Phytochemistry, 2012, 84, 56-67.	2.9	33
29	Phytotoxic substances with allelopathic activity may be central to the strong invasive potential of Brachiaria brizantha. Journal of Plant Physiology, 2014, 171, 525-530.	3.5	32
30	Tamarindus indica L. leaf is a source of allelopathic substance. Plant Growth Regulation, 2003, 40, 107-115.	3.4	31
31	Differential allelopathic expression of bark and seed of Tamarindus indica L Plant Growth Regulation, 2004, 42, 245-252.	3.4	30
32	Plant growth inhibitory activity of Lycoris radiata Herb. and the possible involvement of lycorine as an allelochemical. Weed Biology and Management, 2006, 6, 221-227.	1.4	30
33	Germination growth response of different plant species to the allelochemical L-3,4-dihydroxyphenylalanine (L-DOPA). Plant Growth Regulation, 2004, 42, 181-189.	3.4	29
34	Limited distribution of natural cyanamide in higher plants: Occurrence in Vicia villosa subsp. varia, V. cracca, and Robinia pseudo-acacia. Phytochemistry, 2008, 69, 1166-1172.	2.9	29
35	Determination of allelopathic potential in some medicinal and wild plant species of Iran by dish pack method. Theoretical and Experimental Plant Physiology, 2014, 26, 189-199.	2.4	28
36	Title is missing!. Plant Growth Regulation, 2002, 37, 113-117.	3.4	27

#	Article	IF	CITATIONS
37	Quantitative Evaluation of Allelopathic Potentials in Soils: Total Activity Approach. Weed Science, 2010, 58, 258-264.	1.5	27
38	Changes in Chemical Structure and Biological Activity of L-DOPA as Influenced by an Andosol and Its Components. Soil Science and Plant Nutrition, 2005, 51, 477-484.	1.9	26
39	Arbuscular Mycorrhizal Fungi Associated with Rice (Oryza sativa L.) in Ghana: Effect of Regional Locations and Soil Factors on Diversity and Community Assembly. Agronomy, 2020, 10, 559.	3.0	25
40	Exploring Farmers' Indigenous Knowledge of Soil Quality and Fertility Management Practices in Selected Farming Communities of the Guinea Savannah Agro-Ecological Zone of Ghana. Sustainability, 2018, 10, 1034.	3.2	24
41	Involvement of Carnosic Acid in the Phytotoxicity of Rosmarinus officinalis Leaves. Toxins, 2018, 10, 498.	3.4	22
42	Allelochemicals of the tropical weed Sphenoclea zeylanica. Phytochemistry, 2000, 55, 131-140.	2.9	21
43	Allelopathic competence of Tamarindus indica L. root involved in plant growth regulation. Plant Growth Regulation, 2003, 41, 139-148.	3.4	20
44	Isolation and identification of potent allelopathic substances in rattail fescue. Plant Growth Regulation, 2010, 60, 127-131.	3.4	20
45	Comparison of Closed Chamber and Eddy Covariance Methods to Improve the Understanding of Methane Fluxes from Rice Paddy Fields in Japan. Atmosphere, 2018, 9, 356.	2.3	20
46	Identification and activity of ethyl gallate as an antimicrobial compound produced by <i>Geranium carolinianum</i> . Weed Biology and Management, 2009, 9, 169-172.	1.4	19
47	Screening of 170 Peruvian plant species for allelopathic activity by using the Sandwich Method. Weed Biology and Management, 2012, 12, 1-11.	1.4	19
48	Characteristics of Growth Inhibitory Effect of L-3, 4-Dihydroxyphenylalanine (L-DOPA) on Cucumber Seedlings Journal of Weed Science and Technology, 1999, 44, 132-138.	0.1	18
49	Plant growth inhibitory activity of L-canavanine and its mode of action. Journal of Chemical Ecology, 2001, 27, 19-31.	1.8	18
50	Allelopathic effect of leaf debris, leaf aqueous extract and rhizosphere soil of Ophiopogon japonicus Ker-Gawler on the growth of plants. Weed Biology and Management, 2004, 4, 43-48.	1.4	18
51	Response of Exotic Invasive Weed Alternanthera philoxeroides to Environmental Factors and Its Competition with Rice. Rice Science, 2007, 14, 49-55.	3.9	18
52	Substituent effects of cis-cinnamic acid analogues as plant growh inhibitors. Phytochemistry, 2013, 96, 132-147.	2.9	18
53	Influence of Different Plant Materials in Combination with Chicken Manure on Soil Carbon and Nitrogen Contents and Vegetable Yield. Pedosphere, 2016, 26, 510-521.	4.0	18
54	Screening of the Growth-Inhibitory Effects of 168 Plant Species against Lettuce Seedlings. American Journal of Plant Sciences, 2013, 04, 1095-1104.	0.8	18

#	Article	IF	CITATIONS
55	Partial Purification and Study of Some Properties of Rice Germ Lipoxygenase. Agricultural and Biological Chemistry, 1980, 44, 443-445.	0.3	17
56	Survey of Japanese medicinal plants for the detection of allelopathic properties Journal of Weed Science and Technology, 1991, 36, 36-42.	0.1	17
57	Structure-activity relationships of alkaloids from mesquite (Prosopis juliflora (Sw.) DC.). Plant Growth Regulation, 2004, 44, 207-210.	3.4	17
58	Direct quantitative determination of cyanamide by stable isotope dilution gas chromatography–mass spectrometry. Journal of Chromatography A, 2005, 1098, 138-143.	3.7	17
59	Evaluation of Biological Response of Lettuce (Lactuca sativa L.) and Weeds to Safranal Allelochemical of Saffron (Crocus sativus) by Using Static Exposure Method. Molecules, 2019, 24, 1788.	3.8	17
60	Growth and Yield of Tomatoes in Hairy Vetch-Incorporated and -Mulched Field Japanese Journal of Farm Work Research, 2002, 37, 231-240.	0.2	16
61	Quantification of Cyanamide Contents in Herbaceous Plants. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2310-2312.	1.3	16
62	Adsorption of 2,4-Dichlorophenoxyacetic Acid by an Andosol. Journal of Environmental Quality, 2007, 36, 101-109.	2.0	16
63	Identification of Octanal as Plant Growth Inhibitory Volatile Compound Released from <i>Heracleum sosnowskyi</i> Fruit. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	16
64	Determination of allelopathic potentials in plant species in Sino-Japanese floristic region by sandwich method and dish pack method. International Journal of Basic and Applied Sciences, 2015, 4, 381.	0.2	16
65	Exploring Alternative Use of Medicinal Plants for Sustainable Weed Management. Sustainability, 2017, 9, 1468.	3.2	16
66	Adsorption and Transformation Reactions of L-DOPA in Soils. Soil Science and Plant Nutrition, 2005, 51, 819-825.	1.9	15
67	cis-Cinnamoyl Glucoside as a Major Plant Growth Inhibitor Contained in Spiraea prunifolia. Plant Growth Regulation, 2005, 46, 125-131.	3.4	15
68	Design and synthesis of conformationally constrained analogues of cis-cinnamic acid and evaluation of their plant growth inhibitory activity. Phytochemistry, 2013, 96, 223-234.	2.9	14
69	An inverse relationship between allelopathic activity and salt tolerance in suspension cultures of three mangrove species, Sonneratia alba, S. caseolaris and S. ovata: development of a bioassay method for allelopathy, the protoplast co-culture method. Journal of Plant Research, 2014, 127, 755-761.	2.4	14
70	Identification of Safranal as the Main Allelochemical from Saffron (<i>Crocus sativus</i>). Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	14
71	Phytochemical analysis, antimicrobial and antioxidant activities of Euphorbia golondrina L.C. Wheeler (Euphorbiaceae Juss.): an unexplored medicinal herb reported from Cameroon. SpringerPlus, 2016, 5, 264.	1.2	14
72	The Impact of Salt Concentration on the Mineral Nutrition of Tetragonia tetragonioides. Agriculture (Switzerland), 2020, 10, 238.	3.1	14

#	Article	IF	CITATIONS
73	Field multi-omics analysis reveals a close association between bacterial communities and mineral properties in the soybean rhizosphere. Scientific Reports, 2021, 11, 8878.	3.3	14
74	Effects of Salinity on the Macro- and Micronutrient Contents of a Halophytic Plant Species (Portulaca oleracea L.). Land, 2021, 10, 481.	2.9	14
75	Contribution of militarine and dactylorhin A to the plant growthâ€inhibitory activity of a weedâ€suppressing orchid, <i>Bletilla striata</i> . Weed Biology and Management, 2010, 10, 202-207.	1.4	13
76	Root-specific induction of early auxin-responsive genes in Arabidopsis thaliana by cis-cinnamic acid. Plant Biotechnology, 2013, 30, 465-471.	1.0	13
77	Metabolome Analysis Identified Okaramines in the Soybean Rhizosphere as a Legacy of Hairy Vetch. Frontiers in Genetics, 2020, 11, 114.	2.3	13
78	Survey of Japanese weeds and crops for the detection of water-extractable allelopathic chemicals using RICHARDS' function fitted to lettuce germination test Journal of Weed Science and Technology, 1990, 35, 362-370.	0.1	12
79	Plant growth inhibitory activity of Ophiopogon japonicus Ker-Gawler and role of phenolic acids and their analogues: a comparative study. Plant Growth Regulation, 2004, 43, 245-250.	3.4	12
80	Evidence of cyanamide production in hairy vetchVicia villosa. Natural Product Research, 2006, 20, 429-433.	1.8	12
81	Activated Carbon Utilization to Reduce Allelopathy that Obstructs the Continuous Cropping of Asparagus (Asparagus of officinalis L.). Horticultural Research (Japan), 2006, 5, 437-442.	0.1	12
82	Quantification of Cyanamide in Young Seedlings of <i>Vicia</i> Species, <i>Lens culinaris</i> , and <i>Robinia pseudo-acacia</i> by Gas Chromatography-Mass Spectrometry. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1416-1418.	1.3	12
83	Exploring Rice Root Microbiome; The Variation, Specialization and Interaction of Bacteria and Fungi In Six Tropic Savanna Regions in Ghana. Sustainability, 2020, 12, 5835.	3.2	12
84	Plant Growth Inhibitory Activities and Volatile Active Compounds of 53 Spices and Herbs. Plants, 2020, 9, 264.	3.5	12
85	Allelopathy of floodplain vegetation species in the middlecourse of Tama River. Journal of Weed Science and Technology, 2003, 48, 117-129.	0.1	11
86	Genetic Diversity and Symbiotic Phenotype of Hairy Vetch Rhizobia in Japan. Microbes and Environments, 2016, 31, 121-126.	1.6	11
87	Potential Allelopathic Candidates for Land Use and Possible Sustainable Weed Management in South Asian Ecosystem. Sustainability, 2019, 11, 2649.	3.2	11
88	Evaluation of Allelopathic Activity of Chinese Medicinal Plants and Identification of Shikimic Acid as an Allelochemical from Illicium verum Hook. f Plants, 2020, 9, 684.	3.5	11
89	Therapeutic peptides of <i>Mucuna pruriens</i> L.: Antiâ€genotoxic molecules against human hepatocellular carcinoma and hepatitis C virus. Food Science and Nutrition, 2021, 9, 2908-2914.	3.4	11
90	Identification of octanal as plant growth inhibitory volatile compound released from Heracleum sosnowskyi fruit. Natural Product Communications, 2015, 10, 771-4.	0.5	11

#	Article	IF	CITATIONS
91	Identification of safranal as the main allelochemical from saffron (Crocus sativus). Natural Product Communications, 2015, 10, 775-7.	0.5	11

$_{92}$ Exudation of Allelopathic Compound from Plant Roots of Sweet Vernalgrass (Anthoxanthum) Tj ETQq0 0 0 rgBT /Overlock $_{10}^{10}$ Tf 50 702

93	Evaluation of the allelopathic activity of five Oxalidaceae cover plants and the demonstration of potent weed suppression by Oxalis species. Weed Biology and Management, 2005, 5, 128-136.	1.4	10
94	Effect of Purine Alkaloids on the Proliferation of Lettuce Cells Derived from Protoplasts. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	10
95	Angelicin as the Principal Allelochemical in Heracleum sosnowskyi Fruit. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	10
96	Nitrogen Mineralization and Microbial Biomass Dynamics in Different Tropical Soils Amended with Contrasting Organic Resources. Soil Systems, 2018, 2, 63.	2.6	10
97	Caffeine: The Allelochemical Responsible for the Plant Growth Inhibitory Activity of Vietnamese Tea (Camellia sinensis L. Kuntze). Agronomy, 2019, 9, 396.	3.0	10
98	Screening for Plant Volatile Emissions with Allelopathic Activity and the Identification of L-Fenchone and 1,8-Cineole from Star Anise (Illicium verum) Leaves. Plants, 2019, 8, 457.	3.5	10
99	Phytotoxic analysis of coastal medicinal plants and quantification of phenolic compounds using HPLC. Plant Biosystems, 2019, 153, 767-774.	1.6	10
100	Recent Advances in Saffron Soil Remediation: Activated Carbon and Zeolites Effects on Allelopathic Potential. Plants, 2020, 9, 1714.	3.5	10
101	Impacts of Fertilization Type on Soil Microbial Biomass and Nutrient Availability in Two Agroecological Zones of Ghana. Agronomy, 2017, 7, 55.	3.0	9
101 102	Impacts of Fertilization Type on Soil Microbial Biomass and Nutrient Availability in Two	3.0 0.1	9 8
	Impacts of Fertilization Type on Soil Microbial Biomass and Nutrient Availability in Two Agroecological Zones of Ghana. Agronomy, 2017, 7, 55. A Novel Bioassay Method to Evaluate the Allelopathic Activity in Rhizosphere Soil on Asparagus		
102	Impacts of Fertilization Type on Soil Microbial Biomass and Nutrient Availability in Two Agroecological Zones of Ghana. Agronomy, 2017, 7, 55. A Novel Bioassay Method to Evaluate the Allelopathic Activity in Rhizosphere Soil on Asparagus (Asparagus officinalis L.). Horticultural Research (Japan), 2006, 5, 443-446. Evaluation of allelopathic activity of 178 Caucasian plant species. International Journal of Basic and	0.1	8
102 103	 Impacts of Fertilization Type on Soil Microbial Biomass and Nutrient Availability in Two Agroecological Zones of Ghana. Agronomy, 2017, 7, 55. A Novel Bioassay Method to Evaluate the Allelopathic Activity in Rhizosphere Soil on Asparagus (Asparagus officinalis L.). Horticultural Research (Japan), 2006, 5, 443-446. Evaluation of allelopathic activity of 178 Caucasian plant species. International Journal of Basic and Applied Sciences, 2015, 5, 75. Allelopathy in a Leguminous Mangrove Plant, Derris indica: Protoplast Co-culture Bioassay and 	0.1 0.2	8
102 103 104	Impacts of Fertilization Type on Soil Microbial Biomass and Nutrient Availability in Two Agroecological Zones of Ghana. Agronomy, 2017, 7, 55. A Novel Bioassay Method to Evaluate the Allelopathic Activity in Rhizosphere Soil on Asparagus (Asparagus officinalis L.). Horticultural Research (Japan), 2006, 5, 443-446. Evaluation of allelopathic activity of 178 Caucasian plant species. International Journal of Basic and Applied Sciences, 2015, 5, 75. Allelopathy in a Leguminous Mangrove Plant, Derris indica: Protoplast Co-culture Bioassay and Rotenone Effect. Natural Product Communications, 2015, 10, 1934578X1501000. Evaluation of canavanine as an allelochemical in etiolated seedlings of Vicia villosa Roth: protoplast co-culture method with digital image analysis. In Vitro Cellular and Developmental Biology - Plant,	0.1 0.2 0.5	8 8 8
102 103 104 105	Impacts of Fertilization Type on Soil Microbial Biomass and Nutrient Availability in Two Agroecological Zones of Ghana. Agronomy, 2017, 7, 55. A Novel Bioassay Method to Evaluate the Allelopathic Activity in Rhizosphere Soil on Asparagus (Asparagus officinalis L). Horticultural Research (Japan), 2006, 5, 443-446. Evaluation of allelopathic activity of 178 Caucasian plant species. International Journal of Basic and Applied Sciences, 2015, 5, 75. Allelopathy in a Leguminous Mangrove Plant, Derris indica: Protoplast Co-culture Bioassay and Rotenone Effect. Natural Product Communications, 2015, 10, 1934578X1501000. Evaluation of canavanine as an allelochemical in etiolated seedlings of Vicia villosa Roth: protoplast co-culture method with digital image analysis. In Vitro Cellular and Developmental Biology - Plant, 2019, 55, 296-304. Evaluation of Isoflavones as Allelochemicals with Strong Allelopathic Activities of Kudzu Using Protoplast Co-Culture Method with Digital Image Analysis. American Journal of Plant Sciences, 2021,	0.1 0.2 0.5 2.1	8 8 8 8

#	Article	IF	CITATIONS
109	Effect of purine alkaloids on the proliferation of lettuce cells derived from protoplasts. Natural Product Communications, 2015, 10, 751-4.	0.5	8
110	Effect of hairy vetch (Vicia villosa Roth) in paddy fields on weed suppression and rice yield Journal of Weed Science and Technology, 2002, 47, 168-174.	0.1	7
111	The possible role of organic acids as allelochemicals in <i>Tamarindus indica</i> L. leaves. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2014, 64, 511-517.	0.6	7
112	Evaluation of an Anthocyanin, Cyanidin 3,5-di-O-glucoside, as an Allelochemical in Red Callus of a Mangrove Sonneratia ovata, Using Protoplast Co-Culture Bioassay Method with Digital Image Analysis. Journal of Plant Studies, 2018, 7, 1.	0.3	7
113	Indigo as a Plant Growth Inhibitory Chemical from the Fruit Pulp of Couroupita guianensis Aubl Agronomy, 2020, 10, 1388.	3.0	7
114	Variation in the Physical and Functional Properties of Yam (Dioscorea spp.) Flour Produced by Different Processing Techniques. Foods, 2021, 10, 1341.	4.3	7
115	Evaluation of Growth, Yield, and Biochemical Attributes of Bitter Gourd (Momordica charantia L.) Cultivars under Karaj Conditions in Iran. Plants, 2021, 10, 1370.	3.5	7
116	Determination of the Allelopathic Potential of Cambodia's Medicinal Plants Using the Dish Pack Method. Sustainability, 2021, 13, 9062.	3.2	7
117	L-Canavanine, a Root Exudate From Hairy Vetch (Vicia villosa) Drastically Affecting the Soil Microbial Community and Metabolite Pathways. Frontiers in Microbiology, 2021, 12, 701796.	3.5	7
118	<i>cis</i> -Cinnamic Acid Selective Suppressors Distinct from Auxin Inhibitors. Chemical and Pharmaceutical Bulletin, 2014, 62, 600-607.	1.3	6
119	Allelopathic activities of selected Mucuna pruriens on the germination and initial growth of lettuce. International Journal of Basic and Applied Sciences, 2015, 4, 475-481.	0.2	6
120	First Broad Screening of Allelopathic Potential of Wild and Cultivated Plants in Turkey. Plants, 2019, 8, 532.	3.5	6
121	Allelopathic Activity and Oxalate Content in Oxalate-rich Plants Journal of Weed Science and Technology, 1999, 44, 316-323.	0.1	5
122	Transcriptomic evaluation of the enhanced plant growth-inhibitory activity caused by derivatization of <i>cis</i> -cinnamic acid. Journal of Pesticide Sciences, 2014, 39, 85-90.	1.4	5
123	Effect of Soaking Treatment on Anthocyanin, Flavonoid, Phenolic Content and Antioxidant Activities of <i>Dioscorea alata</i> Flour. Indonesian Journal of Chemistry, 2018, 18, 656.	0.8	5
124	Development of an in vitro System for the Evaluation of Allelopathic Activities of Asparagus Calluses. Japanese Society for Horticultural Science, 2011, 80, 82-88.	0.8	5
125	Effects of Soil Factors on Manifestation of Allelopathy in Cytisus scoparius. Journal of Weed Science and Technology, 1995, 39, 222-228.	0.1	5
126	Angelicin as the principal allelochemical in Heracleum sosnowskyi fruit. Natural Product Communications, 2015, 10, 767-70.	0.5	5

#	Article	IF	CITATIONS
127	Seasonal Changes in the Plant Growth-Inhibitory Effects of Rosemary Leaves on Lettuce Seedlings. Plants, 2022, 11, 673.	3.5	5
128	Soil drenching with water extracts of Oxalis articulata Savigny suppress Fusarium wilt of tomato. Weed Biology and Management, 2003, 3, 184-188.	1.4	4
129	Allelopathy of Wild Mushrooms—An Important Factor for Assessing Forest Ecosystems in Japan. Forests, 2018, 9, 773.	2.1	4
130	Application of the protoplast co-culture method for evaluation of allelopathic activities of volatile compounds, safranal and tulipalin A. Results in Chemistry, 2020, 2, 100030.	2.0	4
131	Allelopathic activities of three carotenoids, neoxanthin, crocin and β-carotene, assayed using protoplast co-culture method with digital image analysis. Plant Biotechnology, 2021, 38, 101-107.	1.0	4
132	Determination of Allelopathic Potential in Mahogany (Swietenia macrophylla King) Leaf Litter Using Sandwich Method. Indonesian Journal of Biotechnology, 2017, 21, 93.	0.4	4
133	Impact Assessment of Transgenic Kiwifruit on Allelopathic Effect and Soil Microflora. Horticultural Research (Japan), 2004, 3, 349-354.	0.1	4
134	Assessment of allelopathic potential of goniothalamin allelochemical from Malaysian plant Goniothalamus andersonii J. Sinclair by sandwich method. Allelopathy Journal, 2019, 46, 25-40.	0.5	4
135	Evaluation of Allelopathic Potentials from Medicinal Plant Species in Phnom Kulen National Park, Cambodia by the Sandwich Method. Sustainability, 2021, 13, 264.	3.2	4
136	Screening of allelopathic activity from major native, invasive and Brazilian weeds by Plant Box method Journal of Weed Science and Technology, 2004, 49, 169-183.	0.1	4
137	Phylogeographic study of 10 herbaceous plants native in Japan based on intraspecific chloroplast DNA variation. Journal of the Japanese Society of Revegetation Technology, 2014, 40, 72-77.	0.1	4
138	Allelopathic effect of Mucuna pruriens on the appearance of weeds Journal of Weed Science and Technology, 1991, 36, 43-49.	0.1	4
139	Alternative approach to management of Rhizopus rot of peach (Prunus persica L.) using the essential oil of Thymus vulgaris (L.). Mycosphere, 2018, 9, 510-517.	6.1	4
140	Plant growth inhibitor from the Malaysian medicinal plant Goniothalamus andersonii and related species. Natural Product Communications, 2012, 7, 1197-8.	0.5	4
141	Allelopathy in a leguminous mangrove plant, Derris indica: protoplast co-culture bioassay and rotenone effect. Natural Product Communications, 2015, 10, 747-50.	0.5	4
142	Effects of aqueous extracts of Oxalis spp. on spore germination and mycelial growth of plant pathogenic fungi. Journal of Weed Science and Technology, 2001, 46, 100-101.	0.1	3
143	Role of allelopathy in invasion of an exotic plant Robinia pseudo-acacia L Journal of Weed Science and Technology, 2004, 49, 98-99.	0.1	3
144	AFLP and PBA polymorphisms in an endangered medicinal plant, Rhazya stricta, in Pakistan. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, 199-206.	0.8	3

#	Article	IF	CITATIONS
145	Design and chemical synthesis of root gravitropism inhibitors: Bridged analogues of ku-76 have more potent activity. Phytochemistry, 2020, 179, 112508.	2.9	3
146	Evaluation of Potential Volatile Allelopathic Plants from Bangladesh, with Sapindus mukorossi as a Candidate Species. Agronomy, 2020, 10, 49.	3.0	3
147	Ultrafine bubble water mitigates plant growth in damaged soil. Bioscience, Biotechnology and Biochemistry, 2021, 85, 2466-2475.	1.3	3
148	Essential structural features of (2Z,4E)-5-phenylpenta-2,4-dienoic acid for inhibition of root gravitropism. Phytochemistry, 2020, 172, 112287.	2.9	3
149	The Rhizosphere Soil Assay Method to Evaluate the Risk of Soil Sickness Syndrome for Japanese Pear. Horticultural Research (Japan), 2020, 19, 21-27.	0.1	3
150	Biophylaxis of the plant.4.Allelopathy of the plant Kagaku To Seibutsu, 1990, 28, 471-478.	0.0	2
151	Tissue culture system for <i>in vitro</i> tuber formation in <i>Equisetum arvense</i> . Weed Biology and Management, 2008, 8, 219-223.	1.4	2
152	Biosynthetic origin of the nitrogen atom in cyanamide inVicia villosasubsp.varia. Soil Science and Plant Nutrition, 2009, 55, 235-242.	1.9	2
153	Evaluation of the In Vivo Antioxidant Activity of Mucuna pruriens DC. var. utilis by Using Caenorhabditis elegans. Food Science and Technology Research, 2012, 18, 227-233.	0.6	2
154	Plant Growth Inhibitor from the Malaysian Medicinal Plant Goniothalamus andersonii and Related Species. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	2
155	Transcriptomic Evaluation of Plant Growth Inhibitory Activity of Goniothalamin from the Malaysian Medicinal Plant <i>Goniothalamus andersonii</i> . Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	2
156	Toxic Chemicals from Invasive Alien Plants. Toxinology, 2017, , 25-36.	0.2	2
157	Comparative effects of allyl and methyl isothiocyanates on aflatoxin production and growth of <i>Aspergillus flavus</i> . Mycotoxins, 2019, 69, 81-83.	0.2	2
158	Potential of Octanol and Octanal from Heracleum sosnowskyi Fruits for the Control of Fusarium oxysporum f. sp. lycopersici. Sustainability, 2020, 12, 9334.	3.2	2
159	Isophoroneâ€induced lightâ€independent lipid peroxidation and loss of cell membrane integrity. Weed Biology and Management, 2021, 21, 11-18.	1.4	2
160	Allelopathic Potentiality of Euphorbia hypericifolia L. on Germination and Seedling Development of Sympatric Crops and Weeds. International Annals of Science, 2020, 10, 134-150.	0.4	2
161	Elucidation of the Characteristics of Soil Sickness Syndrome in Japanese Pear and Construction of Countermeasures Using the Rhizosphere Soil Assay Method. Agronomy, 2021, 11, 1468.	3.0	2
162	Development and Evaluation of Mulching Boards Fabricated from Bagasse. Transactions of the Materials Research Society of Japan, 2020, 45, 9-13.	0.2	2

#	Article	IF	CITATIONS
163	A volatile plant growth inhibitor from Spiraea thunbergii. Journal of Weed Science and Technology, 2005, 50, 144-145.	0.1	2
164	The expansion of geographical distribution of a naturalized weed, Papaver dubium L. in Japan. Journal of Weed Science and Technology, 2007, 53, 134-137.	0.1	2
165	Mitigation of Replant Failure of Japanese Pear by Topsoil Dressing and Mulching. Horticultural Research (Japan), 2014, 13, 229-234.	0.1	2
166	The Effect of Roots Mixed in Soil on the Occurrence of Soil Sickness Syndrome in Japanese Pear. Horticultural Research (Japan), 2020, 19, 373-379.	0.1	2
167	Influence of the nitrogen form on <i>in vitro</i> organogenesis in <i>Equisetum arvense</i> . Weed Biology and Management, 2013, 13, 151-155.	1.4	1
168	Cyanamide Phytotoxicity in Soybean (<i>Glycine max</i>) Seedlings involves Aldehyde Dehydrogenase Inhibition and Oxidative Stress. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	1
169	Organic and chemical fertilizer input management on maize and soil productivity in two agro-ecological zones of Ghana. Environmental Sustainability, 2018, 1, 437-447.	2.8	1
170	Influence of organic inputs with mineral fertilizer on maize yield and soil microbial biomass dynamics in different seasons in a tropical acrisol. Environmental Sustainability, 2020, 3, 45-57.	2.8	1
171	ã,¢ãf¬ãfãf'ã,∙ãf¼ç‰©è³ªã®è¾2æ¥å^©ç‴. Kagaku To Seibutsu, 2002, 40, 98-100.	0.0	0
172	Carbon sources of natural cyanamide inVicia villosasubsp.varia. Natural Product Research, 2010, 24, 1637-1642.	1.8	0
173	Plant Growth Inhibitory Activity of Goniothalamus andersonii Bark Incorporated with Soil on Selected Plants. , 2019, 09, .		0
174	Relationship between species composition and growth environment in the arid zone of southwest Morocco. Euro-Mediterranean Journal for Environmental Integration, 2020, 5, 1.	1.3	0
175	Allelopathic effects of the revegetation species Juniperus sabina L. in semiarid areas of China. Landscape and Ecological Engineering, 2021, 17, 245-251.	1.5	0
176	Allelopathic flavonoids from buckwheat (Fagopyrum tataricum Gaertn.). Journal of Weed Science and Technology, 2003, 48, 158-159.	0.1	0
177	Role of Volatile Chemicals from Plants as Allelochemicals. Journal of Japan Association on Odor Environment, 2009, 40, 158-165.	0.0	0
178	9G-10 Tree shape and response under the microgravity and closed ecosystem environment. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2011, 2010.23, 431-432.	0.0	0
179	Assessment of Allelopathic Activities in Female and Male Individuals of Asparagus Seedlings and Regenerants. Japanese Society for Horticultural Science, 2011, 80, 169-174.	0.8	0

180 Toxic Chemicals from Invasive Alien Plants. , 2016, , 1-13.

#	Article	IF	CITATIONS
181	Evaluation of weed suppression by ground cover plants and evaluation of azetidine-2-carboxylic acid as an allelochemical from <i>Liriope muscari</i> (Decne.) L.H.Bailey. Journal of Weed Science and Technology, 2019, 64, 147-154.	0.1	0
182	Contribution to weed science through allelopathic research. Journal of Weed Science and Technology, 2019, 64, 95-99.	0.1	0
183	æ¹åœã«ãŠãʿã,‹æ♥‰©ã®é–"接èª~å°Žé~²è¡›æ©Ÿæ§‹ã®æœ€å‰ç•š. Kagaku To Seibutsu, 2020, 58, 325-329.	0.0	0