Fen Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4986936/publications.pdf

Version: 2024-02-01

713466 840776 21 486 11 21 citations h-index g-index papers 21 21 21 571 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Rhodium(III)â€Catalyzed Oxidative Annulation of Amidines with Alkynes <i>via</i> Sequential Câ^'H Bond Activation. European Journal of Organic Chemistry, 2021, 2021, 1290-1294.	2.4	11
2	Rhodium-catalyzed synthesis of substituted isoquinolones via a selective decarbonylation/alkyne insertion cascade of phthalimides. Organic and Biomolecular Chemistry, 2020, 18, 8219-8223.	2.8	6
3	Rhodium-catalyzed multiple C–H activation/highly <i>meta</i> -selective C–H amination between amidines and alkynes. Chemical Communications, 2020, 56, 11227-11230.	4.1	13
4	A one-pot process for synthesis of eight-membered cyclopalladated amidines via cascade C H activation and insertion. Journal of Organometallic Chemistry, 2020, 924, 121461.	1.8	2
5	Palladium-catalyzed decarbonylative annulation of phthalimides with arynes: direct construction of phenanthridinones. Chemical Communications, 2019, 55, 9507-9510.	4.1	28
6	Palladium-Catalyzed C–N Bond Cleavage of 2 <i>H</i> -Azirines for the Synthesis of Functionalized α-Amido Ketones. Journal of Organic Chemistry, 2019, 84, 2200-2208.	3.2	13
7	An Efficient Protocol for the Synthesis of Primary Amides via Rhâ€Catalyzed Rearrangement of Aldoximes. ChemistrySelect, 2018, 3, 3474-3478.	1.5	8
8	A high-activity cobalt-based MOF catalyst for $[2\hat{A}+2+2]$ cycloaddition of diynes and alkynes: insights into alkyne affinity and selectivity control. RSC Advances, 2018, 8, 4895-4899.	3.6	11
9	An efficient route to highly functionalized benzene derivatives by rhodium-catalyzed dimerization of diynes. Chemical Papers, 2018, 72, 1363-1368.	2.2	2
10	Rhodium(III)-Catalyzed Cascade [5 + 1] Annulation/5-exo-Cyclization Initiated by C–H Activation: 1,6-Diynes as One-Carbon Reaction Partners. Organic Letters, 2018, 20, 3245-3249.	4.6	39
11	HKUSTâ€1â€Catalyzed Formation of C–C and Câ€N Bonds: Rapid Assembly of Substituted Pyridines from Propargylamine and Carbonyl Compounds. ChemistrySelect, 2018, 3, 8793-8796.	1.5	2
12	Synergic effect of copper-based metal–organic frameworks for highly efficient C–H activation of amidines. RSC Advances, 2017, 7, 51658-51662.	3.6	16
13	Rutheniumâ€Catalyzed Câ^'C Bond Cleavage of 2 <i>H</i> â€Azirines: A Formal [3+2+2] Cycloaddition to Fused Azepine Skeletons. Angewandte Chemie - International Edition, 2016, 55, 2861-2865.	13.8	94
14	Rutheniumâ€Catalyzed Câ^'C Bond Cleavage of 2 <i>H</i> à€Azirines: A Formal [3+2+2] Cycloaddition to Fused Azepine Skeletons. Angewandte Chemie, 2016, 128, 2911-2915.	2.0	12
15	Eco-friendly synthesis of pyridines via rhodium-catalyzed cyclization of diynes with oximes. Green Chemistry, 2015, 17, 799-803.	9.0	45
16	Rhodiumâ€Catalyzed [2+2+2] Cycloaddition of Oximes and Diynes To Give Pyridines. Chemistry - A European Journal, 2013, 19, 2252-2255.	3.3	44
17	Microstructure and storage properties of low V-containing Ti–Cr–V hydrogen storage alloys prepared by arc melting and suction casting. Rare Metals, 2013, 32, 354-358.	7.1	14
18	Rutheniumâ€catalyzed [2+2+2] Cycloaddition of Diynes with Nitriles in Pure Water. ChemSusChem, 2012, 5, 854-857.	6.8	42

#	Article	IF	CITATIONS
19	Progress in improving thermodynamics and kinetics of new hydrogen storage materials. Frontiers of Physics, 2011, 6, 151-161.	5.0	6
20	Direct Electron Transfer of Horseradish Peroxidase and Its Biosensor Based on Gold Nanoparticles/Chitosan/ITO Modified Electrode. Analytical Letters, 2008, 41, 2224-2236.	1.8	10
21	Hydrogen Generation by Hydrolysis Reaction of Ball-Milled Alâ^'Bi Alloys. Energy & Dels, 2007, 21, 2294-2298.	5.1	68