
Artur Stefanski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4986840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances, challenges and a developing synthesis of ecological community assembly theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2403-2413.	4.0	498
2	Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 2018, 562, 263-267.	27.8	248
3	Boreal and temperate trees show strong acclimation of respiration to warming. Nature, 2016, 531, 633-636.	27.8	212
4	Geographic range predicts photosynthetic and growth response to warming in co-occurring treeAspecies. Nature Climate Change, 2015, 5, 148-152.	18.8	179
5	Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628-629, 1369-1394.	8.0	177
6	Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Climate Change, 2018, 8, 75-78.	18.8	117
7	Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biology, 2015, 21, 1342-1357.	9.5	108
8	Ectomycorrhizal fungal response to warming is linked to poor host performance at the borealâ€ŧemperate ecotone. Global Change Biology, 2017, 23, 1598-1609.	9.5	100
9	Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a fieldâ€based tree experiment. Molecular Ecology, 2016, 25, 4032-4046.	3.9	95
10	The effect of experimental warming and precipitation change on proteolytic enzyme activity: positive feedbacks to nitrogen availability are not universal. Global Change Biology, 2012, 18, 2617-2625.	9.5	80
11	Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone. Oecologia, 2014, 175, 713-723.	2.0	80
12	Warming alters energetic structure and function but not resilience of soil food webs. Nature Climate Change, 2017, 7, 895-900.	18.8	75
13	Design and performance of combined infrared canopy and belowground warming in the B4Warm <scp>ED</scp> (Boreal Forest Warming at an Ecotone in Danger) experiment. Global Change Biology, 2015, 21, 2334-2348.	9.5	65
14	Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10397-10405.	7.1	65
15	Effect of Simulated Climate Warming on the Ectomycorrhizal Fungal Community of Boreal and Temperate Host Species Growing Near Their Shared Ecotonal Range Limits. Microbial Ecology, 2018, 75, 348-363.	2.8	34
16	Remote spectral detection of biodiversity effects on forest biomass. Nature Ecology and Evolution, 2021, 5, 46-54.	7.8	33
17	Responses of two understory herbs, <i>Maianthemum canadense</i> and <i>Eurybia macrophylla</i> , to experimental forest warming: Early emergence is the key to enhanced reproductive output. American Journal of Botany, 2015, 102, 1610-1624.	1.7	31
18	Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to openâ€air experimental warming and reduced rainfall in a southern boreal forest. Global Change Biology, 2020, 26, 746-759.	9.5	26

ARTUR STEFANSKI

#	Article	IF	CITATIONS
19	Experimental warming advances phenology of groundlayer plants at the borealâ€ŧemperate forest ecotone. American Journal of Botany, 2018, 105, 851-861.	1.7	25
20	Enhanced light interception and light use efficiency explain overyielding in young tree communities. Ecology Letters, 2021, 24, 996-1006.	6.4	24
21	Warming shifts â€~worming': effects of experimental warming on invasive earthworms in northern North America. Scientific Reports, 2014, 4, 6890.	3.3	20
22	ls it getting hot in here? Adjustment of hydraulic parameters in six boreal and temperate tree species after 5Âyears of warming. Global Change Biology, 2016, 22, 4124-4133.	9.5	17
23	Warming and disturbance alter soil microbiome diversity and function in a northern forest ecotone. FEMS Microbiology Ecology, 2020, 96, .	2.7	14
24	Phenology matters: Extended spring and autumn canopy cover increases biotic resistance of forests to invasion by common buckthorn (Rhamnus cathartica). Forest Ecology and Management, 2020, 464, 118067.	3.2	14
25	Some plants like it warmer: Increased growth of three selected invasive plant species in soils with a history of experimental warming. Pedobiologia, 2014, 57, 57-60.	1.2	11
26	Biodiversity bottleneck: seedling establishment under changing climatic conditions at the boreal–temperate ecotone. Plant Ecology, 2018, 219, 691-704.	1.6	11
27	Mycorrhizal fungal spore community structure in a manipulated prairie. Restoration Ecology, 2018, 26, 124-133.	2.9	10
28	Short- and long-term responses of photosynthetic capacity to temperature in four boreal tree species in a free-air warming and rainfall manipulation experiment. Tree Physiology, 2021, 41, 89-102.	3.1	10
29	Consistent leaf respiratory response to experimental warming of three North American deciduous trees: a comparison across seasons, years, habitats and sites. Tree Physiology, 2016, 37, 285-300.	3.1	9
30	Species-specific flowering phenology responses to experimental warming and drought alter herbaceous plant species overlap in a temperate–boreal forest community. Annals of Botany, 2021, 127, 203-211.	2.9	9
31	Assessing the relevant time frame for temperature acclimation of leaf dark respiration: A test with 10 boreal and temperate species. Global Change Biology, 2021, 27, 2945-2958.	9.5	8
32	Temperature and leaf nitrogen affect performance of plant species at range overlap. Ecosphere, 2015, 6, art186.	2.2	7
33	BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world. Research Ideas and Outcomes, 0, 7, .	1.0	5
34	Effects of soil warming history on the performances of congeneric temperate and boreal herbaceous plant species and their associations with soil biota. Journal of Plant Ecology, 2016, , rtw066.	2.3	3
35	Exotics are more complementary over time in tree biodiversity–ecosystem functioning experiments. Functional Ecology, 2021, 35, 2550.	3.6	2
36	Patterns of belowground overyielding and fineâ€root biomass in native and exotic angiosperms and gymnosperms. Oikos, 0, , .	2.7	1