Pasquale Mazzotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4986415/publications.pdf

Version: 2024-02-01

159	23,707	76 h-index	151
papers	citations		g-index
159	159	159	13599
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	<i>Planck</i> 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 2014, 571, A16.	5.1	4,703
2	<i>Planck</i> 2013 results. I. Overview of products and scientific results. Astronomy and Astrophysics, 2014, 571, A1.	5.1	948
3	<i>Planck</i> 2013 results. XXII. Constraints on inflation. Astronomy and Astrophysics, 2014, 571, A22.	5.1	806
4	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A1.	5.1	738
5	<i>Planck</i> 2013 results. XI. All-sky model of thermal dust emission. Astronomy and Astrophysics, 2014, 571, A11.	5.1	566
6	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A27.	5.1	535
7	<i>Planck</i> 2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20.	5.1	465
8	ChandraObservation of Abell 2142: Survival of Dense Subcluster Cores in a Merger. Astrophysical Journal, 2000, 541, 542-549.	4.5	402
9	<i>Planck</i> early results. I. The <i>Planck</i> mission. Astronomy and Astrophysics, 2011, 536, A1.	5.1	394
10	<i>Planck</i> 2013 results. XXIX. The <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2014, 571, A29.	5.1	380
11	<i>Planck</i> 2013 results. XXIII. Isotropy and statistics of the CMB. Astronomy and Astrophysics, 2014, 571, A23.	5.1	367
12	<i>Planck</i> 2013 results. XV. CMB power spectra and likelihood. Astronomy and Astrophysics, 2014, 571, A15.	5.1	364
13	<i>Planck</i> 2013 results. XXIV. Constraints on primordial non-Gaussianity. Astronomy and Astrophysics, 2014, 571, A24.	5.1	350
14	Comparing the temperatures of galaxy clusters from hydrodynamicalN-body simulations toChandraandXMM-Newtonobservations. Monthly Notices of the Royal Astronomical Society, 2004, 354, 10-24.	4.4	340
15	<i>Planck</i> early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. Astronomy and Astrophysics, 2011, 536, A8.	5.1	335
16	<i>Planck</i> early results. XIX. All-sky temperature and dust optical depth from <i>Planck</i> and IRAS. Constraints on the "dark gas―in our Galaxy. Astronomy and Astrophysics, 2011, 536, A19.	5.1	314
17	<i>Planck</i> intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust. Astronomy and Astrophysics, 2015, 576, A104.	5.1	296
18	<i>Planck</i> 2013 results. XVII. Gravitational lensing by large-scale structure. Astronomy and Astrophysics, 2014, 571, A17.	5.1	272

#	Article	IF	Citations
19	<i>Planck</i> pre-launch status: The <i>Planck</i> mission. Astronomy and Astrophysics, 2010, 520, A1.	5.1	268
20	Systematics in the X-ray cluster mass estimators. Monthly Notices of the Royal Astronomical Society, 2006, 369, 2013-2024.	4.4	257
21	Weighing simulated galaxy clusters using lensing and X-ray. Astronomy and Astrophysics, 2010, 514, A93.	5.1	235
22	A Hubble Space Telescope lensing survey of X-ray luminous galaxy clusters - IV. Mass, structure and thermodynamics of cluster cores at $z=0.2$. Monthly Notices of the Royal Astronomical Society, 2005, 359, 417-446.	4.4	232
23	<i>Planck</i> early results. VII. The Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A7.	5.1	224
24	$\mbox{\sc i}\mbox{\sc Planck}\mbox{\sc /i}\mbox{\sc 2013}$ results. XXV. Searches for cosmic strings and other topological defects. Astronomy and Astrophysics, 2014, 571, A25.	5.1	223
25	<i>Planck</i> 2013 results. XII. Diffuse component separation. Astronomy and Astrophysics, 2014, 571, A12.	5.1	216
26	Predictions for high-frequency radio surveys of extragalactic sources. Astronomy and Astrophysics, 2005, 431, 893-903.	5.1	214
27	<i>Planck</i> >2013 results. XXX. Cosmic infrared background measurements and implications for star formation. Astronomy and Astrophysics, 2014, 571, A30.	5.1	210
28	Lensing and x-ray mass estimates of clusters (simulations). New Journal of Physics, 2012, 14, 055018.	2.9	190
29	Nonhydrostatic Gas in the Core of the Relaxed Galaxy Cluster A1795. Astrophysical Journal, 2001, 562, L153-L156.	4.5	186
30	<i>Planck</i> early results. XXV. Thermal dust in nearby molecular clouds. Astronomy and Astrophysics, 2011, 536, A25.	5.1	184
31	<i>Planck</i> early results. XVIII. The power spectrum of cosmic infrared background anisotropies. Astronomy and Astrophysics, 2011, 536, A18.	5.1	180
32	<i>Planck</i> early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo. Astronomy and Astrophysics, 2011, 536, A24.	5.1	179
33	<i>Planck</i> early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations. Astronomy and Astrophysics, 2011, 536, A11.	5.1	174
34	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 586, A133.	5.1	173
35	<i>Planck</i> 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove. Astronomy and Astrophysics, 2014, 571, A27.	5.1	170
36	The pre-launch <i>Planck</i> Sky Model: a model of sky emission at submillimetre to centimetre wavelengths. Astronomy and Astrophysics, 2013, 553, A96.	5.1	166

#	Article	IF	CITATIONS
37	<i>Planck</i> 2013 results. XXVIII. The <i>Planck</i> Catalogue of Compact Sources. Astronomy and Astrophysics, 2014, 571, A28.	5.1	162
38	<i>Planck</i> early results. XX. New light on anomalous microwave emission from spinning dust grains. Astronomy and Astrophysics, 2011, 536, A20.	5.1	155
39	<i>Planck</i> early results. XXIII. The first all-sky survey of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A23.	5.1	152
40	<i>Planck</i> 2013 results. XIII. Galactic CO emission. Astronomy and Astrophysics, 2014, 571, A13.	5.1	144
41	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2013, 557, A52.	5.1	141
42	Planck intermediate results. Astronomy and Astrophysics, 2014, 566, A55.	5.1	134
43	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A28.	5.1	134
44	<i>Planck</i> 2013 results. XXI. Power spectrum and high-order statistics of the <i>Planck</i> all-sky Compton parameter map. Astronomy and Astrophysics, 2014, 571, A21.	5.1	133
45	<i>Planck</i> 2013 results. IX. HFI spectral response. Astronomy and Astrophysics, 2014, 571, A9.	5.1	129
46	LoCuSS: A COMPARISON OF CLUSTER MASS MEASUREMENTS FROM <i>XMM-NEWTON</i> AND SUBARU—TESTING DEVIATION FROM HYDROSTATIC EQUILIBRIUM AND NON-THERMAL PRESSURE SUPPORT. Astrophysical Journal, 2010, 711, 1033-1043.	4.5	128
47	<i>Planck</i> intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization. Astronomy and Astr A107.	ophysics,	2 01 5, 576
48	<i>Planck</i> 2013 results. XIX. The integrated Sachs-Wolfe effect. Astronomy and Astrophysics, 2014, 571, A19.	5.1	126
49	<i>Planck</i> early results. IX. <i>XMM-Newton</i> follow-up for validation of <i>Planck</i> cluster candidates. Astronomy and Astrophysics, 2011, 536, A9.	5.1	126
50	<i>Planck</i> early results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. Astronomy and Astrophysics, 2011, 536, A10.	5.1	124
51	<i>Planck</i> early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds. Astronomy and Astrophysics, 2011, 536, A17.	5.1	123
52	The ATHENA x-ray integral field unit (X-IFU). , 2018, , .		120
53	<i>Planck</i> early results. XXI. Properties of the interstellar medium in the Galactic plane. Astronomy and Astrophysics, 2011, 536, A21.	5.1	119
54	<i>Planck</i> intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence. Astronomy and Astrophysics, 2015, 576, A105.	5.1	119

#	Article	IF	CITATIONS
55	Do Radio Core-Halos and Cold Fronts in Non-Major-Merging Clusters Originate from the Same Gas Sloshing?. Astrophysical Journal, 2008, 675, L9-L12.	4.5	116
56	$\mbox{Planck 2013 results.}$ XVIII. The gravitational lensing-infrared background correlation. Astronomy and Astrophysics, 2014, 571, A18.	5.1	116
57	ChandraObservation of RX J1720.1+2638: a Nearly Relaxed Cluster with a Fastâ€moving Core?. Astrophysical Journal, 2001, 555, 205-214.	4.5	116
58	<i>Planck</i> 2013 results. VIII. HFI photometric calibration and mapmaking. Astronomy and Astrophysics, 2014, 571, A8.	5.1	107
59	<i>Planck</i> early results. XIII. Statistical properties of extragalactic radio sources in the <i>Planck</i> Early Release Compact Source Catalogue. Astronomy and Astrophysics, 2011, 536, A13.	5.1	103
60	<i>Planck</i> 2013 results. VI. High Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A6.	5.1	103
61	<i>Planck</i> early results. XII. Cluster Sunyaev-Zeldovich optical scaling relations. Astronomy and Astrophysics, 2011, 536, A12.	5.1	100
62	<i>Planck</i> 2013 results. VII. HFI time response and beams. Astronomy and Astrophysics, 2014, 571, A7.	5.1	99
63	[ITAL]Chandra[/ITAL] Temperature Map of A754 and Constraints on Thermal Conduction. Astrophysical Journal, 2003, 586, L19-L23.	4.5	94
64	<i>Planck</i> early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources. Astronomy and Astrophysics, 2011, 536, A15.	5.1	93
65	LoCuSS: Testing hydrostatic equilibrium in galaxy clusters. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 456, L74-L78.	3.3	93
66	HOT X-RAY CORONAE AROUND MASSIVE SPIRAL GALAXIES: A UNIQUE PROBE OF STRUCTURE FORMATION MODELS. Astrophysical Journal, 2013, 772, 97.	4.5	92
67	<i>Planck</i> early results. II. The thermal performance of <i>Planck</i> Astronomy and Astrophysics, 2011, 536, A2.	5.1	91
68	<i>Planck</i> 2013 results. XXVI. Background geometry and topology of the Universe. Astronomy and Astrophysics, 2014, 571, A26.	5.1	91
69	<i>Planck</i> 2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 2014, 571, A14.	5.1	90
70	Mismatch between X-Ray and Emission-weighted Temperatures in Galaxy Clusters: Cosmological Implications. Astrophysical Journal, 2005, 618, L1-L4.	4.5	89
71	<i>Planck</i> early results. XXII. The submillimetre properties of a sample of Galactic cold clumps. Astronomy and Astrophysics, 2011, 536, A22.	5.1	88
72	Quenching cluster cooling flows with recurrent hot plasma bubbles. Monthly Notices of the Royal Astronomical Society, 2004, 355, 995-1004.	4.4	87

#	Article	IF	Citations
73	NEW DETECTIONS OF RADIO MINIHALOS IN COOL CORES OF GALAXY CLUSTERS. Astrophysical Journal, 2014, 781, 9.	4.5	82
74	<i>Planck</i> 2013 results. XXXII. The updated <i>Planck</i> catalogue of Sunyaev-Zeldovich sources. Astronomy and Astrophysics, 2015, 581, A14.	5.1	80
75	The Fraction of Cool-core Clusters in X-Ray versus SZ Samples Using Chandra Observations. Astrophysical Journal, 2017, 843, 76.	4.5	80
76	LoCuSS: THE SUNYAEV–ZEL'DOVICH EFFECT AND WEAK-LENSING MASS SCALING RELATION. Astrophysical Journal, 2012, 754, 119.	4.5	79
77	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A2.	5.1	79
78	[ITAL]Chandra[/ITAL] X-Ray Detection of the Radio Hot Spots of 3C 295. Astrophysical Journal, 2000, 530, L81-L84.	4.5	78
79	LoCuSS: first results from strong-lensing analysis of 20 massive galaxy clusters at <i>$z < li > = 0.2$. Monthly Notices of the Royal Astronomical Society, 2010, , .</i>	4.4	76
80	SHOCK HEATING OF THE MERGING GALAXY CLUSTER A521. Astrophysical Journal, 2013, 764, 82.	4.5	75
81	<i>Planck</i> early results. XVI. The <i>Planck</i> view of nearby galaxies. Astronomy and Astrophysics, 2011, 536, A16.	5.1	74
82	<i>Planck</i> 2013 results. II. Low Frequency Instrument data processing. Astronomy and Astrophysics, 2014, 571, A2.	5.1	74
83	A COMBINED LOW-RADIO FREQUENCY/X-RAY STUDY OF GALAXY GROUPS. I. GIANT METREWAVE RADIO TELESCOPE OBSERVATIONS AT 235 MHz AND 610 MHz. Astrophysical Journal, 2011, 732, 95.	4.5	74
84	<i>Planck</i> early results. XXVI. Detection with <i>Planck</i> and confirmation by <i>XMM-Newton</i> of PLCKÂG266.6–27.3, an exceptionally X-ray luminous and massive galaxy cluster at <i>z</i> Â~Â 1. Astronomy and Astrophysics, 2011, 536, A26.	5.1	72
85	Temperature structure of the intergalactic medium within seven nearby and bright clusters of galaxies observed with XMM-Newton. Astronomy and Astrophysics, 2008, 479, 307-320.	5.1	71
86	A <i>Chandra</i> Archival Study of the Temperature and Metal Abundance Profiles in Hot Galaxy Clusters at 0.1 ≲ <i>z</i> ≲ 0.3. Astrophysical Journal, 2007, 666, 835-845.	4.5	71
87	<i>Planck</i> 2013 results. XXXI. Consistency of the <i>Planck</i> data. Astronomy and Astrophysics, 2014, 571, A31.	5.1	69
88	AChandraStudy of the Complex Structure in the Core of 2A 0335+096. Astrophysical Journal, 2003, 596, 190-203.	4.5	68
89	<i>Planck</i> 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation. Astronomy and Astrophysics, 2014, 571, A10.	5.1	68
90	<i>Planck</i> ii>intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible. Astronomy and Astrophysics, 2015, 576, A106.	5.1	68

#	Article	IF	CITATIONS
91	Evidence for a Heated Gas Bubble inside the "Cooling Flow" Region of MKW 3s. Astrophysical Journal, 2002, 567, L37-L40.	4.5	67
92	<i>Planck</i> 2013 results. V. LFI calibration. Astronomy and Astrophysics, 2014, 571, A5.	5.1	67
93	<i>Planck</i> intermediate results. XV. A study of anomalous microwave emission in Galactic clouds. Astronomy and Astrophysics, 2014, 565, A103.	5.1	67
94	Xâ€MAS2: Study Systematics on the ICM Metallicity Measurements. Astrophysical Journal, 2008, 674, 728-741.	4.5	65
95	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A6.	5.1	62
96	Planckearly results. XIV. ERCSC validation and extreme radio sources. Astronomy and Astrophysics, 2011, 536, A14.	5.1	61
97	LoCuSS: hydrostatic mass measurements of the high-LX cluster sample – cross-calibration of Chandra and XMM–Newton. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2342-2360.	4.4	60
98	ChandraStudy of an Overdensity of Xâ€Ray Sources around Two Distant (z â^¼â€‰0.5) Clusters. Astrophys Journal, 2001, 548, 624-638.	ical 4.5	59
99	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A4.	5.1	56
100	Simulating Chandra observations of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2004, 351, 505-514.	4.4	55
101	TEMPERATURE STRUCTURE OF THE INTRACLUSTER MEDIUM FROM SMOOTHED-PARTICLE HYDRODYNAMICS AND ADAPTIVE-MESH REFINEMENT SIMULATIONS. Astrophysical Journal, 2014, 791, 96.	4.5	55
102	<i>Planck</i> intermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane. Astronomy and Astrophysics, 2014, 564, A45.	5.1	55
103	<i>Planck</i> 2013 results. III. LFI systematic uncertainties. Astronomy and Astrophysics, 2014, 571, A3.	5.1	54
104	<i>Planck</i> iiitermediate results. Astronomy and Astrophysics, 2012, 543, A102.	5.1	50
105	SUBARU WEAK-LENSING STUDY OF A2163: BIMODAL MASS STRUCTURE. Astrophysical Journal, 2011, 741, 116.	4.5	48
106	MAPPING THE PARTICLE ACCELERATION IN THE COOL CORE OF THE GALAXY CLUSTER RX J1720.1+2638. Astrophysical Journal, 2014, 795, 73.	4.5	47
107	<i>Chandra</i> ACIS-I particle background: an analytical model. Astronomy and Astrophysics, 2014, 566, A25.	5.1	47
108	[ITAL]Chandra[/ITAL] Observation of a 300 Kiloparsec Hydrodynamic Instability in the Intergalactic Medium of the Merging Cluster of Galaxies A3667. Astrophysical Journal, 2002, 569, L31-L34.	4.5	46

#	Article	IF	CITATIONS
109	<i>Planck</i> intermediate results. XXVI. Optical identification and redshifts of <i>Planck</i> clusters with the RTT150 telescope. Astronomy and Astrophysics, 2015, 582, A29.	5.1	46
110	Shapley Supercluster Survey: ram-pressure stripping versus tidal interactions in the Shapley supercluster. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3345-3369.	4.4	43
111	<i>Planck</i> 2013 results. IV. Low Frequency Instrument beams and window functions. Astronomy and Astrophysics, 2014, 571, A4.	5.1	41
112	Detection of anti-correlation of hot and cold baryons in galaxy clusters. Nature Communications, 2019, 10, 2504.	12.8	38
113	Radio morphology and spectral analysis of cD galaxies in rich and poor galaxy clusters. Astronomy and Astrophysics, 2007, 476, 99-119.	5.1	37
114	ON THE DISCREPANCY BETWEEN THEORETICAL AND X-RAY CONCENTRATION-MASS RELATIONS FOR GALAXY CLUSTERS. Astrophysical Journal, 2013, 776, 39.	4.5	33
115	LoCuSS: scaling relations between galaxy cluster mass, gas, and stellar content. Monthly Notices of the Royal Astronomical Society, 2019, 484, 60-80.	4.4	33
116	Discovery of an exceptionally bright giant arc at <i>>z</i> = 2.369, gravitationally lensed by the <i>Planck</i> cluster PSZ1 G311.65â^18.48. Astronomy and Astrophysics, 2016, 590, L4.	5.1	32
117	Is the Cluster Temperature Function a Reliable Test for ΩO?. Astrophysical Journal, 1997, 488, 566-571.	4.5	30
118	Updating of ionization data for ionization balance evaluations of atoms and ions for the elements hydrogen to germanium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 3569-3599.	1.5	30
119	Intracluster Comptonization of the Cosmic Microwave Background: Mean Spectral Distortion and Cluster Number Counts. Astrophysical Journal, 1997, 479, 1-16.	4.5	28
120	SCALING RELATION IN TWO SITUATIONS OF EXTREME MERGERS. Astrophysical Journal, 2011, 729, 45.	4.5	28
121	A2163: Merger events in the hottest Abell galaxy cluster. Astronomy and Astrophysics, 2011, 527, A21.	5.1	27
122	Cosmic microwave background anisotropy induced by gas in clusters of galaxies. Astrophysical Journal, 1994, 433, 454.	4.5	26
123	Shapley Supercluster Survey: Galaxy evolution from filaments to cluster cores. Monthly Notices of the Royal Astronomical Society, 2015, 446, 803-822.	4.4	25
124	Tracing the warm-hot intergalactic medium in the local Universe. Monthly Notices of the Royal Astronomical Society, 2005, 360, 1110-1122.	4.4	24
125	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A101.	5.1	24
126	A full-sky prediction of the Sunyaev-Zeldovich effect from diffuse hot gas in the local universe and the upper limit from theWMAPdata. Monthly Notices of the Royal Astronomical Society, 2005, 361, 753-762.	4.4	23

#	Article	IF	CITATIONS
127	Testing the radio halo-cluster merger scenario. Astronomy and Astrophysics, 2009, 505, 45-53.	5.1	23
128	A comparison of algorithms for the construction of SZ cluster catalogues. Astronomy and Astrophysics, 2012, 548, A51.	5.1	23
129	Discovery of the correspondence between intra-cluster radio emission and a high pressure region detected through the Sunyaev-Zel'dovich effect. Astronomy and Astrophysics, 2011, 534, L12.	5.1	22
130	Is the Sunyaev-Zeldovich effect responsible for the observed steepening in the spectrum of the Coma radio halo?. Astronomy and Astrophysics, 2013, 558, A52.	5.1	21
131	EDGE: Explorer of diffuse emission and gamma-ray burst explosions. Experimental Astronomy, 2009, 23, 67-89.	3.7	19
132	<i>Planck</i> Âintermediate results. XII: Diffuse Galactic components in the Gould Belt system. Astronomy and Astrophysics, 2013, 557, A53.	5.1	19
133	A MULTI-WAVELENGTH MASS ANALYSIS OF RCS2 J232727.6-020437, A â^¼3 × 10 ¹⁵ <i>M</i> _⊙ GALAXY CLUSTER AT <i>z</i> = 0.7. Astrophysical Journal, 2015, 814, 21.	4.5	19
134	Deriving the Hubble constant using <i>Planck </i> and <i>XMM-Newton </i> observations of galaxy clusters. Astronomy and Astrophysics, 2019, 621, A34.	5.1	19
135	Kinetic Sunyaev-Zel'dovich Effect and Cosmic Microwave Background Polarization from Subsonic Bulk Motions of Dense Gas Clouds in Galaxy Cluster Cores. Astrophysical Journal, 2003, 597, L1-L4.	4.5	18
136	Fast weak-lensing simulations with halo model. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3574-3590.	4.4	18
137	The faint X-ray source population near 3CÂ295. Astronomy and Astrophysics, 2004, 422, 11-21.	5.1	18
138	A Giant Metrewave Radio Telescope Multifrequency Radio Study of the Isothermal Core of the Poor Galaxy Cluster AWM 4. Astrophysical Journal, 2008, 682, 186-198.	4.5	17
139	1WGA J1226.9+3332: A Highâ€Redshift Cluster Discovered byChandra. Astrophysical Journal, 2001, 560, 86-91.	4.5	17
140	Detecting X-ray filaments in the low-redshift Universe with XEUS and Constellation-X. Monthly Notices of the Royal Astronomical Society, 2003, 341, 792-804.	4.4	16
141	<i>Planck</i> intermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae. Astronomy and Astrophysics, 2015, 573, A6.	5.1	13
142	HEATED INTRACLUSTER GAS AND RADIO CONNECTIONS: THE SINGULAR CASE OF MKW 3S. Journal of the Korean Astronomical Society, 2004, 37, 381-385.	1.5	13
143	Discovery of large-scale diffuse radio emission and of a new galaxy cluster in the surroundings of MACS J0520.7-1328. Astronomy and Astrophysics, 2014, 565, A13.	5.1	12
144	Chandra Observations of the Planck Early Sunyaev–Zeldovich Sample: A Reexamination of Masses and Mass Proxies. Astrophysical Journal, 2021, 914, 58.	4.5	11

#	Article	IF	Citations
145	SPECTRAL IMAGING OF GALAXY CLUSTERS WITH (i>PLANCK (i>). Astrophysical Journal, 2015, 815, 92.	4.5	10
146	A weak lensing analysis of the PLCK G100.2-30.4 cluster. Astronomy and Astrophysics, 2015, 579, A7.	5.1	9
147	ORIGIN: metal creation and evolution from the cosmic dawn. Experimental Astronomy, 2012, 34, 519-549.	3.7	6
148	ESTREMO/WFXRT: Extreme phySics in the TRansient and Evolving COsmos. , 2006, , .		5
149	The importance of merging activity for the kinetic polarization of the Sunyaev-Zel'dovich signal from galaxy clusters. Astronomy and Astrophysics, 2007, 475, 71-81.	5.1	4
150	Selecting background galaxies in weak-lensing analysis of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2776-2792.	4.4	4
151	The stellar and hot gas content of low-mass galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	2
152	X-ray sources overdensity around the 3C 295 galaxy cluster. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 54-57.	0.4	1
153	Evidence of gas heating by the central AGN in MKW 3s. Astronomische Nachrichten, 2006, 327, 573-574.	1.2	1
154	X-ray spectra from hot thin plasmas: First results from a new, updated plasma code. Nuclear Physics, Section B, Proceedings Supplements, 1999, 69, 585-588.	0.4	O
155	Evolution of distant X-ray clusters of galaxies: the BeppoSAX data. Nuclear Physics, Section B, Proceedings Supplements, 1999, 69, 573-580.	0.4	O
156	Bias on Estimates of X-ray Cluster Mass. EAS Publications Series, 2006, 20, 295-296.	0.3	0
157	Temperature structure of the intra-cluster medium within relaxed clusters of galaxies. EAS Publications Series, 2006, 20, 267-268.	0.3	0
158	Observing Metallicity in Simulated Clusters with X-MAS2. Globular Clusters - Guides To Galaxies, 2007, , 365-367.	0.1	0
159	High Sensitivity Low Frequency Radio Observations of cD Galaxies. , 2007, , 130-132.		0