Alexander D Douglas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4986223/publications.pdf

Version: 2024-02-01

58 papers 13,701 citations

94269 37 h-index 59 g-index

67 all docs

67 docs citations

67 times ranked

19066 citing authors

#	Article	IF	CITATIONS
1	Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, The, 2021, 397, 99-111.	6.3	3,887
2	Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase $1/2$, single-blind, randomised controlled trial. Lancet, The, 2020, 396, 467-478.	6.3	2,080
3	Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet, The, 2020, 396, 1979-1993.	6.3	1,196
4	Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet, The, 2021, 397, 881-891.	6.3	979
5	Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nature Medicine, 2021, 27, 2032-2040.	15.2	900
6	Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet, The, 2021, 397, 1351-1362.	6.3	540
7	T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nature Medicine, 2021, 27, 270-278.	15.2	473
8	Phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19 with a booster dose induces multifunctional antibody responses. Nature Medicine, 2021, 27, 279-288.	15.2	265
9	The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nature Communications, 2011, 2, 601.	5.8	233
10	Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002). Lancet, The, 2021, 398, 981-990.	6.3	214
11	ChAd63-MVA–vectored Blood-stage Malaria Vaccines Targeting MSP1 and AMA1: Assessment of Efficacy Against Mosquito Bite Challenge in Humans. Molecular Therapy, 2012, 20, 2355-2368.	3.7	196
12	Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase 2/3 clinical trial. Lancet HIV,the, 2021, 8, e474-e485.	2.1	190
13	Structure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodies. Nature, 2014, 515, 427-430.	13.7	180
14	A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys. Cell Host and Microbe, 2015, 17, 130-139.	5.1	178
15	Neutralization of <i>Plasmodium falciparum</i> Merozoites by Antibodies against PfRH5. Journal of Immunology, 2014, 192, 245-258.	0.4	132
16	Enhancing Blockade of Plasmodium falciparum Erythrocyte Invasion: Assessing Combinations of Antibodies against PfRH5 and Other Merozoite Antigens. PLoS Pathogens, 2012, 8, e1002991.	2.1	114
17	Prime-boost vaccination with chimpanzee adenovirus and modified vaccinia Ankara encoding TRAP provides partial protection against <i>Plasmodium falciparum</i> infection in Kenyan adults. Science Translational Medicine, 2015, 7, 286re5.	5.8	113
18	Evaluation of the Efficacy of ChAd63-MVA Vectored Vaccines Expressing Circumsporozoite Protein and ME-TRAP Against Controlled Human Malaria Infection in Malaria-Naive Individuals. Journal of Infectious Diseases, 2015, 211, 1076-1086.	1.9	110

#	Article	IF	CITATIONS
19	Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. JCl Insight, $2017, 2, .$	2.3	109
20	Human Antibodies that Slow Erythrocyte Invasion Potentiate Malaria-Neutralizing Antibodies. Cell, 2019, 178, 216-228.e21.	13.5	107
21	Demonstration of the Blood-Stage <i>Plasmodium falciparum</i> Controlled Human Malaria Infection Model to Assess Efficacy of the <i>P. falciparum</i> Apical Membrane Antigen 1 Vaccine, FMP2.1/AS01. Journal of Infectious Diseases, 2016, 213, 1743-1751.	1.9	95
22	Impact on Malaria Parasite Multiplication Rates in Infected Volunteers of the Protein-in-Adjuvant Vaccine AMA1-C1/Alhydrogel+CPG 7909. PLoS ONE, 2011, 6, e22271.	1.1	84
23	Optimising Controlled Human Malaria Infection Studies Using Cryopreserved P. falciparum Parasites Administered by Needle and Syringe. PLoS ONE, 2013, 8, e65960.	1.1	80
24	AZD1222/ChAdOx1 nCoV-19 vaccination induces a polyfunctional spike protein–specific T _H 1 response with a diverse TCR repertoire. Science Translational Medicine, 2021, 13, eabj7211.	5.8	80
25	Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. Med, 2021, 2, 701-719.e19.	2.2	73
26	Combining Viral Vectored and Protein-in-adjuvant Vaccines Against the Blood-stage Malaria Antigen AMA1: Report on a Phase 1a Clinical Trial. Molecular Therapy, 2014, 22, 2142-2154.	3.7	68
27	Tailoring subunit vaccine immunogenicity: Maximizing antibody and T cell responses by using combinations of adenovirus, poxvirus and protein-adjuvant vaccines against Plasmodium falciparum MSP1. Vaccine, 2010, 28, 7167-7178.	1.7	62
28	The Requirement for Potent Adjuvants To Enhance the Immunogenicity and Protective Efficacy of Protein Vaccines Can Be Overcome by Prior Immunization with a Recombinant Adenovirus. Journal of Immunology, 2011, 187, 2602-2616.	0.4	55
29	Accelerating the clinical development of protein-based vaccines for malaria by efficient purification using a four amino acid C-terminal ‰C-tag'. International Journal for Parasitology, 2017, 47, 435-446.	1.3	55
30	Production of full-length soluble Plasmodium falciparum RH5 protein vaccine using a Drosophila melanogaster Schneider 2 stable cell line system. Scientific Reports, 2016, 6, 30357.	1.6	54
31	Comparison of Modeling Methods to Determine Liver-to-blood Inocula and Parasite Multiplication Rates During Controlled Human Malaria Infection. Journal of Infectious Diseases, 2013, 208, 340-345.	1.9	53
32	Production, quality control, stability, and potency of cGMP-produced Plasmodium falciparum RH5.1 protein vaccine expressed in Drosophila S2 cells. Npj Vaccines, 2018, 3, 32.	2.9	53
33	A defined mechanistic correlate of protection against Plasmodium falciparum malaria in non-human primates. Nature Communications, 2019, 10, 1953.	5.8	51
34	Blood-stage Challenge for Malaria Vaccine Efficacy Trials: A Pilot Study with Discussion of Safety and Potential Value. American Journal of Tropical Medicine and Hygiene, 2008, 78, 878-883.	0.6	49
35	Preclinical Assessment of Viral Vectored and Protein Vaccines Targeting the Duffy-Binding Protein Region II of Plasmodium Vivax. Frontiers in Immunology, 2015, 6, 348.	2.2	44
36	A simian-adenovirus-vectored rabies vaccine suitable for thermostabilisation and clinical development for low-cost single-dose pre-exposure prophylaxis. PLoS Neglected Tropical Diseases, 2018, 12, e0006870.	1.3	40

#	Article	IF	CITATIONS
37	Increased sample volume and use of quantitative reverse-transcription PCR can improve prediction of liver-to-blood inoculum size in controlled human malaria infection studies. Malaria Journal, 2015, 14, 33.	0.8	39
38	Manufacturing a chimpanzee adenovirusâ€vectored SARSâ€CoVâ€2 vaccine to meet global needs. Biotechnology and Bioengineering, 2022, 119, 48-58.	1.7	38
39	Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil. Nature Communications, 2021, 12, 5861.	5.8	38
40	Substantially Reduced Pre-patent Parasite Multiplication Rates Are Associated With Naturally Acquired Immunity to Plasmodium falciparum. Journal of Infectious Diseases, 2011, 203, 1337-1340.	1.9	36
41	The utility of Plasmodium berghei as a rodent model for anti-merozoite malaria vaccine assessment. Scientific Reports, 2013, 3, 1706.	1.6	36
42	Challenges of assessing the clinical efficacy of asexual blood-stagePlasmodium falciparummalaria vaccines. Human Vaccines and Immunotherapeutics, 2013, 9, 1831-1840.	1.4	34
43	Germinal Center B Cell and T Follicular Helper Cell Responses to Viral Vector and Protein-in-Adjuvant Vaccines. Journal of Immunology, 2016, 197, 1242-1251.	0.4	34
44	Functional Comparison of Blood-Stage Plasmodium falciparum Malaria Vaccine Candidate Antigens. Frontiers in Immunology, 2019, 10, 1254.	2.2	31
45	Simian adenovirus vector production for early-phase clinical trials: A simple method applicable to multiple serotypes and using entirely disposable product-contact components. Vaccine, 2019, 37, 6951-6961.	1.7	31
46	External Quality Assurance of Malaria Nucleic Acid Testing for Clinical Trials and Eradication Surveillance. PLoS ONE, 2014, 9, e97398.	1.1	28
47	Blood-stage challenge for malaria vaccine efficacy trials: a pilot study with discussion of safety and potential value. American Journal of Tropical Medicine and Hygiene, 2008, 78, 878-83.	0.6	27
48	Standardization of the antibody-dependent respiratory burst assay with human neutrophils and Plasmodium falciparum malaria. Scientific Reports, 2015, 5, 14081.	1.6	22
49	CD8+ T Cell–Independent Tumor Regression Induced by Fc-OX40L and Therapeutic Vaccination in a Mouse Model of Glioma. Journal of Immunology, 2014, 192, 224-233.	0.4	21
50	Assessment of antibody-dependent respiratory burst activity from mouse neutrophils on <i>Plasmodium yoelii</i> malaria challenge outcome. Journal of Leukocyte Biology, 2013, 95, 369-382.	1.5	18
51	Immunological considerations for SARS-CoV-2 human challenge studies. Nature Reviews Immunology, 2020, 20, 715-716.	10.6	13
52	Evaluation of Point-of-care Activated Partial Thromboplastin Time Testing by Comparison to Laboratory-based Assay for Control of Intravenous Heparin. Angiology, 2009, 60, 358-361.	0.8	8
53	Stability of Chimpanzee Adenovirus Vectored Vaccines (ChAdOx1 and ChAdOx2) in Liquid and Lyophilised Formulations. Vaccines, 2021, 9, 1249.	2.1	8
54	The Difficult Venous Ulcer: Case Series of 177 Ulcers Referred for Vascular Surgical Opinion following Failure of Conservative Management. Angiology, 2009, 60, 492-495.	0.8	4

#	Article	IF	CITATIONS
55	PfRH5 vaccine efficacy against heterologous strain blood-stage Plasmodium falciparum. Lancet, The, 2014, 383, S43.	6.3	2
56	Characterisation of factors contributing to the performance of nonwoven fibrous matrices as substrates for adenovirus vectored vaccine stabilisation. Scientific Reports, 2021, 11, 20877.	1.6	2
57	Clinical Evaluation Of New Viral Vectored Vaccines Targeting The Plasmodium Falciparum Blood-Stage Antigens; Msp1 And Ama1. Journal of Infection, 2011, 63, 492-493.	1.7	O
58	Subunit Blood-Stage Malaria Vaccines. , 2017, , 211-238.		0