
Nicholas J Gotelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4985768/publications.pdf Version: 2024-02-01

NICHOLAS L COTELLI

#	Article	IF	CITATIONS
1	Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 2001, 4, 379-391.	3.0	4,953
2	Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs, 2014, 84, 45-67.	2.4	2,397
3	Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 2012, 5, 3-21.	1.2	1,476
4	NULL MODEL ANALYSIS OF SPECIES CO-OCCURRENCE PATTERNS. Ecology, 2000, 81, 2606-2621.	1.5	1,327
5	Plant Species Richness and Ecosystem Multifunctionality in Global Drylands. Science, 2012, 335, 214-218.	6.0	1,043
6	Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss. Science, 2014, 344, 296-299.	6.0	1,017
7	NULL MODEL ANALYSIS OF SPECIES CO-OCCURRENCE PATTERNS. , 2000, 81, 2606.		928
8	SPECIES CO-OCCURRENCE: A META-ANALYSIS OF J. M. DIAMOND'S ASSEMBLY RULES MODEL. Ecology, 2002, 83, 2091-2096.	1.5	783
9	A consumer's guide to nestedness analysis. Oikos, 2009, 118, 3-17.	1.2	627
10	Fifteen forms of biodiversity trend in the Anthropocene. Trends in Ecology and Evolution, 2015, 30, 104-113.	4.2	527
11	The Midâ€Domain Effect and Species Richness Patterns:What Have We Learned So Far?. American Naturalist, 2004, 163, E1-E23.	1.0	484
12	Sufficient sampling for asymptotic minimum species richness estimators. Ecology, 2009, 90, 1125-1133.	1.5	420
13	Community disassembly by an invasive species. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2474-2477.	3.3	378
14	NULL MODEL ANALYSIS OF SPECIES NESTEDNESS PATTERNS. Ecology, 2007, 88, 1824-1831.	1.5	351
15	Measuring and Estimating Species Richness, Species Diversity, and Biotic Similarity from Sampling Data. , 2013, , 195-211.		307
16	Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 2009, 12, 873-886.	3.0	286
17	Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology and Evolution, 2017, 1, 0132-132.	3.4	277
18	Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 165-174.	1.2	271

#	Article	IF	CITATIONS
19	Research frontiers in null model analysis. Global Ecology and Biogeography, 2001, 10, 337-343.	2.7	236
20	Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 2009, 12, 324-333.	3.0	233
21	Macroecological signals of species interactions in the Danish avifauna. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5030-5035.	3.3	229
22	Energetics and the evolution of carnivorous plants—Darwin's â€~most wonderful plants in the world'. Journal of Experimental Botany, 2009, 60, 19-42.	2.4	222
23	Swap and fill algorithms in null model analysis: rethinking the knight's tour. Oecologia, 2001, 129, 281-291.	0.9	215
24	Statistical challenges in null model analysis. Oikos, 2012, 121, 171-180.	1.2	208
25	Embracing scaleâ€dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecology Letters, 2018, 21, 1737-1751.	3.0	204
26	Null Versus Neutral Models: What's The Difference?. Ecography, 2006, 29, 793-800.	2.1	195
27	Evolutionary ecology of carnivorous plants. Trends in Ecology and Evolution, 2001, 16, 623-629.	4.2	178
28	Quantifying temporal change in biodiversity: challenges and opportunities. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20121931.	1.2	178
29	A balance of winners and losers in the Anthropocene. Ecology Letters, 2019, 22, 847-854.	3.0	176
30	Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecology Letters, 2002, 5, 86-94.	3.0	175
31	SWAP ALGORITHMS IN NULL MODEL ANALYSIS. Ecology, 2003, 84, 532-535.	1.5	175
32	Null model analysis of species associations using abundance data. Ecology, 2010, 91, 3384-3397.	1.5	173
33	Biodiversity enhances individual performance but does not affect survivorship in tropical trees. Ecology Letters, 2008, 11, 217-223.	3.0	171
34	Rapid biotic homogenization of marine fish assemblages. Nature Communications, 2015, 6, 8405.	5.8	171
35	Assembly rules for New England ant assemblages. Oikos, 2002, 99, 591-599.	1.2	170
36	Pattern detection in null model analysis. Oikos, 2013, 122, 2-18.	1.2	165

#	Article	IF	CITATIONS
37	The empirical Bayes approach as a tool to identify non-random species associations. Oecologia, 2010, 162, 463-477.	0.9	156
38	Disentangling community patterns of nestedness and species coâ€occurrence. Oikos, 2007, 116, 2053-2061.	1.2	147
39	Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature, 2016, 529, 80-83.	13.7	147
40	Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species coâ€occurrence. Ecography, 2018, 41, 1233-1244.	2.1	146
41	Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nature Communications, 2018, 9, 4631.	5.8	139
42	BIOGEOGRAPHY AT A REGIONAL SCALE: DETERMINANTS OF ANT SPECIES DENSITY IN NEW ENGLAND BOGS AND FORESTS. Ecology, 2002, 83, 1604-1609.	1.5	130
43	MaxEnt versus MaxLike: empirical comparisons with ant species distributions. Ecosphere, 2013, 4, 1-15.	1.0	125
44	A physiological traitâ€based approach to predicting the responses of species to experimental climate warming. Ecology, 2012, 93, 2305-2312.	1.5	113
45	Nitrogen availability alters the expression of carnivory in the northern pitcher plant, Sarracenia purpurea. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4409-4412.	3.3	112
46	A taxonomic wish–list for community ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 585-597.	1.8	112
47	GEOGRAPHIC VARIATION IN LIFEâ€HISTORY TRAITS OF THE ANT LION, <i>MYRMELEON IMMACULATUS</i> : EVOLUTIONARY IMPLICATIONS OF BERGMANN'S RULE. Evolution; International Journal of Organic Evolution, 1999, 53, 1180-1188.	1.1	110
48	Estimates of local biodiversity change over time stand up to scrutiny. Ecology, 2017, 98, 583-590.	1.5	106
49	Partitioning the effects of biodiversity and environmental heterogeneity for productivity and mortality in a tropical tree plantation. Journal of Ecology, 2008, 96, 903-913.	1.9	99
50	Global diversity in light of climate change: the case of ants. Diversity and Distributions, 2011, 17, 652-662.	1.9	87
51	Measurement of Biodiversity (MoB): A method to separate the scaleâ€dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods in Ecology and Evolution, 2019, 10, 258-269.	2.2	87
52	Climate change, genetic markers and species distribution modelling. Journal of Biogeography, 2015, 42, 1577-1585.	1.4	86
53	Assembly rules of ground-foraging ant assemblages are contingent on disturbance, habitat and spatial scale. Journal of Biogeography, 2007, 34, 1632-1641.	1.4	83
54	Community-level regulation of temporal trends in biodiversity. Science Advances, 2017, 3, e1700315.	4.7	83

#	Article	IF	CITATIONS
55	Demographic Models for Leptogorgia Virgulata, A Shallow-Water Gorgonian. Ecology, 1991, 72, 457-467.	1.5	82
56	Reverse latitudinal trends in species richness of pitcher-plant food webs. Ecology Letters, 2003, 6, 825-829.	3.0	82
57	Invasive ants alter the phylogenetic structure of ant communities. Ecology, 2009, 90, 2664-2669.	1.5	81
58	Species interactions and thermal constraints on ant community structure. Oikos, 2010, 119, 551-559.	1.2	77
59	Climate and soil attributes determine plant species turnover in global drylands. Journal of Biogeography, 2014, 41, 2307-2319.	1.4	76
60	Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints. Ecology Letters, 2016, 19, 1009-1022.	3.0	75
61	Co-Occurrence of Australian Land Birds: Diamond's Assembly Rules Revisited. Oikos, 1997, 80, 311.	1.2	73
62	ALLOMETRIC EXPONENTS SUPPORT A 3/4-POWER SCALING LAW. Ecology, 2005, 86, 2083-2087.	1.5	71
63	EVOLUTIONARY PATTERNS OF ALTERED BEHAVIOR AND SUSCEPTIBILITY IN PARASITIZED HOSTS. Evolution; International Journal of Organic Evolution, 1996, 50, 807-819.	1.1	70
64	Unveiling the speciesâ€rank abundance distribution by generalizing the Goodâ€Turing sample coverage theory. Ecology, 2015, 96, 1189-1201.	1.5	70
65	Ecological network metrics: opportunities for synthesis. Ecosphere, 2017, 8, e01900.	1.0	70
66	Diversity-disease relationships and shared species analyses for human microbiome-associated diseases. ISME Journal, 2019, 13, 1911-1919.	4.4	69
67	LINKING THE BROWN AND GREEN: NUTRIENT TRANSFORMATION AND FATE IN THE <i>SARRACENIA</i> MICROECOSYSTEM. Ecology, 2008, 89, 898-904.	1.5	68
68	The evolutionary ecology of carnivorous plants. Advances in Ecological Research, 2003, 33, 1-74.	1.4	67
69	Food-Web Models Predict Species Abundances in Response to Habitat Change. PLoS Biology, 2006, 4, e324.	2.6	67
70	IMPROVING THE PRECISION OF ESTIMATES OF THE FREQUENCY OF RARE EVENTS. Ecology, 2005, 86, 1114-112	3.1.5	64
71	Comparison of Bacterial Communities in New England Sphagnum Bogs Using Terminal Restriction Fragment Length Polymorphism (T-RFLP). Microbial Ecology, 2006, 52, 34-44.	1.4	64
72	The tragedy of the reviewer commons*. Ecology Letters, 2009, 12, 2-4.	3.0	64

#	Article	IF	CITATIONS
73	Species interactions and random dispersal rather than habitat filtering drive community assembly during early plant succession. Oikos, 2016, 125, 698-707.	1.2	64
74	Bergmann's rule in larval ant lions: testing the starvation resistance hypothesis. Ecological Entomology, 2003, 28, 645-650.	1.1	63
75	Morphological variation in <i>Sarracenia purpurea</i> (Sarraceniaceae): geographic, environmental, and taxonomic correlates. American Journal of Botany, 2004, 91, 1930-1935.	0.8	62
76	PREY ADDITION ALTERS NUTRIENT STOICHIOMETRY OF THE CARNIVOROUS PLANT SARRACENIA PURPUREA. Ecology, 2005, 86, 1737-1743.	1.5	61
77	Organic-matter loading determines regime shifts and alternative states in an aquatic ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7742-7747.	3.3	61
78	Rapid Inventory of the Ant Assemblage in a Temperate Hardwood Forest: Species Composition and Assessment of Sampling Methods. Environmental Entomology, 2007, 36, 766-775.	0.7	59
79	COMPETITION AND COEXISTENCE OF LARVAL ANT LIONS. Ecology, 1997, 78, 1761-1773.	1.5	57
80	Heating up the forest: openâ€ŧop chamber warming manipulation of arthropod communities at Harvard and Duke Forests. Methods in Ecology and Evolution, 2011, 2, 534-540.	2.2	57
81	A null model algorithm for presence–absence matrices based on proportional resampling. Ecological Modelling, 2012, 244, 20-27.	1.2	57
82	A framework for evaluating the influence of climate, dispersal limitation, and biotic interactions using fossil pollen associations across the late Quaternary. Ecography, 2014, 37, 1095-1108.	2.1	57
83	NITROGEN DEPOSITION AND EXTINCTION RISK IN THE NORTHERN PITCHER PLANT, SARRACENIA PURPUREA. Ecology, 2002, 83, 2758-2765.	1.5	56
84	Climatic warming destabilizes forest ant communities. Science Advances, 2016, 2, e1600842.	4.7	53
85	Geographic variation in network structure of a nearctic aquatic food web. Global Ecology and Biogeography, 2012, 21, 579-591.	2.7	52
86	The evolution of heat shock protein sequences, cis-regulatory elements, and expression profiles in the eusocial Hymenoptera. BMC Evolutionary Biology, 2016, 16, 15.	3.2	51
87	Ant Community Structure: Effects of Predatory Ant Lions. Ecology, 1996, 77, 630-638.	1.5	50
88	The effects of fire, local environment and time on ant assemblages in fens and forests. Diversity and Distributions, 2005, 11, 487-497.	1.9	50
89	Randomization tests for quantifying species importance to ecosystem function. Methods in Ecology and Evolution, 2011, 2, 634-642.	2.2	47
90	Title is missing!. Journal of Insect Behavior, 2001, 14, 89-97.	0.4	46

#	Article	IF	CITATIONS
91	Matrix models for quantifying competitive intransitivity from species abundance data. Oikos, 2014, 123, 1057-1070.	1.2	45
92	econullnetr: An <scp>r</scp> package using null models to analyse the structure of ecological networks and identify resource selection. Methods in Ecology and Evolution, 2018, 9, 728-733.	2.2	44
93	Ecological and biogeographic null hypotheses for comparing rarefaction curves. Ecological Monographs, 2015, 85, 437-455.	2.4	42
94	A comprehensive framework for the study of species coâ€occurrences, nestedness and turnover. Oikos, 2017, 126, 1607-1616.	1.2	40
95	Forecasting Extinction Risk With Nonstationary Matrix Models. , 2006, 16, 51-61.		38
96	<i>P</i> values, hypothesis testing, and model selection: it's déjà vu all over again ¹ . Ecology, 2014, 95, 609-610.	1.5	38
97	Predicting foodâ€web structure with metacommunity models. Oikos, 2013, 122, 492-506.	1.2	37
98	A global database of ant species abundances. Ecology, 2017, 98, 883-884.	1.5	37
99	Species richness correlates of raw and standardized coâ€occurrence metrics. Global Ecology and Biogeography, 2018, 27, 395-399.	2.7	37
100	Water quality improvements offset the climatic debt for stream macroinvertebrates over twenty years. Nature Communications, 2019, 10, 1956.	5.8	37
101	Common garden experiments reveal uncommon responses across temperatures, locations, and species of ants. Ecology and Evolution, 2012, 2, 3009-3015.	0.8	35
102	Using Physiology to Predict the Responses of Ants to Climatic Warming. Integrative and Comparative Biology, 2013, 53, 965-974.	0.9	35
103	Heat tolerance predicts the importance of species interaction effects as the climate changes. Integrative and Comparative Biology, 2017, 57, 112-120.	0.9	35
104	Detecting temporal trends in species assemblages with bootstrapping procedures and hierarchical models. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3621-3631.	1.8	33
105	Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science, 2019, 365, 1305-1308.	6.0	33
106	Rapid Inventory of the Ant Assemblage in a Temperate Hardwood Forest: Species Composition and Assessment of Sampling Methods. Environmental Entomology, 2007, 36, 766-775.	0.7	33
107	Isolation by distance, not rivers, control the distribution of termite species in the Amazonian rain forest. Ecography, 2017, 40, 1242-1250.	2.1	30
108	Effects of short-term warming on low and high latitude forest ant communities. Ecosphere, 2011, 2, art62.	1.0	29

#	Article	IF	CITATIONS
109	Environmental proteomics, biodiversity statistics and food-web structure. Trends in Ecology and Evolution, 2012, 27, 436-442.	4.2	29
110	Specimenâ€Based Modeling, Stopping Rules, and the Extinction of the Ivoryâ€Billed Woodpecker. Conservation Biology, 2012, 26, 47-56.	2.4	29
111	A stochastic model for landscape patterns of biodiversity. Ecological Monographs, 2016, 86, 462-479.	2.4	26
112	Effects of desiccation and starvation on thermal tolerance and the heat-shock response in forest ants. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2017, 187, 1107-1116.	0.7	26
113	Functional traits and environmental characteristics drive the degree of competitive intransitivity in European saltmarsh plant communities. Journal of Ecology, 2018, 106, 865-876.	1.9	26
114	Biâ€dimensional null model analysis of presenceâ€absence binary matrices. Ecology, 2018, 99, 103-115.	1.5	26
115	Investigating Biotic Interactions in Deep Time. Trends in Ecology and Evolution, 2021, 36, 61-75.	4.2	26
116	Hydrology and Geostatistics of a Vermont, USA Kettlehole Peatland. Journal of Hydrology, 2005, 301, 250-266.	2.3	25
117	Mediterranean marine protected areas have higher biodiversity via increased evenness, not abundance. Journal of Applied Ecology, 2020, 57, 578-589.	1.9	25
118	Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages. PLoS ONE, 2014, 9, e88029.	1.1	24
119	Canopy and litter ant assemblages share similar climate–species density relationships. Biology Letters, 2010, 6, 769-772.	1.0	23
120	ARE RANGE-SIZE DISTRIBUTIONS CONSISTENT WITH SPECIES-LEVEL HERITABILITY?. Evolution; International Journal of Organic Evolution, 2012, 66, 2216-2226.	1.1	23
121	Caddisfly diapause aggregations facilitate benthic invertebrate colonization. Journal of Animal Ecology, 2003, 72, 1015-1026.	1.3	21
122	Effects of climate, species interactions, and dispersal on decadal colonization and extinction rates of Iberian tree species. Ecological Modelling, 2015, 309-310, 118-127.	1.2	21
123	Geographic variation in nutrient availability, stoichiometry, and metal concentrations of plants and pore-water in ombrotrophic bogs in New England, USA. Wetlands, 2008, 28, 827-840.	0.7	20
124	Modulation of the heat shock response is associated with acclimation to novel temperatures but not adaptation to climatic variation in the ants Aphaenogaster picea and A. rudis. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 204, 113-120.	0.8	20
125	Does species richness drive speciation? A reassessment with the Hawaiian biota. Ecography, 2008, 31, 279-285.	2.1	19
126	Thermal reactionomes reveal divergent responses to thermal extremes in warm and cool-climate ant species. BMC Genomics, 2016, 17, 171.	1.2	19

#	Article	IF	CITATIONS
127	Null model tests for niche conservatism, phylogenetic assortment and habitat filtering. Methods in Ecology and Evolution, 2012, 3, 930-939.	2.2	18
128	ECOLOGY:How Do Communities Come Together?. Science, 1999, 286, 1684a-1685.	6.0	18
129	Deciphering the enigma of undetected species, phylogenetic, and functional diversity based on Goodâ€Turing theory. Ecology, 2017, 98, 2914-2929.	1.5	17
130	Temporal Overlap and Co-Occurrence in a Guild of Sub-Tropical Tephritid Fruit Flies. PLoS ONE, 2015, 10, e0132124.	1.1	16
131	Trade-Offs in Cold Resistance at the Northern Range Edge of the Common Woodland Ant <i>Aphaenogaster picea</i> (Formicidae). American Naturalist, 2019, 194, E151-E163.	1.0	16
132	Intra- and intersexual selection on male body size are complimentary in the fathead minnow (Pimephales promelas). Behaviour, 2007, 144, 1065-1086.	0.4	15
133	Longâ€ŧerm changes in temperate marine fish assemblages are driven by a small subset of species. Global Change Biology, 2022, 28, 46-53.	4.2	15
134	Limited role of character displacement in the coexistence of congeneric <i>Anelosimus</i> spiders in a Madagascan montane forest. Ecography, 2016, 39, 743-753.	2.1	14
135	A multiscale framework for disentangling the roles of evenness, density, and aggregation on diversity gradients. Ecology, 2021, 102, e03233.	1.5	14
136	Estimating species relative abundances from museum records. Methods in Ecology and Evolution, 2023, 14, 431-443.	2.2	14
137	Over-reporting bias in null model analysis: A response to Fayle and Manica (2010). Ecological Modelling, 2011, 222, 1337-1339.	1.2	13
138	Using coverageâ€based rarefaction to infer nonâ€random species distributions. Ecosphere, 2021, 12, e03745.	1.0	13
139	The effects of climate change on densityâ€dependent population dynamics of aquatic invertebrates. Oikos, 2011, 120, 1227-1234.	1.2	12
140	Association of Ant Predators and Edaphic Conditions with Termite Diversity in an Amazonian Rain Forest. Biotropica, 2016, 48, 237-245.	0.8	12
141	Environmental proteomics reveals taxonomic and functional changes in an enriched aquatic ecosystem. Ecosphere, 2017, 8, e01954.	1.0	12
142	Abundance of spring―and winterâ€active arthropods declines with warming. Ecosphere, 2021, 12, e03473.	1.0	12
143	Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial βâ€diversity. Ecosphere, 2021, 12, e03644.	1.0	12
144	Predicting community structure of ground-foraging ant assemblages with Markov models of behavioral dominance. Oecologia, 2011, 166, 207-219.	0.9	11

#	Article	IF	CITATIONS
145	Effects of neutrality, geometric constraints, climate, and habitat quality on species richness and composition of <scp>A</scp> tlantic <scp>F</scp> orest smallâ€mammals. Global Ecology and Biogeography, 2015, 24, 1084-1093.	2.7	11
146	Proportional mixture of two rarefaction/extrapolation curves to forecast biodiversity changes under landscape transformation. Ecology Letters, 2019, 22, 1913-1922.	3.0	11
147	The influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands. Global Ecology and Biogeography, 2022, 31, 486-500.	2.7	11
148	Local―to continentalâ€scale variation in the richness and composition of an aquatic food web. Global Ecology and Biogeography, 2010, 19, 711-723.	2.7	10
149	Environment–host–microbial interactions shape the <i>Sarraceniapurpurea</i> microbiome at the continental scale. Ecology, 2021, 102, e03308.	1.5	10
150	Overlooked local biodiversity loss—Response. Science, 2014, 344, 1098-1099.	6.0	9
151	Regime shifts and hysteresis in the pitcher-plant microecosystem. Ecological Modelling, 2018, 382, 1-8.	1.2	9
152	Response to Comment on "Plant Species Richness and Ecosystem Multifunctionality in Global Drylands― Science, 2012, 337, 155-155.	6.0	8
153	Body massâ€related changes in mammal community assembly patterns during the late Quaternary of North America. Ecography, 2021, 44, 56-66.	2.1	7
154	Late quaternary biotic homogenization of North American mammalian faunas. Nature Communications, 2022, 13, .	5.8	7
155	Influence of fire on a rare serpentine plant assemblage: A 5â€year study of <i>Darlingtonia</i> fens. American Journal of Botany, 2011, 98, 801-811.	0.8	6
156	Clockwise and counterclockwise hysteresis characterize state changes in the same aquatic ecosystem. Ecology Letters, 2021, 24, 94-101.	3.0	6
157	Reconsidering the Price equation: a new partitioning based on species abundances and trait expression. Oikos, 2022, 2022, .	1.2	5
158	Source-sink behavioural dynamics limit institutional evolution in a group-structured society. Royal Society Open Science, 2022, 9, 211743.	1.1	5
159	NULL MODEL ANALYSIS OF SPECIES CO-OCCURRENCE PATTERNS. , 2000, 81, 2606.		4
160	Proteomic characterization of the major arthropod associates of the carnivorous pitcher plant <i>Sarracenia purpurea</i> . Proteomics, 2011, 11, 2354-2358.	1.3	3
161	Using Climatic Credits to Pay the Climatic Debt. Trends in Ecology and Evolution, 2021, 36, 104-112.	4.2	3
162	Regulation by the Pitcher Plant Sarracenia purpurea of the Structure of its Inquiline Food Web. American Midland Naturalist, 2021, 186, .	0.2	3

#	Article	IF	CITATIONS
163	Kernel Intensity Estimation of 2-Dimensional Spatial Poisson Point Processes From k-Tree Sampling. Journal of Agricultural, Biological, and Environmental Statistics, 2014, 19, 357-372.	0.7	2
164	Ecological drift and competitive interactions predict unique patterns in temporal fluctuations of population size. Ecology, 2019, 100, e02623.	1.5	2
165	Random placement models explain species richness and dissimilarity of frog assemblages within Atlantic Forest fragments. Journal of Animal Ecology, 2022, 91, 618-629.	1.3	2
166	Predicting Species Occurrences: Issues of Accuracy and Scale. Auk, 2003, 120, 1199.	0.7	1
167	Lyons et al. reply. Nature, 2016, 538, E3-E4.	13.7	1
168	Draft <i>Aphaenogaster</i> genomes expand our view of ant genome size variation across climate gradients. PeerJ, 2019, 7, e6447.	0.9	1
169	Importance of a Large-Scale Perspective. Conservation Biology, 1995, 9, 469-470.	2.4	0
170	Macroecology James H. Brown. Condor, 1996, 98, 669-670.	0.7	0
171	Predicting Species Occurrences: Issues of Accuracy and Scale. Auk, 2003, 120, 1199-1200.	0.7	0
172	Patterns of Co-Occurrence of Plant and Mammal Species Across Critical Intervals. The Paleontological Society Special Publications, 2014, 13, 53-54.	0.0	0
173	Checkerboards and Missing Species Combinations: Are Ecological Communities Assembled by Chance?. Chance, 2016, 29, 38-45.	0.1	0
174	Lyons et al. reply. Nature, 2016, 537, E5-E6.	13.7	0
175	Elizabeth J. Farnsworth (1962–2017). Bulletin of the Ecological Society of America, 2018, 99, 52-53.	0.2	0
176	Does species richness drive speciation? A reassessment with the Hawaiian biota. Ecography, 2008, .	2.1	0