Scott D Emr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4985267/publications.pdf

Version: 2024-02-01

2963 6630 33,784 162 93 156 citations h-index g-index papers 176 176 176 22500 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Hob proteins are novel and conserved lipid-binding proteins at ER–PM contact sites. Journal of Cell Science, 2022, 135, .	1.2	19
2	Recruitment and organization of ESCRT-0 and ubiquitinated cargo via condensation. Science Advances, 2022, 8, eabm5149.	4.7	13
3	Transport and Secretion Vacuoles., 2021,, 477-483.		О
4	Membrane Protein Quality Control Mechanisms in the Endo-Lysosome System. Trends in Cell Biology, 2021, 31, 269-283.	3.6	48
5	Design principles of the ESCRT-III Vps24-Vps2 module. ELife, 2021, 10, .	2.8	21
6	A PX-BAR protein Mvp1/SNX8 and a dynamin-like GTPase Vps1 drive endosomal recycling. ELife, 2021, 10, .	2.8	21
7	Golgi membrane protein Erd1 Is essential for recycling a subset of Golgi glycosyltransferases. ELife, 2021, 10, .	2.8	6
8	ESCRT-III and ER–PM contacts maintain lipid homeostasis. Molecular Biology of the Cell, 2020, 31, 1302-1313.	0.9	15
9	Calcineurin-dependent regulation of endocytosis by a plasma membrane ubiquitin ligase adaptor, Rcr1. Journal of Cell Biology, 2020, 219, .	2.3	9
10	A bipartite sorting signal ensures specificity of retromer complex in membrane protein recycling. Journal of Cell Biology, 2019, 218, 2876-2886.	2.3	34
11	Genetic and Biochemical Analyses of Yeast ESCRT. Methods in Molecular Biology, 2019, 1998, 105-116.	0.4	8
12	Activity of a ubiquitin ligase adaptor is regulated by disordered insertions in its arrestin domain. Molecular Biology of the Cell, 2019, 30, 3057-3072.	0.9	15
13	Methods for studying the regulation of membrane traffic by ubiquitin and the ESCRT pathway. Methods in Enzymology, 2019, 619, 269-291.	0.4	1
14	Rsp5 Ubiquitin ligase–mediated quality control system clears membrane proteins mistargeted to the vacuole membrane. Journal of Cell Biology, 2019, 218, 234-250.	2.3	24
15	Electrostatic lateral interactions drive ESCRT-III heteropolymer assembly. ELife, 2019, 8, .	2.8	36
16	Membrane protein recycling from the vacuole/lysosome membrane. Journal of Cell Biology, 2018, 217, 1623-1632.	2.3	63
17	Retrograde trafficking from the vacuole/lysosome membrane. Autophagy, 2018, 14, 1654-1655.	4.3	7
18	Deubiquitinating enzymes Ubp2 and Ubp15 regulate endocytosis by limiting ubiquitination and degradation of ARTs. Molecular Biology of the Cell, 2017, 28, 1271-1283.	0.9	32

#	Article	lF	CITATIONS
19	ESCRTs function directly on the lysosome membrane to downregulate ubiquitinated lysosomal membrane proteins. ELife, 2017, 6, .	2.8	94
20	Identification of the endocytic sorting signal recognized by the Art1-Rsp5 ubiquitin ligase complex. Molecular Biology of the Cell, 2016, 27, 4043-4054.	0.9	61
21	Phosphoinositide kinase signaling controls ER-PM cross-talk. Molecular Biology of the Cell, 2016, 27, 1170-1180.	0.9	59
22	ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro1 during MVB biogenesis. ELife, 2016, 5, .	2.8	68
23	Molecular mechanisms of inter-organelle ER–PM contact sites. Current Opinion in Cell Biology, 2015, 35, 123-130.	2.6	98
24	Ubiquitin-Dependent Lysosomal Membrane Protein Sorting and Degradation. Molecular Cell, 2015, 57, 467-478.	4.5	91
25	Mdm1/Snx13 is a novel ER–endolysosomal interorganelle tethering protein. Journal of Cell Biology, 2015, 210, 541-551.	2.3	135
26	Membrane-anchored ubiquitin ligase complex is required for the turnover of lysosomal membrane proteins. Journal of Cell Biology, 2015, 211, 639-652.	2.3	55
27	Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments. ELife, 2015, 4, .	2.8	127
28	The Phosphatidylinositol 3,5-Bisphosphate (PI(3,5)P2)-dependent Tup1 Conversion (PIPTC) Regulates Metabolic Reprogramming from Glycolysis to Gluconeogenesis. Journal of Biological Chemistry, 2013, 288, 20633-20645.	1.6	14
29	ER–PM connections: sites of information transfer and inter-organelle communication. Current Opinion in Cell Biology, 2013, 25, 434-442.	2.6	186
30	Essential N-Terminal Insertion Motif Anchors the ESCRT-III Filament during MVB Vesicle Formation. Developmental Cell, 2013, 27, 201-214.	3.1	91
31	Molecular Mechanisms of the Membrane Sculpting ESCRT Pathway. Cold Spring Harbor Perspectives in Biology, 2013, 5, a016766-a016766.	2.3	367
32	The dual PH domain protein Opy1 functions as a sensor and modulator of Ptdlns(4,5)P ₂ synthesis. EMBO Journal, 2012, 31, 2882-2894.	3.5	20
33	ER-to-Plasma Membrane Tethering Proteins Regulate Cell Signaling and ER Morphology. Developmental Cell, 2012, 23, 1129-1140.	3.1	465
34	The Endosomal Sorting Complex ESCRT-II Mediates the Assembly and Architecture of ESCRT-III Helices. Cell, 2012, 151, 356-371.	13.5	211
35	Cargo ubiquitination is essential for multivesicular body intralumenal vesicle formation. EMBO Reports, 2012, 13, 331-338.	2.0	76
36	Ubiquitin and Membrane Protein Turnover: From Cradle to Grave. Annual Review of Biochemistry, 2012, 81, 231-259.	5.0	279

#	Article	IF	Citations
37	Osh Proteins Regulate Phosphoinositide Metabolism at ER-Plasma Membrane Contact Sites. Cell, 2011, 144, 389-401.	13.5	442
38	TORC1 Regulates Endocytosis via Npr1-Mediated Phosphoinhibition of a Ubiquitin Ligase Adaptor. Cell, 2011, 147, 1104-1117.	13.5	194
39	The ESCRT Pathway. Developmental Cell, 2011, 21, 77-91.	3.1	1,203
40	Genetic interactions with mutations affecting septin assembly reveal ESCRT functions in budding yeast cytokinesis. Biological Chemistry, 2011, 392, 699-712.	1.2	26
41	Eisosome proteins assemble into a membrane scaffold. Journal of Cell Biology, 2011, 195, 889-902.	2.3	103
42	Two novel WD40 domain–containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway. Molecular Biology of the Cell, 2011, 22, 4093-4107.	0.9	41
43	Phosphoinositide [PI(3,5)P ₂] lipid-dependent regulation of the general transcriptional regulator Tup1. Genes and Development, 2011, 25, 984-995.	2.7	51
44	ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO Journal, 2010, 29, 871-883.	3.5	145
45	Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO Journal, 2010, 29, 2472-2472.	3.5	0
46	Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO Journal, 2010, 29, 1489-1498.	3.5	107
47	FYVE Domains in Membrane Trafficking and Cell Signaling. , 2010, , 1111-1121.		1
48	Pheromone-induced anisotropy in yeast plasma membrane phosphatidylinositol-4,5- <i>bis</i> phosphate distribution is required for MAPK signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11805-11810.	3.3	84
49	Functional Reconstitution of ESCRT-III Assembly and Disassembly. Cell, 2009, 136, 97-109.	13.5	275
50	SnapShot: The ESCRT Machinery. Cell, 2009, 137, 182-182.e1.	13.5	51
51	ESCRTs and human disease. Biochemical Society Transactions, 2009, 37, 167-172.	1.6	97
52	Structure and Disassembly of Filaments Formed by the ESCRT-III Subunit Vps24. Structure, 2008, 16, 1345-1356.	1.6	124
53	Arrestin-Related Ubiquitin-Ligase Adaptors Regulate Endocytosis and Protein Turnover at the Cell Surface. Cell, 2008, 135, 714-725.	13.5	434
54	Ordered Assembly of the ESCRT-III Complex on Endosomes Is Required to Sequester Cargo during MVB Formation. Developmental Cell, 2008, 15, 578-589.	3.1	299

#	Article	IF	CITATIONS
55	Novel Ist1-Did2 Complex Functions at a Late Step in Multivesicular Body Sorting. Molecular Biology of the Cell, 2008, 19, 475-484.	0.9	118
56	Assembly of the PtdIns 4-kinase Stt4 complex at the plasma membrane requires Ypp1 and Efr3. Journal of Cell Biology, 2008, 183, 1061-1074.	2.3	150
57	Assembly of a Fab1 Phosphoinositide Kinase Signaling Complex Requires the Fig4 Phosphoinositide Phosphatase. Molecular Biology of the Cell, 2008, 19, 4273-4286.	0.9	120
58	Atg18 Regulates Organelle Morphology and Fab1 Kinase Activity Independent of Its Membrane Recruitment by Phosphatidylinositol 3,5-Bisphosphate. Molecular Biology of the Cell, 2007, 18, 4232-4244.	0.9	112
59	Structural studies of phosphoinositide 3-kinase-dependent traffic to multivesicular bodies. Biochemical Society Symposia, 2007, 74, 47-57.	2.7	10
60	Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO Journal, 2007, 26, 600-612.	3.5	117
61	Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature, 2007, 449, 735-739.	13.7	287
62	ESCRTing proteins in the endocytic pathway. Trends in Biochemical Sciences, 2007, 32, 561-573.	3.7	274
63	THE ESCRT COMPLEXES: Structure and Mechanism of a Membrane-Trafficking Network. Annual Review of Biophysics and Biomolecular Structure, 2006, 35, 277-298.	18.3	478
64	ESCRT-I Core and ESCRT-II GLUE Domain Structures Reveal Role for GLUE in Linking to ESCRT-I and Membranes. Cell, 2006, 125, 99-111.	13.5	212
65	Structural and Functional Organization of the ESCRT-I Trafficking Complex. Cell, 2006, 125, 113-126.	13.5	105
66	TRAPPII subunits are required for the specificity switch of a Ypt–Rab GEF. Nature Cell Biology, 2006, 8, 1263-1269.	4.6	139
67	The Phosphatidylinositol 4,5-Biphosphate and TORC2 Binding Proteins Slm1 and Slm2 Function in Sphingolipid Regulation. Molecular and Cellular Biology, 2006, 26, 5861-5875.	1.1	125
68	New component of ESCRT-I regulates endosomal sorting complex assembly. Journal of Cell Biology, 2006, 175, 815-823.	2.3	56
69	The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology. Current Opinion in Cell Biology, 2005, 17, 402-408.	2.6	89
70	PtdIns(3)P accumulation in triple lipid-phosphatase-deletion mutants triggers lethal hyperactivation of the Rho1p/Pkc1p cell-integrity MAP kinase pathway. Journal of Cell Science, 2005, 118, 5589-5601.	1.2	17
71	The Phosphoinositide Phosphatase Sjl2 Is Recruited to Cortical Actin Patches in the Control of Vesicle Formation and Fission during Endocytosis. Molecular and Cellular Biology, 2005, 25, 2910-2923.	1.1	72
72	Yeast Mon2p is a highly conserved protein that functions in the cytoplasm-to-vacuole transport pathway and is required for Golgi homeostasis. Journal of Cell Science, 2005, 118, 4751-4764.	1.2	35

#	Article	IF	Citations
73	Synthetic Genetic Array Analysis of the PtdIns 4-kinase Pik1p Identifies Components in a Golgi-specific Ypt31/rab-GTPase Signaling Pathway. Molecular Biology of the Cell, 2005, 16, 776-793.	0.9	112
74	Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4866-4871.	3.3	204
75	Vacuole Size Control: Regulation of PtdIns(3,5)P2Levels by the Vacuole-associated Vac14-Fig4 Complex, a PtdIns(3,5)P2-specific Phosphatase. Molecular Biology of the Cell, 2004, 15, 24-36.	0.9	191
76	Multivesicular Body Sorting: Ubiquitin Ligase Rsp5 Is Required for the Modification and Sorting of Carboxypeptidase S. Molecular Biology of the Cell, 2004, 15, 468-480.	0.9	142
77	Cytoplasmic Inositol Hexakisphosphate Production Is Sufficient for Mediating the Gle1-mRNA Export Pathway. Journal of Biological Chemistry, 2004, 279, 51022-51032.	1.6	45
78	Essential Role for the Myotubularin-related Phosphatase Ymr1p and the Synaptojanin-like Phosphatases Sjl2p and Sjl3p in Regulation of Phosphatidylinositol 3-Phosphate in Yeast. Molecular Biology of the Cell, 2004, 15, 3567-3579.	0.9	79
79	Ubiquitin interactions of NZF zinc fingers. EMBO Journal, 2004, 23, 1411-1421.	3.5	238
80	Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. EMBO Journal, 2004, 23, 3747-3757.	3.5	124
81	Structure of the ESCRT-II endosomal trafficking complex. Nature, 2004, 431, 221-225.	13.7	157
82	Genome-Wide Analysis of Membrane Targeting by S. cerevisiae Pleckstrin Homology Domains. Molecular Cell, 2004, 13, 677-688.	4.5	315
83	Regulation of PI4,5P2 synthesis by nuclear-cytoplasmic shuttling of the Mss4 lipid kinase. EMBO Journal, 2003, 22, 4223-4236.	3.5	103
84	A Unified Nomenclature for Yeast Autophagy-Related Genes. Developmental Cell, 2003, 5, 539-545.	3.1	1,147
85	Vps27 recruits ESCRT machinery to endosomes during MVB sorting. Journal of Cell Biology, 2003, 162, 413-423.	2.3	404
86	Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. Journal of Cell Science, 2003, 116, 1893-1903.	1.2	189
87	Cooperative Binding of the Cytoplasm to Vacuole Targeting Pathway Proteins, Cvt13 and Cvt20, to Phosphatidylinositol 3-Phosphate at the Pre-autophagosomal Structure Is Required for Selective Autophagy. Journal of Biological Chemistry, 2002, 277, 30198-30207.	1.6	176
88	Endosomal localization and function of sorting nexin 1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6767-6772.	3.3	137
89	Osmotic stress–induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. Journal of Cell Biology, 2002, 156, 1015-1028.	2.3	231
90	The Yeast Synaptojanin-like Proteins Control the Cellular Distribution of Phosphatidylinositol (4,5)-Bisphosphate. Molecular Biology of the Cell, 2002, 13, 542-557.	0.9	222

#	Article	IF	Citations
91	Regulation of Fab1 Phosphatidylinositol 3-Phosphate 5-Kinase Pathway by Vac7 Protein and Fig4, a Polyphosphoinositide Phosphatase Family Member. Molecular Biology of the Cell, 2002, 13, 1238-1251.	0.9	159
92	Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. Journal of Cell Science, 2002, 115, 3889-3900.	1.2	201
93	The Saccharomyces cerevisiae LSB6 Gene Encodes Phosphatidylinositol 4-Kinase Activity. Journal of Biological Chemistry, 2002, 277, 47709-47718.	1.6	7 5
94	Novel PtdIns(3)P-binding protein Etf1 functions as an effector of the Vps34 PtdIns 3-kinase in autophagy. Journal of Cell Biology, 2002, 158, 761-772.	2.3	85
95	Stt4 PI 4-Kinase Localizes to the Plasma Membrane and Functions in the Pkc1-Mediated MAP Kinase Cascade. Developmental Cell, 2002, 2, 593-605.	3.1	236
96	Endosome-Associated Complex, ESCRT-II, Recruits Transport Machinery for Protein Sorting at the Multivesicular Body. Developmental Cell, 2002, 3, 283-289.	3.1	589
97	Escrt-III. Developmental Cell, 2002, 3, 271-282.	3.1	799
98	Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nature Cell Biology, 2002, 4, 389-393.	4.6	397
99	Receptor downregulation and multivesicular-body sorting. Nature Reviews Molecular Cell Biology, 2002, 3, 893-905.	16.1	1,089
100	Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I. Cell, 2001, 106, 145-155.	13.5	1,228
101	Location, Location, Location: Membrane Targeting Directed by PX Domains. Science, 2001, 294, 1881-1885.	6.0	235
102	The Class C Vps Complex Functions at Multiple Stages of the Vacuolar Transport Pathway. Traffic, 2001, 2, 476-486.	1.3	142
103	Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biology, 2001, 3, 613-618.	4.6	388
104	The role of phosphoinositides in membrane transport. Current Opinion in Cell Biology, 2001, 13, 485-492.	2.6	445
105	Sac1 Lipid Phosphatase and Stt4 Phosphatidylinositol 4-Kinase Regulate a Pool of Phosphatidylinositol 4-Phosphate That Functions in the Control of the Actin Cytoskeleton and Vacuole Morphology. Molecular Biology of the Cell, 2001, 12, 2396-2411.	0.9	216
106	Vps41p Function in the Alkaline Phosphatase Pathway Requires Homo-oligomerization and Interaction with AP-3 through Two Distinct Domains. Molecular Biology of the Cell, 2001, 12, 37-51.	0.9	80
107	Mammalian Tumor Susceptibility Gene 101 (TSG101) and the Yeast Homologue, Vps23p, Both Function in Late Endosomal Trafficking. Traffic, 2000, 1, 248-258.	1.3	371
108	Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends in Biochemical Sciences, 2000, 25, 229-235.	3.7	303

#	Article	IF	Citations
109	New Component of the Vacuolar Class C-Vps Complex Couples Nucleotide Exchange on the Ypt7 Gtpase to Snare-Dependent Docking and Fusion. Journal of Cell Biology, 2000, 151, 551-562.	2.3	370
110	Invertase fusion proteins for analysis of protein trafficking in yeast. Methods in Enzymology, 2000, 327, 95-106.	0.4	30
111	Distinct Roles for the Yeast Phosphatidylinositol 4-Kinases, Stt4p and Pik1p, in Secretion, Cell Growth, and Organelle Membrane Dynamics. Molecular Biology of the Cell, 2000, 11, 2673-2689.	0.9	327
112	Autophagy as a Regulated Pathway of Cellular Degradation. , 2000, 290, 1717-1721.		3,087
113	Class C Vps Protein Complex Regulates Vacuolar SNARE Pairing and Is Required for Vesicle Docking/Fusion. Molecular Cell, 2000, 6, 661-671.	4.5	250
114	Isolation of Subcellular Fractions from the Yeast Saccharomyces cerevisiae. Current Protocols in Cell Biology, 2000, 8, Unit 3.8.	2.3	30
115	Overview of Subcellular Fractionation Procedures for the Yeast Saccharomyces cerevisiae. Current Protocols in Cell Biology, 2000, 7, Unit 3.7.	2.3	15
116	<i>MCD4</i> Encodes a Conserved Endoplasmic Reticulum Membrane Protein Essential for Glycosylphosphatidylinositol Anchor Synthesis in Yeast. Molecular Biology of the Cell, 1999, 10, 627-648.	0.9	121
117	Molecular Dissection of Guanine Nucleotide Dissociation Inhibitor Function in Vivo. Journal of Biological Chemistry, 1999, 274, 14806-14817.	1.6	52
118	Phosphoinositide 3-Kinases and Their FYVE Domain-containing Effectors as Regulators of Vacuolar/Lysosomal Membrane Trafficking Pathways. Journal of Biological Chemistry, 1999, 274, 9129-9132.	1.6	213
119	Formation of AP-3 transport intermediates requires Vps41 function. Nature Cell Biology, 1999, 1, 346-353.	4.6	122
120	Vac1p coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Current Biology, 1999, 9, 159-S1.	1.8	172
121	Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor inSaccharomyces cerevisiae. FEBS Journal, 1999, 260, 461-469.	0.2	65
122	Phosphatidylinositol 3-Phosphate Recognition by the FYVE Domain. Molecular Cell, 1999, 3, 805-811.	4.5	172
123	Identification of a novel domain shared by putative components of the endocytic and cytoskeletal machinery. Protein Science, 1999, 8, 435-438.	3.1	99
124	The AP-3 complex: a coat of many colours. Trends in Cell Biology, 1998, 8, 282-288.	3.6	218
125	COPI in ER/Golgi and intra-Golgi transport: do yeast COPI mutants point the way?. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1404, 33-51.	1.9	90
126	Protein traffic in the yeast endocytic and vacuolar protein sorting pathways. Current Opinion in Cell Biology, 1998, 10, 513-522.	2.6	164

#	Article	IF	Citations
127	Phosphatidylinositol(3)-Phosphate Signaling Mediated by Specific Binding to RING FYVE Domains. Molecular Cell, 1998, 2, 157-162.	4.5	492
128	Fab1p PtdIns(3)P 5-Kinase Function Essential for Protein Sorting in the Multivesicular Body. Cell, 1998, 95, 847-858.	13.5	618
129	Acidic Di-leucine Motif Essential for AP-3–dependent Sorting and Restriction of the Functional Specificity of the Vam3p Vacuolar t-SNARE. Journal of Cell Biology, 1998, 142, 913-922.	2.3	130
130	Novel pathways, membrane coats and PI kinase regulation in yeast lysosomal trafficking. Seminars in Cell and Developmental Biology, 1998, 9, 527-533.	2.3	48
131	Pan1p, Yeast eps15, Functions as a Multivalent Adaptor That Coordinates Protein–Protein Interactions Essential for Endocytosis. Journal of Cell Biology, 1998, 141, 71-84.	2.3	219
132	Fab1p Is Essential for PtdIns(3)P 5-Kinase Activity and the Maintenance of Vacuolar Size and Membrane Homeostasis. Journal of Cell Biology, 1998, 143, 65-79.	2.3	395
133	ARF Is Required for Maintenance of Yeast Golgi and Endosome Structure and Function. Molecular Biology of the Cell, 1998, 9, 653-670.	0.9	127
134	Vam7p, a SNAP-25-Like Molecule, and Vam3p, a Syntaxin Homolog, Function Together in Yeast Vacuolar Protein Trafficking. Molecular and Cellular Biology, 1998, 18, 5308-5319.	1.1	187
135	A Membrane Coat Complex Essential for Endosome-to-Golgi Retrograde Transport in Yeast. Journal of Cell Biology, 1998, 142, 665-681.	2.3	644
136	A Multispecificity Syntaxin Homologue, Vam3p, Essential for Autophagic and Biosynthetic Protein Transport to the Vacuole. Journal of Cell Biology, 1997, 138, 517-529.	2.3	332
137	A Novel RING Finger Protein Complex Essential for a Late Step in Protein Transport to the Yeast Vacuole. Molecular Biology of the Cell, 1997, 8, 2307-2327.	0.9	290
138	Endosome to Golgi Retrieval of the Vacuolar Protein Sorting Receptor, Vps10p, Requires the Function of the VPS29, VPS30, and VPS35 Gene Products. Journal of Cell Biology, 1997, 137, 79-92.	2.3	368
139	COPI-independent Anterograde Transport: Cargo-selective ER to Golgi Protein Transport in Yeast COPI Mutants. Journal of Cell Biology, 1997, 136, 789-802.	2.3	183
140	The AP-3 Adaptor Complex Is Essential for Cargo-Selective Transport to the Yeast Vacuole. Cell, 1997, 91, 109-118.	13.5	398
141	Receptor signalling and the regulation of endocytic membrane transport. Current Opinion in Cell Biology, 1996, 8, 549-556.	2.6	72
142	Protein sorting to the yeast vacuole. Membrane Protein Transport, 1996, , 119-163.	0.2	2
143	A Novel RING Finger Protein, Vps8p, Functionally Interacts with the Small GTPase, Vps21p, to Facilitate Soluble Vacuolar Protein Localization. Journal of Biological Chemistry, 1996, 271, 33607-33615.	1.6	7 3
144	Multiple Pathways for Vacuolar Sorting of Yeast Proteinase A. Journal of Biological Chemistry, 1996, 271, 11865-11870.	1.6	59

#	Article	IF	Citations
145	Protein transport to the yeast vacuole. Current Opinion in Cell Biology, 1995, 7, 544-551.	2.6	103
146	Receptor-Mediated Protein Sorting to the Vacuole in Yeast: Roles for a Protein Kinase, a Lipid Kinase and GTP-Binding Proteins. Annual Review of Cell and Developmental Biology, 1995, 11, 1-33.	4.0	188
147	Vps15., 1995,, 383-385.		0
148	Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell, 1994, 79, 1199-1207.	13.5	761
149	The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell, 1994, 77, 579-586.	13.5	476
150	Genetic and biochemical studies of protein sorting to the yeast vacuole. Current Opinion in Cell Biology, 1993, 5, 641-646.	2.6	33
151	A Protein Kinase/Lipid Kinase Complex Required for Yeast Vacuolar Protein Sorting. , 1993, , 363-366.		0
152	An essential role for a protein and lipid kinase complex in secretory protein sorting. Trends in Cell Biology, 1992, 2, 363-368.	3.6	93
153	A novel protein kinase homolog essential for protein sorting to the yeast lysosome-like vacuole. Cell, 1991, 64, 425-437.	13.5	206
154	Mitochondrial protein import: isolation and characterization of the Saccharomyces cerevisiae MFT1 gene. Molecular Genetics and Genomics, 1991, 225, 483-491.	2.4	34
155	Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell, 1987, 48, 875-885.	13.5	340
156	A previously unidentified gene in the spc operon of Escherichia coli K12 specifies a component of the protein export machinery. Cell, 1982, 31, 227-235.	13.5	142
157	Suppressor mutations that restore export of a protein with a defective signal sequence. Cell, 1981, 23, 79-88.	13.5	435
158	Chapter 3 The Genetics of Protein Secretion in Escherichia coli. Methods in Cell Biology, 1981, 23, 27-38.	0.5	11
159	Genetic studies on mechanisms of protein localization in escherichia coli K-12. Journal of Supramolecular Structure, 1980, 13, 147-163.	2.3	13
160	Sequence analysis of mutations that prevent export of \hat{l} » receptor, an Escherichia coli outer membrane protein. Nature, 1980, 285, 82-85.	13.7	224
161	Mutations affecting localization of an Escherichia coli outer membrane protein, the bacteriophage \hat{l} » receptor. Journal of Molecular Biology, 1980, 141, 63-90.	2.0	166
162	Adaptor linked K63 di-ubiquitin activates Nedd4/Rsp5 E3 ligase. ELife, 0, 11, .	2.8	3