Ohyun Kwon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4983684/publications.pdf

Version: 2024-02-01

88 papers	7,742 citations	61984 43 h-index	85 g-index
99 all docs	99 docs citations	99 times ranked	3996 citing authors

#	Article	IF	CITATIONS
1	Phosphine Organocatalysis. Chemical Reviews, 2018, 118, 10049-10293.	47.7	704
2	Phosphine catalysis of allenes with electrophiles. Chemical Society Reviews, 2014, 43, 2927-2940.	38.1	470
3	An Expedient Phosphine-Catalyzed [4 + 2] Annulation:  Synthesis of Highly Functionalized Tetrahydropyridines. Journal of the American Chemical Society, 2003, 125, 4716-4717.	13.7	436
4	Advances in nucleophilic phosphine catalysis of alkenes, allenes, alkynes, and MBHADs. Chemical Communications, 2013, 49, 11588.	4.1	379
5	Phosphine-Catalyzed [4 + 2] Annulation:  Synthesis of Cyclohexenes. Journal of the American Chemical Society, 2007, 129, 12632-12633.	13.7	318
6	Phosphine-Catalyzed Annulations of Azomethine Imines: Allene-Dependent $[3 + 2]$, $[3 + 3]$, $[4 + 3]$, and $[3 + 2 + 3]$ Pathways. Journal of the American Chemical Society, 2011, 133, 13337-13348.	13.7	296
7	Chiral phosphines in nucleophilic organocatalysis. Beilstein Journal of Organic Chemistry, 2014, 10, 2089-2121.	2.2	258
8	An Application of the Phosphine-Catalyzed [4 + 2] Annulation in Indole Alkaloid Synthesis:  Formal Syntheses of (±)-Alstonerine and (±)-Macroline. Organic Letters, 2005, 7, 4289-4291.	4.6	196
9	Small-Molecule Inhibitors of Protein Geranylgeranyltransferase Type I. Journal of the American Chemical Society, 2007, 129, 5843-5845.	13.7	196
10	Phosphine-Promoted $[3 + 3]$ Annulations of Aziridines With Allenoates: Facile Entry Into Highly Functionalized Tetrahydropyridines. Journal of the American Chemical Society, 2009, 131, 6318-6319.	13.7	195
11	Phosphine triggered [3+2] allenoate–acrylate annulation: a mechanistic enlightenment. Tetrahedron Letters, 2007, 48, 3617-3620.	1.4	172
12	Hydroxyproline-Derived Pseudoenantiomeric [2.2.1] Bicyclic Phosphines: Asymmetric Synthesis of (+)- and (\hat{a}^{-}) -Pyrrolines. Journal of the American Chemical Society, 2014, 136, 11890-11893.	13.7	166
13	Phosphine-Catalyzed Synthesis of Highly Functionalized Coumarins. Organic Letters, 2007, 9, 3069-3072.	4.6	163
14	Phosphine-Catalyzed Synthesis of 6-Substituted 2-Pyrones:  Manifestation ofE/Z-Isomerism in the Zwitterionic Intermediate. Organic Letters, 2005, 7, 2977-2980.	4.6	158
15	Phosphorus-Based Catalysis. ACS Central Science, 2021, 7, 536-558.	11.3	157
16	Bisphosphine-Catalyzed Mixed Double-Michael Reactions:Â Asymmetric Synthesis of Oxazolidines, Thiazolidines, and Pyrrolidines. Journal of the American Chemical Society, 2007, 129, 12928-12929.	13.7	153
17	Phosphine-Catalyzed Synthesis of 1,3-Dioxan-4-ylidenes. Organic Letters, 2005, 7, 1387-1390.	4.6	146
18	Theoretical Rationale for Regioselection in Phosphine-Catalyzed Allenoate Additions to Acrylates, Imines, and Aldehydes. Organic Letters, 2006, 8, 3643-3646.	4.6	143

#	Article	lF	Citations
19	Stable Tetravalent Phosphonium Enolate Zwitterions. Journal of the American Chemical Society, 2007, 129, 6722-6723.	13.7	140
20	Enantioselective total synthesis of $(+)$ -ibophyllidine via an asymmetric phosphine-catalyzed $[3+2]$ annulation. Chemical Science, 2012, 3, 2510.	7.4	125
21	Skeletal Diversity via a Branched Pathway:Â Efficient Synthesis of 29Â400 Discrete, Polycyclic Compounds and Their Arraying into Stock Solutions. Journal of the American Chemical Society, 2002, 124, 13402-13404.	13.7	124
22	Alcohol-Assisted Phosphine Catalysis:  One-Step Syntheses of Dihydropyrones from Aldehydes and Allenoates. Organic Letters, 2008, 10, 429-432.	4.6	119
23	A highly diastereoselective synthesis of 3-carbethoxy-2,5-disubstituted-3-pyrrolines by phosphine catalysis. Tetrahedron, 2005, 61, 6276-6282.	1.9	118
24	Catalytic Asymmetric Total Synthesis of (â^')-Actinophyllic Acid. Journal of the American Chemical Society, 2016, 138, 3298-3301.	13.7	113
25	Phosphineâ€Catalyzed [3+2] and [4+3] Annulation Reactions of C,N yclic Azomethine Imines with Allenoates. Advanced Synthesis and Catalysis, 2012, 354, 1023-1034.	4.3	110
26	Intramolecular Crossed [2+2] Photocycloaddition through Visible Light-Induced Energy Transfer. Journal of the American Chemical Society, 2017, 139, 9807-9810.	13.7	103
27	One-Pot Phosphine-Catalyzed Syntheses of Quinolines. Journal of Organic Chemistry, 2012, 77, 8257-8267.	3.2	84
28	Inhibitors of Protein Geranylgeranyltransferase I and Rab Geranylgeranyltransferase Identified from a Library of Allenoate-derived Compounds. Journal of Biological Chemistry, 2008, 283, 9571-9579.	3.4	79
29	Phosphine-Initiated General Base Catalysis: Facile Access to Benzannulated 1,3-Diheteroatom Five-Membered Rings via Double-Michael Reactions of Allenes. Organic Letters, 2011, 13, 5420-5423.	4.6	79
30	Total Synthesis of (±)-Hirsutine: Application of Phosphine-Catalyzed Imine–Allene [4 + 2] Annulation. Organic Letters, 2012, 14, 4634-4637.	4.6	75
31	Hydrodealkenylative C(sp ³)–C(sp ²) bond fragmentation. Science, 2019, 364, 681-685.	12.6	75
32	<i>In vivo</i> antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I. Molecular Cancer Therapeutics, 2009, 8, 1218-1226.	4.1	72
33	Diphosphine-Catalyzed Mixed Double-Michael Reaction: A Unified Synthesis of Indolines, Dihydropyrrolopyridines, Benzimidazolines, Tetrahydroquinolines, Tetrahydroisoquinolines, Dihydrobenzo-1,4-oxazines, and Dihydrobenzo-3,1-oxazines. Organic Letters, 2010, 12, 1084-1087.	4.6	69
34	Mitochondrial Ca2+ uptake by the voltage-dependent anion channel 2 regulates cardiac rhythmicity. ELife, 2015, 4, .	6.0	67
35	A Torquoselective 6Ï€ Electrocyclization Approach to Reserpine Alkaloids. Organic Letters, 2012, 14, 5388-5391.	4.6	66
36	Catalytic Asymmetric Staudinger–aza-Wittig Reaction for the Synthesis of Heterocyclic Amines. Journal of the American Chemical Society, 2019, 141, 9537-9542.	13.7	60

#	Article	IF	Citations
37	Phosphine-Catalyzed β′-Umpolung Addition of Nucleophiles to Activated α-Alkyl Allenes. Organic Letters, 2011, 13, 2586-2589.	4.6	59
38	Aplexone targets the HMG-CoA reductase pathway and differentially regulates arteriovenous angiogenesis. Development (Cambridge), 2011, 138, 1173-1181.	2.5	59
39	Diversity Through a Branched Reaction Pathway: Generation of Multicyclic Scaffolds and Identification of Antimigratory Agents. Chemistry - A European Journal, 2011, 17, 649-654.	3.3	57
40	Phosphine/Palladium-Catalyzed Syntheses of Alkylidene Phthalans, 3-Deoxyisoochracinic Acid, Isoochracinic Acid, and Isoochracinol. Organic Letters, 2012, 14, 3264-3267.	4.6	56
41	Phosphineâ€Catalyzed [4+2] Annulations of 2â€Alkylallenoates and Olefins: Synthesis of Multisubstituted Cyclohexenes. Chemistry - an Asian Journal, 2011, 6, 2101-2106.	3.3	53
42	Theory-guided design of BrÃ,nsted acid-assisted phosphine catalysis: synthesis of dihydropyrones from aldehydes and allenoates. Tetrahedron, 2008, 64, 6935-6942.	1.9	50
43	Carvone-Derived P-Stereogenic Phosphines: Design, Synthesis, and Use in Allene–Imine [3 + 2] Annulation. ACS Catalysis, 2018, 8, 5188-5192.	11.2	49
44	Bridged [2.2.1] bicyclic phosphine oxide facilitates catalytic γ-umpolung addition–Wittig olefination. Chemical Science, 2018, 9, 1867-1872.	7.4	48
45	Diversity through phosphine catalysis identifies octahydro-1,6-naphthyridin-4-ones as activators of endothelium-driven immunity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6769-6774.	7.1	43
46	Nucleophilic Chiral Phosphines: Powerful and Versatile Catalysts for Asymmetric Annulations. Aldrichimica Acta, 2016, 49, 3-13.	4.0	43
47	Equilibrium between a vinylogous ylide and a phosphonium dienolate zwitterion: vinylogous Wittig olefination versus vinylogous aldol-type reaction. Tetrahedron, 2010, 66, 4760-4768.	1.9	41
48	Phosphine-Mediated Iterative Arene Homologation Using Allenes. Journal of the American Chemical Society, 2015, 137, 11258-11261.	13.7	40
49	Selective Inhibitor of Platelet-Activating Factor Acetylhydrolases 1b2 and 1b3 That Impairs Cancer Cell Survival. ACS Chemical Biology, 2015, 10, 925-932.	3.4	39
50	Suppression of Arrhythmia by EnhancingÂMitochondrial Ca2+ Uptake inÂCatecholaminergic Ventricular Tachycardia Models. JACC Basic To Translational Science, 2017, 2, 737-747.	4.1	35
51	Unified Approach to Furan Natural Products via Phosphineâ€Palladium Catalysis. Angewandte Chemie - International Edition, 2021, 60, 8874-8881.	13.8	35
52	Synthesis of Functionalized Alkylidene Indanes and Indanones through Tandem Phosphine–Palladium Catalysis. Organic Letters, 2015, 17, 2058-2061.	4.6	33
53	Phosphine-Catalyzed α-Umpolung–Aldol Reaction for the Synthesis of Benzo[b]azapin-3-ones. Organic Letters, 2019, 21, 5143-5146.	4.6	33
54	Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science, 2018, 4, 1727-1741.	11.3	32

#	Article	IF	CITATIONS
55	Jagged1 Instructs Macrophage Differentiation in Leprosy. PLoS Pathogens, 2016, 12, e1005808.	4.7	32
56	Phosphine-catalyzed intramolecular \hat{I}^3 -umpolung addition of \hat{I}_\pm -aminoalkylallenic esters: facile synthesis of 3-carbethoxy-2-alkyl-3-pyrrolines. Chemical Communications, 2012, 48, 5373.	4.1	31
57	Synthesis of nitrodienes, nitrostyrenes, and nitrobiaryls through palladium-catalyzed couplings of \hat{l}^2 -nitrovinyl and o-nitroaryl thioethers. Chemical Science, 2013, 4, 2670.	7.4	29
58	Nazarov cyclization of 1,4-pentadien-3-ols: preparation of cyclopenta[b]indoles and spiro[indene-1,4 \hat{a} \in 2-quinoline]s. Chemical Communications, 2016, 52, 2811-2814.	4.1	29
59	In vitro and in vivo effects of geranylgeranyltransferase I inhibitor P61A6 on non-small cell lung cancer cells. BMC Cancer, 2013, 13, 198.	2.6	28
60	Catalytic Enantioselective Synthesis of Guvacine Derivatives through $[4+2]$ Annulations of Imines with $\hat{l}\pm$ -Methylallenoates. Organic Letters, 2018, 20, 6089-6093.	4.6	28
61	Nucleophilic Phosphine Catalysis: The Untold Story. Asian Journal of Organic Chemistry, 2021, 10, 2699-2708.	2.7	26
62	Dealkenylative Thiylation of C(sp ³)–C(sp ²) Bonds. Organic Letters, 2019, 21, 8592-8597.	4.6	25
63	Diversity-Oriented Synthesis Based on the DPPP-Catalyzed Mixed Double-Michael Reactions of Electron-Deficient Acetylenes and \hat{l}^2 -Amino Alcohols. Molecules, 2011, 16, 3802-3825.	3.8	24
64	Chiral Aminophosphines as Catalysts for Enantioselective Double-Michael Indoline Syntheses. Molecules, 2012, 17, 5626-5650.	3.8	24
65	Dealkenylative Alkenylation: Formal Ïfâ€Bond Metathesis of Olefins. Angewandte Chemie - International Edition, 2020, 59, 17565-17571.	13.8	24
66	Cardiac-specific deletion of voltage dependent anion channel 2 leads to dilated cardiomyopathy by altering calcium homeostasis. Nature Communications, 2021, 12, 4583.	12.8	24
67	Stereoselective syntheses of $\hat{l}\pm,\hat{l}^2$ -unsaturated \hat{l}^3 -amino esters through phosphine-catalyzed \hat{l}^3 -umpolung additions of sulfonamides to \hat{l}^3 -substituted allenoates. Tetrahedron Letters, 2015, 56, 3273-3276.	1.4	21
68	Phosphine-Catalyzed Intramolecular Cyclizations of α-Nitroethylallenoates Forming (<i>Z</i>)-Furanone Oximes. Organic Letters, 2016, 18, 2954-2957.	4.6	19
69	Identification and Characterization of Mechanism of Action of P61-E7, a Novel Phosphine Catalysis-Based Inhibitor of Geranylgeranyltransferase-I. PLoS ONE, 2011, 6, e26135.	2.5	17
70	Flow Cytometry Enables a High-Throughput Homogeneous Fluorescent Antibody-Binding Assay for Cytotoxic T Cell Lytic Granule Exocytosis. Journal of Biomolecular Screening, 2013, 18, 420-429.	2.6	17
71	Oxodealkenylative Cleavage of Alkene C(sp ³)â^'C(sp ²) Bonds: A Practical Method for Introducing Carbonyls into Chiral Pool Materials. Angewandte Chemie - International Edition, 2020, 59, 1211-1215.	13.8	17
72	A concise synthesis of the functionalized [5–7–6] tricyclic skeleton of guanacastepene A. Tetrahedron Letters, 2004, 45, 8843-8846.	1.4	16

#	Article	IF	Citations
73	The antiarrhythmic compound efsevin directly modulates voltageâ€dependent anion channel 2 by binding to its inner wall and enhancing mitochondrial Ca 2+ uptake. British Journal of Pharmacology, 2020, 177, 2947-2958.	5.4	15
74	Phosphineâ€Catalyzed [4+2] Annulation: Synthesis of Ethyl 6â€Phenylâ€1â€Tosylâ€1,2,5,6â€Tetrahydropyridineâ€3â€Carboxylate. , 2009, 2009, 212-224.		15
75	Phosphineâ€Initiated Generalâ€Baseâ€Catalyzed Quinolone Synthesis. Asian Journal of Organic Chemistry, 2014, 3, 453-457.	2.7	12
76	Highly efficient palladium-catalyzed hydrostannation of ethyl ethynyl ether. Tetrahedron Letters, 2008, 49, 7097-7099.	1.4	9
77	Nanoformulation of Geranylgeranyltransferase-I Inhibitors for Cancer Therapy: Liposomal Encapsulation and pH-Dependent Delivery to Cancer Cells. PLoS ONE, 2015, 10, e0137595.	2.5	9
78	Phosphine-promoted $[4 + 3]$ annulation of allenoate with aziridines for synthesis of tetrahydroazepines: phosphine-dependent $[3 + 3]$ and $[4 + 3]$ pathways. RSC Advances, 2019, 9, 1214-1221.	3.6	9
79	Phosphineâ€Catalyzed (4+1) Annulation: Rearrangement of Allenylic Carbamates to 3â€Pyrrolines through Phosphonium Diene Intermediates. ChemCatChem, 2020, 12, 4352-4372.	3.7	8
80	Functionalized $\hat{l}_{\pm},\hat{l}_{\pm}$ -Dibromo Esters through Claisen Rearrangements of Dibromoketene Acetals. Organic Letters, 2015, 17, 1054-1057.	4.6	7
81	Oxodealkenylative Cleavage of Alkene C(sp ³)â^'C(sp ²) Bonds: A Practical Method for Introducing Carbonyls into Chiral Pool Materials. Angewandte Chemie, 2020, 132, 1227-1231.	2.0	5
82	Unified Approach to Furan Natural Products via Phosphineâ€Palladium Catalysis. Angewandte Chemie, 2021, 133, 8956-8963.	2.0	4
83	Phosphineâ€Catalyzed [3 + 2] Annulation: Synthesis of Ethyl 5â€(<i>tert</i>) Tj ETQq1 1 0.784314 rgBT /Over	ock 10 Tf	50 ₄ 342 Td (a
84	Synthesis of Cyclic β-Silylalkenyl Triflates via an Alkenyl Cation Intermediate. Organic Letters, 2018, 20, 5474-5477.	4.6	3
85	Chiral aminophosphines derived from hydroxyproline and their application in allene–imine [4 + 2] annulation. Journal of Antibiotics, 2019, 72, 389-396.	2.0	3
86	Dealkenylative Alkenylation: Formal Ïfâ€Bond Metathesis of Olefins. Angewandte Chemie, 2020, 132, 17718-17724.	2.0	3
87	Discussion Addendum for: Phosphine-Catalyzed [4 + 2] Annulation: Synthesis of Ethyl 6-Phenyl-1-tosyl-1,2,5,6-tetrahydropyridine-3-carboxylate. Organic Syntheses, 2019, 96, 110-123.	1.0	1
88	Identifying genes required for the use of pâ€coumarate in coenzyme Q biosynthesis in Saccharomyces cerevisiae. FASEB Journal, 2018, 32, .	0.5	0