James J Schauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4983553/publications.pdf

Version: 2024-02-01

8755 10158 24,479 301 75 140 citations h-index g-index papers 302 302 302 14163 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Oral cavity response to air pollutant exposure and association with pulmonary inflammation and symptoms in asthmatic children. Environmental Research, 2022, 206, 112275.	7.5	10
2	Elemental composition of fine and coarse particles across the greater Los Angeles area: Spatial variation and contributing sources. Environmental Pollution, 2022, 292, 118356.	7.5	21
3	An improved method for sampling and analytical measurement of aerosol platinum in ambient air and workplace environments. Science of the Total Environment, 2022, 814, 152657.	8.0	3
4	An improved understanding of NOx emissions in South Asian megacities using TROPOMI NO ₂ retrievals. Environmental Research Letters, 2022, 17, 024006.	5 . 2	19
5	Household air pollution from solid fuel use as a dose-dependent risk factor for cognitive impairment in northern China. Scientific Reports, 2022, 12, 6187.	3.3	6
6	Realâ€time measurements of PM _{2.5} and ozone to assess the effectiveness of residential indoor air filtration in Shanghai homes. Indoor Air, 2021, 31, 74-87.	4.3	35
7	Cytotoxicity and chemical composition of women's personal PM _{2.5} exposures from rural China. Environmental Science Atmospheres, 2021, 1, 359-371.	2.4	2
8	Personal Exposure to PM _{2.5} Oxidative Potential in Association with Pulmonary Pathophysiologic Outcomes in Children with Asthma. Environmental Science & Environment	10.0	33
9	Wood burning pollution in Chile: A tale of two mid-size cities. Atmospheric Pollution Research, 2021, 12, 50-59.	3.8	4
10	Increases in the formation of water soluble organic nitrogen during Asian dust storm episodes. Atmospheric Research, 2021, 253, 105486.	4.1	9
11	Role of endogenous melatonin in pathophysiologic and oxidative stress responses to personal air pollutant exposures in asthmatic children. Science of the Total Environment, 2021, 773, 145709.	8.0	9
12	Source contributions to multiple toxic potentials of atmospheric organic aerosols. Science of the Total Environment, 2021, 773, 145614.	8.0	30
13	Assessment of long-range oriented source and oxidative potential on the South-west shoreline, Korea: Molecular marker receptor models during shipborne measurements. Environmental Pollution, 2021, 281, 116979.	7.5	8
14	Source attribution of air pollution using a generalized additive model and particle trajectory clusters. Science of the Total Environment, 2021, 780, 146458.	8.0	6
15	Quantitative estimation of meteorological impacts and the COVID-19 lockdown reductions on NO2 and PM2.5 over the Beijing area using Generalized Additive Models (GAM). Journal of Environmental Management, 2021, 291, 112676.	7.8	47
16	Distinguishing Air Pollution Due to Stagnation, Local Emissions, and Long-Range Transport Using a Generalized Additive Model to Analyze Hourly Monitoring Data. ACS Earth and Space Chemistry, 2021, 5, 2329-2340.	2.7	8
17	Reactive oxygen species (ROS) activity of fine particulate matter health impacts in Addis Ababa, Ethiopia. Atmospheric Pollution Research, 2021, 12, 101149.	3.8	3
18	Temporal trends in the spatial-scale contributions to black carbon in a Middle Eastern megacity. Science of the Total Environment, 2021, 792, 148364.	8.0	4

#	Article	IF	Citations
19	Estimation of commercial cooking emissions in real-world operation: Particulate and gaseous emission factors, activity influencing and modelling. Environmental Pollution, 2021, 289, 117847.	7.5	13
20	Determinants of personal exposure to PM2.5 and black carbon in Chinese adults: A repeated-measures study in villages using solid fuel energy. Environment International, 2021, 146, 106297.	10.0	18
21	Source Apportionment of Fine Organic Particulate Matter (PM2.5) in Central Addis Ababa, Ethiopia. International Journal of Environmental Research and Public Health, 2021, 18, 11608.	2.6	8
22	Chemical Investigation of Household Solid Fuel Use and Outdoor Air Pollution Contributions to Personal PM _{2.5} Exposures. Environmental Science & Description of the Environmental Science are contributed by the Environmental Science are c	10.0	11
23	Characterization of aerosol chemical composition and the reconstruction of light extinction coefficients during winter in Wuhan, China. Chemosphere, 2020, 241, 125033.	8.2	29
24	Oxidative potential of ambient PM2.5 in Wuhan and its comparisons with eight areas of China. Science of the Total Environment, 2020, 701, 134844.	8.0	40
25	PM2.5 in Abuja, Nigeria: Chemical characterization, source apportionment, temporal variations, transport pathways and the health risks assessment. Atmospheric Research, 2020, 237, 104833.	4.1	34
26	Using low-cost sensors to monitor indoor, outdoor, and personal ozone concentrations in Beijing, China. Environmental Sciences: Processes and Impacts, 2020, 22, 131-143.	3.5	19
27	Impacts of stove/fuel use and outdoor air pollution on chemical composition of household particulate matter. Indoor Air, 2020, 30, 294-305.	4.3	16
28	The impact of household air cleaners on the oxidative potential of PM2.5 and the role of metals and sources associated with indoor and outdoor exposure. Environmental Research, 2020, 181, 108919.	7.5	39
29	Occurrence of estrogens, androgens and progestogens and estrogenic activity in surface water runoff from beef and dairy manure amended crop fields. Science of the Total Environment, 2020, 710, 136247.	8.0	28
30	Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with organic and inorganic markers. Science of the Total Environment, 2020, 705, 135330.	8.0	30
31	Satellite Observations of PM2.5 Changes and Driving Factors Based Forecasting Over China 2000–2025. Remote Sensing, 2020, 12, 2518.	4.0	9
32	Investigating Cumulative Exposures among 3- to 4-Year-Old Children Using Wearable Ultrafine Particle Sensors and Language Environment Devices: A Pilot and Feasibility Study. International Journal of Environmental Research and Public Health, 2020, 17, 5259.	2.6	6
33	Children's microenvironmental exposure to PM2.5 and ozone and the impact of indoor air filtration. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 971-980.	3.9	19
34	Malondialdehyde in Nasal Fluid: A Biomarker for Monitoring Asthma Control in Relation to Air Pollution Exposure. Environmental Science & Environmental	10.0	24
35	Source Apportionment of Coarse Particulate Matter (PM10) in Yangon, Myanmar. International Journal of Environmental Research and Public Health, 2020, 17, 4145.	2.6	11
36	Associations of personal exposure to air pollutants with airway mechanics in children with asthma. Environment International, 2020, 138, 105647.	10.0	30

#	Article	IF	Citations
37	Impacts of Sources on PM _{2.5} Oxidation Potential during and after the Asia-Pacific Economic Cooperation Conference in Huairou, Beijing. Environmental Science & Economic Cooperation Conference in Huairou, Beijing. Environmental Science & Economy; Technology, 2020, 54, 2585-2594.	10.0	6
38	Association Between Bedroom Particulate Matter Filtration and Changes in Airway Pathophysiology in Children With Asthma. JAMA Pediatrics, 2020, 174, 533.	6.2	54
39	Computational Chemistry-Based Evaluation of Metal Salts and Metal Oxides for Application in Mercury-Capture Technologies. Industrial & Engineering Chemistry Research, 2020, 59, 9015-9022.	3.7	4
40	Changes in ozone photochemical regime in Fresno, California from 1994 to 2018 deduced from changes in the weekend effect. Environmental Pollution, 2020, 263, 114380.	7.5	34
41	Chemical Characterization and Seasonality of Ambient Particles (PM2.5) in the City Centre of Addis Ababa. International Journal of Environmental Research and Public Health, 2020, 17, 6998.	2.6	16
42	Using Low-cost sensors to Quantify the Effects of Air Filtration on Indoor and Personal Exposure Relevant PM2.5 Concentrations in Beijing, China. Aerosol and Air Quality Research, 2020, 20, 297-313.	2.1	45
43	Chemical composition and source apportionment of ambient, household, and personal exposures to PM2.5 in communities using biomass stoves in rural China. Science of the Total Environment, 2019, 646, 309-319.	8.0	55
44	Exposure–Response Associations of Household Air Pollution and Buccal Cell Telomere Length in Women Using Biomass Stoves. Environmental Health Perspectives, 2019, 127, 87004.	6.0	15
45	The impact of household air cleaners on the chemical composition and children's exposure to PM2.5 metal sources in suburban Shanghai. Environmental Pollution, 2019, 253, 190-198.	7. 5	34
46	Longitudinal evaluation of a household energy package on blood pressure, central hemodynamics, and arterial stiffness in China. Environmental Research, 2019, 177, 108592.	7.5	17
47	Source Apportionment of Fine-Particle, Water-Soluble Organic Nitrogen and Its Association with the Inflammatory Potential of Lung Epithelial Cells. Environmental Science & Examp; Technology, 2019, 53, 9845-9854.	10.0	36
48	A global perspective on national climate mitigation priorities in the context of air pollution and sustainable development. City and Environment Interactions, 2019, 1, 100003.	4.2	22
49	The Oxidative Potential of Personal and Household PM _{2.5} in a Rural Setting in Southwestern China. Environmental Science & Environmental Sci	10.0	38
50	Comparison of PM2.5 emission rates and source profiles for traditional Chinese cooking styles. Environmental Science and Pollution Research, 2019, 26, 21239-21252.	5.3	21
51	Sources of volatile organic compounds in suburban homes in Shanghai, China, and the impact of air filtration on compound concentrations. Chemosphere, 2019, 231, 256-268.	8.2	41
52	Effectiveness of a Household Energy Package in Improving Indoor Air Quality and Reducing Personal Exposures in Rural China. Environmental Science & Exposures in Rural China. Environmental Science & Exposures in Rural China.	10.0	30
53	Differences in chemical composition of PM2.5 emissions from traditional versus advanced combustion (semi-gasifier) solid fuel stoves. Chemosphere, 2019, 233, 852-861.	8.2	24
54	Chemical composition and health risk indices associated with size-resolved particulate matter in Pearl River Delta (PRD) region, China. Environmental Science and Pollution Research, 2019, 26, 12435-12445.	5.3	17

#	Article	IF	Citations
55	Assessment of forest fire impacts on carbonaceous aerosols using complementary molecular marker receptor models at two urban locations in California's San Joaquin Valley. Environmental Pollution, 2019, 246, 274-283.	7.5	19
56	Chemical Characteristics of Size-Resolved Aerosols in Coastal Areas during KORUS-AQ Campaign; Comparison of Ion Neutralization Model. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 387-399.	2.3	8
57	Real-world PM extracts differentially enhance Th17 differentiation and activate the aryl hydrocarbon receptor (AHR). Toxicology, 2019, 414, 14-26.	4.2	17
58	Seasonal variations in the oxidative stress and inflammatory potential of PM2.5 in Tehran using an alveolar macrophage model; The role of chemical composition and sources. Environment International, 2019, 123, 417-427.	10.0	64
59	Effects of the emergency control measures in Beijing on air quality improvement. Atmospheric Pollution Research, 2019, 10, 580-586.	3.8	8
60	Chemical characterization and source apportionment of PM2.5 personal exposure of two cohorts living in urban and suburban Beijing. Environmental Pollution, 2019, 246, 225-236.	7.5	35
61	Ambient urban dust particulate matter reduces pathologic T cells in the CNS and severity of EAE. Environmental Research, 2019, 168, 178-192.	7.5	20
62	Impact of emissions from the Ports of Los Angeles and Long Beach on the oxidative potential of ambient PM0.25 measured across the Los Angeles County. Science of the Total Environment, 2019, 651, 638-647.	8.0	24
63	Changes in speciated PM2.5 concentrations in Fresno, California, due to NOx reductions and variations in diurnal emission profiles by day of week. Elementa, 2019, 7, .	3.2	12
64	Source apportionments of PM2.5 organic carbon during the elevated pollution episodes in the Ordos region, Inner Mongolia, China. Environmental Science and Pollution Research, 2018, 25, 13159-13172.	5. 3	9
65	The role of iron-oxide aerosols and sunlight in the atmospheric reduction of Hg(II) species: A DFT+U study. Applied Catalysis B: Environmental, 2018, 234, 347-356.	20.2	10
66	Exposure to air pollution interacts with obesogenic nutrition to induce tissue-specific response patterns. Environmental Pollution, 2018, 239, 532-543.	7.5	19
67	Source apportionment of PM2.5 organic carbon in the San Joaquin Valley using monthly and daily observations and meteorological clustering. Environmental Pollution, 2018, 237, 366-376.	7.5	21
68	Seasonal trends in the composition and sources of PM2.5 and carbonaceous aerosol in Tehran, Iran. Environmental Pollution, 2018, 239, 69-81.	7.5	52
69	Household air pollution and measures of blood pressure, arterial stiffness and central haemodynamics. Heart, 2018, 104, 1515-1521.	2.9	62
70	Acute changes in a respiratory inflammation marker in guards following Beijing air pollution controls. Science of the Total Environment, 2018, 624, 1539-1549.	8.0	19
71	Impacts of stove use patterns and outdoor air quality on household air pollution and cardiovascular mortality in southwestern China. Environment International, 2018, 117, 116-124.	10.0	48
72	Quantum chemical calculations to determine partitioning coefficients for HgCl2 on iron-oxide aerosols. Science of the Total Environment, 2018, 636, 580-587.	8.0	9

#	Article	IF	CITATIONS
73	A hybrid source apportionment strategy using positive matrix factorization (PMF) and molecular marker chemical mass balance (MM-CMB) models. Environmental Pollution, 2018, 238, 39-51.	7.5	51
74	The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing. Science of the Total Environment, 2018, 626, 507-518.	8.0	46
75	Chemical composition and redox activity of PM0.25 near Los Angeles International Airport and comparisons to an urban traffic site. Science of the Total Environment, 2018, 610-611, 1336-1346.	8.0	26
76	Changes in oxidative potential of soil and fly ash after reaction with gaseous nitric acid. Atmospheric Environment, 2018, 173, 306-315.	4.1	9
77	BAERLIN2014 – stationary measurements and source apportionment at an urban background station in Berlin, Germany. Atmospheric Chemistry and Physics, 2018, 18, 8621-8645.	4.9	5
78	Polycyclic aromatic hydrocarbons (PAHs) present in ambient urban dust drive proinflammatory T cell and dendritic cell responses via the aryl hydrocarbon receptor (AHR) in vitro. PLoS ONE, 2018, 13, e0209690.	2.5	40
79	Air Toxics in Relation to Autism Diagnosis, Phenotype, and Severity in a U.S. Family-Based Study. Environmental Health Perspectives, 2018, 126, 037004.	6.0	27
80	Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul, Korea. Environment International, 2018, 117, 276-283.	10.0	69
81	Differential effects of diesel exhaust particles on T cell differentiation and autoimmune disease. Particle and Fibre Toxicology, 2018, 15, 35.	6.2	30
82	Impact of biodiesel on regulated and unregulated emissions, and redox and proinflammatory properties of PM emitted from heavy-duty vehicles. Science of the Total Environment, 2017, 584-585, 1230-1238.	8.0	42
83	Large Reductions in Solar Energy Production Due to Dust and Particulate Air Pollution. Environmental Science and Technology Letters, 2017, 4, 339-344.	8.7	159
84	Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions. Atmospheric Environment, 2017, 163, 118-127.	4.1	54
85	Source apportionments of ambient fine particulate matter in Israeli, Jordanian, and Palestinian cities. Environmental Pollution, 2017, 225, 1-11.	7.5	27
86	Wood burning pollution in southern Chile: PM 2.5 source apportionment using CMB and molecular markers. Environmental Pollution, 2017, 225, 514-523.	7.5	33
87	Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran. Atmospheric Environment, 2017, 153, 70-82.	4.1	90
88	A user-centered, iterative engineering approach for advanced biomass cookstove design and development. Environmental Research Letters, 2017, 12, 095009.	5.2	32
89	Elements and inorganic ions as source tracers in recent Greenland snow. Atmospheric Environment, 2017, 164, 205-215.	4.1	25
90	Relationship between reactive oxygen species and water-soluble organic compounds: Time-resolved benzene carboxylic acids measurement in the coastal area during the KORUS-AQ campaign. Environmental Pollution, 2017, 231, 1-12.	7. 5	30

#	Article	IF	CITATIONS
91	Quantification of the sources of long-range transport of PM 2.5 pollution in the Ordos region, Inner Mongolia, China. Environmental Pollution, 2017, 229, 1019-1031.	7.5	48
92	Seasonal and spatial differences in source contributions to PM2.5 in Wuhan, China. Science of the Total Environment, 2017, 577, 155-165.	8.0	65
93	Oxidative potential of on-road fine particulate matter (PM 2.5) measured on major freeways of Los Angeles, CA, and a 10-year comparison with earlier roadside studies. Atmospheric Environment, 2017, 148, 102-114.	4.1	53
94	A non-destructive optical color space sensing system to quantify elemental and organic carbon in atmospheric particulate matter on Teflon and quartz filters. Atmospheric Environment, 2017, 149, 84-94.	4.1	14
95	Impacts of regional transport on black carbon in Huairou, Beijing, China. Environmental Pollution, 2017, 221, 75-84.	7.5	20
96	Assessing Exposure to Household Air Pollution: A Systematic Review and Pooled Analysis of Carbon Monoxide as a Surrogate Measure of Particulate Matter. Environmental Health Perspectives, 2017, 125, 076002.	6.0	61
97	Oxidative potential of size-fractionated atmospheric aerosol in urban and rural sites across Europe. Faraday Discussions, 2016, 189, 381-405.	3.2	44
98	The relative importance of tailpipe and non-tailpipe emissions on the oxidative potential of ambient particles in Los Angeles, CA. Faraday Discussions, 2016, 189, 361-380.	3.2	38
99	Temporal variations of black carbon during haze and non-haze days in Beijing. Scientific Reports, 2016, 6, 33331.	3.3	38
100	First field-based atmospheric observation of the reduction of reactive mercury driven by sunlight. Atmospheric Environment, 2016, 134, 27-39.	4.1	28
101	Optimization of the Measurement of Particle-Bound Reactive Oxygen Species with $2\hat{a}\in ^2$, $7\hat{a}\in ^2$ -dichlorofluorescin (DCFH). Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	31
102	Development and field evaluation of an online monitor for near-continuous measurement of iron, manganese, and chromium in coarse airborne particulate matter (PM). Aerosol Science and Technology, 2016, 50, 1306-1319.	3.1	11
103	Sensitivity of source apportionment results to mobile source profiles. Environmental Pollution, 2016, 219, 821-828.	7.5	15
104	Chemical characterization and toxicity of particulate matter emissions from roadside trash combustion in urban India. Atmospheric Environment, 2016, 147, 22-30.	4.1	59
105	The oxidative potential of PM2.5 exposures from indoor and outdoor sources in rural China. Science of the Total Environment, 2016, 571, 1477-1489.	8.0	58
106	Associations between microvascular function and short-term exposure to traffic-related air pollution and particulate matter oxidative potential. Environmental Health, 2016, 15, 81.	4.0	57
107	Seasonal variation in outdoor, indoor, and personal air pollution exposures of women using wood stoves in the Tibetan Plateau: Baseline assessment for an energy intervention study. Environment International, 2016, 94, 449-457.	10.0	108
108	Associations of oxidative stress and inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly cohort. Environmental Research, 2016, 150, 306-319.	7.5	88

#	Article	IF	CITATIONS
109	Development and evaluation of a novel monitor for online measurement of iron, manganese, and chromium in ambient particulate matter (PM). Science of the Total Environment, 2016, 565, 123-131.	8.0	17
110	Seasonal and Diurnal Air Pollution from Residential Cooking and Space Heating in the Eastern Tibetan Plateau. Environmental Science & Environmental Sc	10.0	65
111	Nrf2-related gene expression and exposure to traffic-related air pollution in elderly subjects with cardiovascular disease: An exploratory panel study. Journal of Exposure Science and Environmental Epidemiology, 2016, 26, 141-149.	3.9	41
112	ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment. Environmental Research, 2016, 146, 252-262.	7.5	54
113	Heterogeneous Reduction Pathways for Hg(II) Species on Dry Aerosols: A First-Principles Computational Study. Journal of Physical Chemistry A, 2016, 120, 2106-2113.	2.5	10
114	ROS production and gene expression in alveolar macrophages exposed to PM2.5 from Baghdad, Iraq: Seasonal trends and impact of chemical composition. Science of the Total Environment, 2016, 543, 739-745.	8.0	59
115	Source apportionment of Beijing air pollution during a severe winter haze event and associated pro-inflammatory responses in lung epithelial cells. Atmospheric Environment, 2016, 126, 28-35.	4.1	88
116	Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage. Environmental Pollution, 2016, 210, 227-237.	7.5	57
117	Nighttime aqueous-phase secondary organic aerosols in Los Angeles and its implication for fine particulate matter composition and oxidative potential. Atmospheric Environment, 2016, 133, 112-122.	4.1	53
118	Quantification of elemental and organic carbon in atmospheric particulate matter using color space sensingâ€"hue, saturation, and value (HSV) coordinates. Science of the Total Environment, 2016, 548-549, 252-259.	8.0	13
119	Fine and ultrafine particulate organic carbon in the Los Angeles basin: Trends in sources and composition. Science of the Total Environment, 2016, 541, 1083-1096.	8.0	59
120	Source apportionment of carbonaceous fine particulate matter (PM 2.5) in two contrasting cities across the Indo–Gangetic Plain. Atmospheric Pollution Research, 2015, 6, 398-405.	3.8	77
121	Investigation of black and brown carbon multipleâ€wavelengthâ€dependent light absorption from biomass and fossil fuel combustion source emissions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6682-6697.	3.3	150
122	Neither dust nor black carbon causing apparent albedo decline in Greenland's dry snow zone: Implications for MODIS C5 surface reflectance. Geophysical Research Letters, 2015, 42, 9319-9327.	4.0	64
123	Oxidative potential of coarse particulate matter (PM _{10â€"2.5}) and its relation to water solubility and sources of trace elements and metals in the Los Angeles Basin. Environmental Sciences: Processes and Impacts, 2015, 17, 2110-2121.	3.5	42
124	Impact of regional transport on the anthropogenic and biogenic secondary organic aerosols in the Los Angeles Basin. Atmospheric Environment, 2015, 103, 171-179.	4.1	27
125	Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Science of the Total Environment, 2015, 512-513, 133-142.	8.0	75
126	A new technique for online measurement of total and water-soluble copper (Cu) in coarse particulate matter (PM). Environmental Pollution, 2015, 199, 227-234.	7.5	14

#	Article	IF	CITATIONS
127	Source apportionment of PM2.5 carbonaceous aerosol in Baghdad, Iraq. Atmospheric Research, 2015, 156, 80-90.	4.1	36
128	Source apportionment of air pollution exposures of rural Chinese women cooking with biomass fuels. Atmospheric Environment, 2015, 104, 79-87.	4.1	49
129	Design Criteria for Future Fuels and Related Power Systems Addressing the Impacts of Non-CO ₂ Pollutants on Human Health and Climate Change. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 101-120.	6.8	11
130	Single Exposure to near Roadway Particulate Matter Leads to Confined Inflammatory and Defense Responses: Possible Role of Metals. Environmental Science & Environmental Science & 2015, 49, 8777-8785.	10.0	101
131	Is atherosclerotic disease associated with organic components of ambient fine particles?. Science of the Total Environment, 2015, 533, 69-75.	8.0	35
132	Assessing the role of chemical components in cellular responses to atmospheric particle matter (PM) through chemical fractionation of PM extracts. Analytical and Bioanalytical Chemistry, 2015, 407, 5953-5963.	3.7	28
133	Seasonal contribution of mineral dust and other major components to particulate matter at two remote sites in Central Asia. Atmospheric Environment, 2015, 119, 11-20.	4.1	23
134	Impact of primary and secondary organic sources on the oxidative potential of quasi-ultrafine particles (PM0.25) at three contrasting locations in the Los Angeles Basin. Atmospheric Environment, 2015, 120, 286-296.	4.1	54
135	Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California. Science of the Total Environment, 2015, 538, 412-422.	8.0	13
136	Origin of high particle number concentrations reaching the St. Louis, Midwest Supersite. Journal of Environmental Sciences, 2015, 34, 219-231.	6.1	14
137	An <i>In Vitro</i> alveolar macrophage assay for the assessment of inflammatory cytokine expression induced by atmospheric particulate matter. Environmental Toxicology, 2015, 30, 836-851.	4.0	24
138	Seasonal trends in the composition and ROS activity of fine particulate matter in Baghdad, Iraq. Atmospheric Environment, 2015, 100, 102-110.	4.1	29
139	Spatial and Temporal Variation in Fine Particulate Matter Mass and Chemical Composition: The Middle East Consortium for Aerosol Research Study. Scientific World Journal, The, 2014, 2014, 1-16.	2.1	21
140	Highway proximity and black carbon from cookstoves as a risk factor for higher blood pressure in rural China. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13229-13234.	7.1	175
141	Fine Particle Air Pollution and Mortality. Epidemiology, 2014, 25, 379-388.	2.7	101
142	Iron Distribution in Sizeâ€Resolved Aerosols Generated by <scp>UV</scp> â€Femtosecond Laser Ablation: Influence of Cell Geometry and Implications for <i>Influence of Cell Geometry and Implications for <i>Influence of Cell Geometry and Implications for <iin i="" situ<=""> <scp>LA</scp>â€<scp>MC</scp>â€<scp>MC</scp>â€<scp>ICP</scp>â€<scp>MS</scp>. Geostandards and Geoanalytical Research, 2014, 38, 293-309.</iin></i></i>	3.1	29
143	Diurnal and seasonal trends in the apparent density of ambient fine and coarse particles in Los Angeles. Environmental Pollution, 2014, 187, 1-9.	7.5	41
144	Oxidative potential and chemical speciation of size-resolved particulate matter (PM) at near-freeway and urban background sites in the greater Beirut area. Science of the Total Environment, 2014, 470-471, 417-426.	8.0	83

#	Article	IF	Citations
145	Estimation of direct emissions and atmospheric processing of reactive mercury using inverse modeling. Atmospheric Environment, 2014, 85, 73-82.	4.1	17
146	Seasonal and spatial variation in dithiothreitol (DTT) activity of quasi-ultrafine particles in the Los Angeles Basin and its association with chemical species. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 441-451.	1.7	85
147	On-Roadway In-Cabin Exposure to Particulate Matter: Measurement Results Using Both Continuous and Time-Integrated Sampling Approaches. Aerosol Science and Technology, 2014, 48, 664-675.	3.1	17
148	Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon. Environmental Science & Environmental Scienc	10.0	6
149	Development of a Technology for Online Measurement of Total and Water-Soluble Copper (Cu) in PM _{2.5} . Aerosol Science and Technology, 2014, 48, 864-874.	3.1	11
150	Risk assessment of total and bioavailable potentially toxic elements (PTEs) in urban soils of Baghdad–Iraq. Science of the Total Environment, 2014, 494-495, 39-48.	8.0	54
151	Comparison of heterogeneous photolytic reduction of Hg(II) in the coal fly ashes and synthetic aerosols. Atmospheric Research, 2014, 138, 324-329.	4.1	32
152	Preliminary assessment of the anthropogenic and biogenic contributions to secondary organic aerosols at two industrial cities in the upper Midwest. Atmospheric Environment, 2014, 84, 307-313.	4.1	13
153	Global Perspective on the Oxidative Potential of Airborne Particulate Matter: A Synthesis of Research Findings. Environmental Science & Environmental	10.0	157
154	Sources of primary and secondary organic aerosol and their diurnal variations. Journal of Hazardous Materials, 2014, 264, 536-544.	12.4	22
155	Improved methods for elemental analysis of atmospheric aerosols for evaluating human health impacts of aerosols in East Asia. Atmospheric Environment, 2014, 97, 552-555.	4.1	48
156	Concentrations and source insights for trace elements in fine and coarse particulate matter. Atmospheric Environment, 2014, 89, 373-381.	4.1	68
157	Understanding the sources and composition of the incremental excess of fine particles across multiple sampling locations in one air shed. Journal of Environmental Sciences, 2014, 26, 818-826.	6.1	10
158	Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM2.5) in retirement communities of the Los Angeles Basin. Science of the Total Environment, 2014, 490, 528-537.	8.0	62
159	Sources of metals and bromine-containing particles in Milwaukee. Atmospheric Environment, 2013, 73, 124-130.	4.1	13
160	Increased Biomass Burning Due to the Economic Crisis in Greece and Its Adverse Impact on Wintertime Air Quality in Thessaloniki. Environmental Science & Economic Crisis in Greece and Its Adverse Impact on Wintertime Air Quality in Thessaloniki.	10.0	150
161	Influence of hydrophilic and hydrophobic water-soluble organic carbon fractions on light extinction at an urban site. Journal of the Korean Physical Society, 2013, 63, 2047-2053.	0.7	2
162	Seasonal and spatial variability in chemical composition and mass closure of ambient ultrafine particles in the megacity of Los Angeles. Environmental Sciences: Processes and Impacts, 2013, 15, 283-295.	3.5	53

#	Article	IF	Citations
163	Development and Evaluation of a High-Volume Aerosol-into-Liquid Collector for Fine and Ultrafine Particulate Matter. Aerosol Science and Technology, 2013, 47, 1226-1238.	3.1	31
164	Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003. Atmospheric Research, 2013, 120-121, 88-98.	4.1	24
165	Source apportionments of PM2.5 organic carbon using molecular marker Positive Matrix Factorization and comparison of results from different receptor models. Atmospheric Environment, 2013, 73, 51-61.	4.1	95
166	Macrophage reactive oxygen species activity of water-soluble and water-insoluble fractions of ambient coarse, PM2.5 and ultrafine particulate matter (PM) in Los Angeles. Atmospheric Environment, 2013, 77, 301-310.	4.1	99
167	Empirical relationship between particulate matter and aerosol optical depth over Northern Tien-Shan, Central Asia. Air Quality, Atmosphere and Health, 2013, 6, 385-396.	3.3	26
168	Sources and their contribution to two water-soluble organic carbon fractions at a roadway site. Atmospheric Environment, 2013, 77, 348-357.	4.1	34
169	Seasonal and spatial variation in reactive oxygen species activity of quasi-ultrafine particles (PM0.25) in the Los Angeles metropolitan area and its association with chemical composition. Atmospheric Environment, 2013, 79, 566-575.	4.1	41
170	Source apportionment and organic compound characterization of ambient ultrafine particulate matter (PM) in the Los Angeles Basin. Atmospheric Environment, 2013, 79, 529-539.	4.1	63
171	Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel. Journal of Exposure Science and Environmental Epidemiology, 2013, 23, 466-473.	3.9	172
172	Exposure to Atmospheric Particulate Matter Enhances Th17 Polarization through the Aryl Hydrocarbon Receptor. PLoS ONE, 2013, 8, e82545.	2.5	116
173	Sensitivity of Diesel Particulate Material Emissions and Composition to Blends of Petroleum Diesel and Biodiesel Fuel. Aerosol Science and Technology, 2012, 46, 1109-1118.	3.1	16
174	Diurnal Trends in Oxidative Potential of Coarse Particulate Matter in the Los Angeles Basin and Their Relation to Sources and Chemical Composition. Environmental Science & Environmental Science & 2012, 46, 3779-3787.	10.0	57
175	Primary Sources and Secondary Formation of Organic Aerosols in Beijing, China. Environmental Science &	10.0	170
176	Characterization of organic, metal and trace element PM2.5 species and derivation of freeway-based emission rates in Los Angeles, CA. Science of the Total Environment, 2012, 435-436, 159-166.	8.0	49
177	Sensitivity of hazardous air pollutant emissions to the combustion of blends of petroleum diesel and biodiesel fuel. Atmospheric Environment, 2012, 50, 307-313.	4.1	31
178	Characterization, sources and redox activity of fine and coarse particulate matter in Milan, Italy. Atmospheric Environment, 2012, 49, 130-141.	4.1	91
179	Seasonal and spatial variations of individual organic compounds of coarse particulate matter in the Los Angeles Basin. Atmospheric Environment, 2012, 59, 1-10.	4.1	13
180	Sources of nickel, vanadium and black carbon in aerosols in Milwaukee. Atmospheric Environment, 2012, 59, 294-301.	4.1	38

#	Article	IF	CITATIONS
181	Diurnal trends in coarse particulate matter composition in the Los Angeles Basin. Journal of Environmental Monitoring, 2011, 13, 3277.	2.1	22
182	Comparison of the Chemical and Oxidative Characteristics of Particulate Matter (PM) Collected by Different Methods: Filters, Impactors, and BioSamplers. Aerosol Science and Technology, 2011, 45, 1294-1304.	3.1	37
183	Chemical Characterization and Source Apportionment of Fine and Coarse Particulate Matter Inside the Refectory of Santa Maria Delle Grazie Church, Home of Leonardo Da Vinci's "Last Supperâ€∙ Environmental Science & Technology, 2011, 45, 10344-10353.	10.0	28
184	Climate Sensitivity of Gaseous Elemental Mercury Dry Deposition to Plants: Impacts of Temperature, Light Intensity, and Plant Species. Environmental Science & Environmental Science & 2011, 45, 569-575.	10.0	17
185	Seasonal and Spatial Coarse Particle Elemental Concentrations in the Los Angeles Area. Aerosol Science and Technology, 2011, 45, 949-963.	3.1	53
186	Sources of excess urban carbonaceous aerosol in the Pearl River Delta Region, China. Atmospheric Environment, 2011, 45, 1175-1182.	4.1	39
187	Contributions of resuspended soil and road dust to organic carbon in fine particulate matter in the Midwestern US. Atmospheric Environment, 2011, 45, 514-518.	4.1	19
188	Dry deposition of gaseous elemental mercury to plants and soils using mercury stable isotopes in a controlled environment. Atmospheric Environment, 2011, 45, 848-855.	4.1	64
189	Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmospheric Environment, 2011, 45, 2651-2662.	4.1	202
190	Characteristics of fine particle carbonaceous aerosol at two remote sites in Central Asia. Atmospheric Environment, 2011, 45, 6955-6964.	4.1	27
191	Chemical Characterization of Fine and Coarse Particles in Gosan, Korea during Springtime Dust Events. Aerosol and Air Quality Research, $2011, 11, 31-43$.	2.1	77
192	Associations of Primary and Secondary Organic Aerosols With Airway and Systemic Inflammation in an Elderly Panel Cohort. Epidemiology, 2010, 21, 892-902.	2.7	160
193	Toxic metals in the atmosphere in Lahore, Pakistan. Science of the Total Environment, 2010, 408, 1640-1648.	8.0	136
194	Insights into the nature of secondary organic aerosol in Mexico City during the MILAGRO experiment 2006. Atmospheric Environment, 2010, 44, 312-319.	4.1	57
195	Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmospheric Environment, 2010, 44, 841-851.	4.1	166
196	Analysis of C1, C2, and C10 through C33 particle-phase and semi-volatile organic compound emissions from heavy-duty diesel engines. Atmospheric Environment, 2010, 44, 1108-1115.	4.1	50
197	Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan. Atmospheric Environment, 2010, 44, 1062-1070.	4.1	171
198	Spatial variability of carbonaceous aerosols and associated source tracers in two cites in the Midwestern United States. Atmospheric Environment, 2010, 44, 1597-1608.	4.1	26

#	Article	IF	Citations
199	Seasonal and spatial trends in the sources of fine particle organic carbon in Israel, Jordan, and Palestine. Atmospheric Environment, 2010, 44, 3669-3678.	4.1	29
200	Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles. Atmospheric Environment, 2010, 44, 5165-5173.	4.1	88
201	Assessing the Impact of Industrial Source Emissions on Atmospheric Carbonaceous Aerosol Concentrations Using Routine Monitoring Networks. Journal of the Air and Waste Management Association, 2010, 60, 149-155.	1.9	3
202	Association of Biomarkers of Systemic Inflammation with Organic Components and Source Tracers in Quasi-Ultrafine Particles. Environmental Health Perspectives, 2010, 118, 756-762.	6.0	133
203	Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas. Journal of Geophysical Research, 2010, 115, .	3.3	98
204	Characterization of soluble iron in urban aerosols using nearâ€real time data. Journal of Geophysical Research, 2010, 115, .	3.3	39
205	Comparison of atmospheric mercury speciation and deposition at nine sites across central and eastern North America. Journal of Geophysical Research, 2010, 115, .	3.3	84
206	Spatial Variability of Carbonaceous Aerosol Concentrations in East and West Jerusalem. Environmental Science & Environmental &	10.0	14
207	Temporal Trends in Motor Vehicle and Secondary Organic Tracers Using in Situ Methylation Thermal Desorption GCMS. Environmental Science & Environmenta	10.0	22
208	Assessing the spatial and temporal variability of fine particulate matter components in Israeli, Jordanian, and Palestinian cities. Atmospheric Environment, 2010, 44, 2383-2392.	4.1	33
209	Reactive oxygen species activity and chemical speciation of size-fractionated atmospheric particulate matter from Lahore, Pakistan: an important role for transition metals. Journal of Environmental Monitoring, 2010, 12, 704-715.	2.1	115
210	Improved source apportionment and speciation of low-volume particulate matter samples. Research Report (health Effects Institute), 2010, , 3-75; discussion 77-89.	1.6	0
211	Insights into the Origin of Water Soluble Organic Carbon in Atmospheric Fine Particulate Matter. Aerosol Science and Technology, 2009, 43, 1099-1107.	3.1	64
212	Size-Segregated Inorganic and Organic Components of PM in the Communities of the Los Angeles Harbor. Aerosol Science and Technology, 2009, 43, 145-160.	3.1	62
213	The Adjuvant Effect of Ambient Particulate Matter Is Closely Reflected by the Particulate Oxidant Potential. Environmental Health Perspectives, 2009, 117, 1116-1123.	6.0	203
214	Seasonal variations of elemental carbon in urban aerosols as measured by two common thermal-optical carbon methods. Science of the Total Environment, 2009, 407, 5176-5183.	8.0	20
215	PM2.5 characterization for time series studies: Pointwise uncertainty estimation and bulk speciation methods applied in Denver. Atmospheric Environment, 2009, 43, 1136-1146.	4.1	45
216	Source identification of personal exposure to fine particulate matter using organic tracers. Atmospheric Environment, 2009, 43, 1972-1981.	4.1	25

#	Article	IF	Citations
217	Source apportionment of primary and secondary organic aerosols using positive matrix factorization (PMF) of molecular markers. Atmospheric Environment, 2009, 43, 5567-5574.	4.1	97
218	Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry. Atmospheric Environment, 2009, 43, 4205-4213.	4.1	112
219	Concentrations and sources of carbonaceous aerosol in the atmosphere of Summit, Greenland. Atmospheric Environment, 2009, 43, 4155-4162.	4.1	39
220	Sensitivity of a molecular marker based positive matrix factorization model to the number of receptor observations. Atmospheric Environment, 2009, 43, 4951-4958.	4.1	40
221	Redox activity of urban quasi-ultrafine particles from primary and secondary sources. Atmospheric Environment, 2009, 43, 6360-6368.	4.1	201
222	Tracking personal exposure to particulate diesel exhaust in a diesel freight terminal using organic tracer analysis. Journal of Exposure Science and Environmental Epidemiology, 2009, 19, 172-186.	3.9	16
223	A Comparison of Summertime Secondary Organic Aerosol Source Contributions at Contrasting Urban Locations. Environmental Science & Environmental Scienc	10.0	78
224	Source Apportionment of Fine (PM _{1.8}) and Ultrafine (PM _{0.1}) Airborne Particulate Matter during a Severe Winter Pollution Episode. Environmental Science & Environmental Env	10.0	69
225	Sensitivity and Bias of Molecular Marker-Based Aerosol Source Apportionment Models to Small Contributions of Coal Combustion Soot. Environmental Science & Environmental Scien	10.0	15
226	Effects of a Platinumâ^'Cerium Bimetallic Fuel Additive on the Chemical Composition of Diesel Engine Exhaust Particles. Energy & Exhaust Parti	5.1	48
227	Physicochemical and Toxicological Profiles of Particulate Matter in Los Angeles during the October 2007 Southern California Wildfires. Environmental Science & Environmental S	10.0	154
228	Oxidative Potential of Semi-Volatile and Non Volatile Particulate Matter (PM) from Heavy-Duty Vehicles Retrofitted with Emission Control Technologies. Environmental Science & Environmental &	10.0	151
229	Comparison of Strategies for the Measurement of Mass Emissions from Diesel Engines Emitting Ultra-Low Levels of Particulate Matter. Aerosol Science and Technology, 2009, 43, 1142-1152.	3.1	55
230	Analysis of Organic Molecular Markers in Atmospheric Fine Particulate Matter: Understanding the Impact of "Unknown" Point Sources on Chemical Mass Balance Models. Journal of Korean Society for Atmospheric Environment, 2009, 25, 219-236.	1.1	7
231	Quantifying and manipulating species influence in positive matrix factorization. Chemometrics and Intelligent Laboratory Systems, 2008, 94, 140-148.	3.5	9
232	Emission factors of PM species based on freeway measurements and comparison with tunnel and dynamometer studies. Atmospheric Environment, 2008, 42, 3099-3114.	4.1	101
233	Seasonal and spatial variations of sources of fine and quasi-ultrafine particulate matter in neighborhoods near the Los Angeles–Long Beach harbor. Atmospheric Environment, 2008, 42, 7317-7328.	4.1	82
234	Evaluation of an Offline Method for the Analysis of Atmospheric Reactive Gaseous Mercury and Particulate Mercury. Journal of the Air and Waste Management Association, 2008, 58, 377-383.	1.9	29

#	Article	IF	Citations
235	Direct observation of the break-up of a nocturnal inversion layer using elemental mercury as a tracer. Geophysical Research Letters, 2008, 35, .	4.0	8
236	Chemical, Microphysical and Optical Properties of Primary Particles from the Combustion of Biomass Fuels. Environmental Science & Environmental Scienc	10.0	86
237	Assessment of diesel particulate matter exposure in the workplace: freight terminals. Journal of Environmental Monitoring, 2008, 10, 305.	2.1	16
238	Source Apportionment of in Vitro Reactive Oxygen Species Bioassay Activity from Atmospheric Particulate Matter. Environmental Science & Environmental	10.0	156
239	Effects of a Zeolite-Selective Catalytic Reduction System on Comprehensive Emissions from a Heavy-Duty Diesel Engine. Journal of the Air and Waste Management Association, 2008, 58, 1258-1265.	1.9	7
240	Primary and Secondary Contributions to Ambient PM in the Midwestern United States. Environmental Science & Environmental Scien	10.0	140
241	Impact of Species Uncertainty Perturbation on the Solution Stability of Positive Matrix Factorization of Atmospheric Particulate Matter Data. Environmental Science & Environm	10.0	20
242	Apportionment of Primary and Secondary Organic Aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1). Environmental Science & Echnology, 2008, 42, 7655-7662.	10.0	273
243	A Macrophage-Based Method for the Assessment of the Reactive Oxygen Species (ROS) Activity of Atmospheric Particulate Matter (PM) and Application to Routine (Daily-24 h) Aerosol Monitoring Studies. Aerosol Science and Technology, 2008, 42, 946-957.	3.1	142
244	Trace metal analysis of atmospheric particulate matter: A comparison of personal and ambient samplers. Journal of Environmental Engineering and Science, 2008, 7, 289-298.	0.8	11
245	A Source Dilution Sampling System for Characterization of Engine Emissions under Transient or Steady-State Operation. Aerosol Science and Technology, 2008, 42, 270-280.	3.1	25
246	An Inter-Comparison of Two Black Carbon Aerosol Instruments and a Semi-Continuous Elemental Carbon Instrument in the Urban Environment. Aerosol Science and Technology, 2007, 41, 463-474.	3.1	64
247	Development of a Manganese Speciation Method for Atmospheric Aerosols in Biologically and Environmentally Relevant Fluids. Aerosol Science and Technology, 2007, 41, 925-933.	3.1	30
248	A Novel Method Using Polyurethane Foam (PUF) Substrates to Determine Trace Element Concentrations in Size-Segregated Atmospheric Particulate Matter on Short Time Scales. Aerosol Science and Technology, 2007, 41, 75-85.	3.1	23
249	Daily Variation in Particle-Phase Source Tracers in an Urban Atmosphere. Aerosol Science and Technology, 2007, 41, 981-993.	3.1	29
250	Development of Molecular Marker Source Profiles for Emissions from On-Road Gasoline and Diesel Vehicle Fleets. Journal of the Air and Waste Management Association, 2007, 57, 1190-1199.	1.9	120
251	Sources of Speciated Atmospheric Mercury at a Residential Neighborhood Impacted by Industrial Sources. Environmental Science &	10.0	38
252	Source Apportionment of Daily Fine Particulate Matter at Jefferson Street, Atlanta, GA, during Summer and Winter. Journal of the Air and Waste Management Association, 2007, 57, 228-242.	1.9	91

#	Article	IF	Citations
253	Positive Matrix Factorization (PMF) Analysis of Molecular Marker Measurements to Quantify the Sources of Organic Aerosols. Environmental Science & Environmental Science & 2007, 41, 5763-5769.	10.0	186
254	Sensitivity of Source Apportionment of Urban Particulate Matter to Uncertainty in Motor Vehicle Emissions Profiles. Journal of the Air and Waste Management Association, 2007, 57, 1200-1213.	1.9	41
255	Understanding the origin of black carbon in the atmospheric brown cloud over the Indian Ocean. Journal of Geophysical Research, 2007, 112 , .	3.3	54
256	Atmospheric brown clouds: Hemispherical and regional variations in longâ€range transport, absorption, and radiative forcing. Journal of Geophysical Research, 2007, 112, .	3.3	421
257	Characterization of the seasonal cycle of south Asian aerosols: A regionalâ€scale modeling analysis. Journal of Geophysical Research, 2007, 112, .	3.3	89
258	Speciation of ambient fine organic carbon particles and source apportionment of PM $<$ sub $>2.5sub> in Indian cities. Journal of Geophysical Research, 2007, 112, .$	3.3	163
259	The Impact of Aerosol Composition on the Particle to Gas Partitioning of Reactive Mercury. Environmental Science & Environment	10.0	89
260	Clustering composition vectors using uncertainty information. Environmetrics, 2007, 18, 859-869.	1.4	4
261	Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmospheric Environment, 2007, 41, 5684-5696.	4.1	132
262	Roadside measurements of size-segregated particulate organic compounds near gasoline and diesel-dominated freeways in Los Angeles, CA. Atmospheric Environment, 2007, 41, 4653-4671.	4.1	90
263	The effect of temperature on the gas–particle partitioning of reactive mercury in atmospheric aerosols. Atmospheric Environment, 2007, 41, 8647-8657.	4.1	138
264	Sensitivity of molecular marker-based CMB models to biomass burning source profiles. Atmospheric Environment, 2007, 41, 9050-9063.	4.1	99
265	Supplemental Material to "Development of Molecular Marker Source Profiles for Emissions from On-Road Gasoline and Diesel Vehicle Fleets". Journal of the Air and Waste Management Association, 2007, 57, .	0.1	0
266	Size-resolved particulate matter composition in Beijing during pollution and dust events. Journal of Geophysical Research, 2006, 111 , .	3.3	26
267	Spatial distribution of carbonaceous aerosol in the southeastern United States using molecular markers and carbon isotope data. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	65
268	Composition and sources of carbonaceous aerosols at three contrasting sites in Hong Kong. Journal of Geophysical Research, 2006, 111 , .	3.3	57
269	Estimation of the Monthly Average Ratios of Organic Mass to Organic Carbon for Fine Particulate Matter at an Urban Site. Aerosol Science and Technology, 2006, 40, 1123-1139.	3.1	65
270	Characterization of metals emitted from motor vehicles. Research Report (health Effects Institute), 2006, , 1-76; discussion 77-88.	1.6	45

#	Article	IF	Citations
271	A comparison of the UCD/CIT air quality model and the CMB source–receptor model for primary airborne particulate matter. Atmospheric Environment, 2005, 39, 2281-2297.	4.1	48
272	Seasonal trends in PM2.5 source contributions in Beijing, China. Atmospheric Environment, 2005, 39, 3967-3976.	4.1	509
273	The EDAM project: Mining atmospheric aerosol datasets. International Journal of Intelligent Systems, 2005, 20, 759-787.	5.7	10
274	Summer and Winter Nonmethane Hydrocarbon Emissions from On-Road Motor Vehicles in the Midwestern United States. Journal of the Air and Waste Management Association, 2005, 55, 629-646.	1.9	53
275	Gaseous and Particulate Emissions from Prescribed Burning in Georgia. Environmental Science & Emp; Technology, 2005, 39, 9049-9056.	10.0	207
276	Emissions of Metals Associated with Motor Vehicle Roadways. Environmental Science & Emp; Technology, 2005, 39, 826-836.	10.0	664
277	Validation of a semi-continuous instrument for elemental carbon and organic carbon using a thermal-optical method. Atmospheric Environment, 2004, 38, 2885-2893.	4.1	189
278	Diurnal Variations of Individual Organic Compound Constituents of Ultrafine and Accumulation Mode Particulate Matter in the Los Angeles Basin. Environmental Science & Echnology, 2004, 38, 1296-1304.	10.0	193
279	Trends in Secondary Organic Aerosol at a Remote Site in Michigan's Upper Peninsula. Environmental Science & Environmental Scie	10.0	119
280	Aerosol chemical, physical, and radiative characteristics near a desert source region of northwest China during ACE-Asia. Journal of Geophysical Research, 2004, 109, .	3.3	92
281	Evaluation of elemental carbon as a marker for diesel particulate matter. Journal of Exposure Science and Environmental Epidemiology, 2003, 13, 443-453.	3.9	200
282	Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	237
283	The Distribution of Particle-Phase Organic Compounds in the Atmosphere and Their Use for Source Apportionment during the Southern California Children's Health Study. Journal of the Air and Waste Management Association, 2003, 53, 1065-1079.	1.9	70
284	Trimethylsilyl Derivatives of Organic Compounds in Source Samples and in Atmospheric Fine Particulate Matter. Environmental Science & Environmental Sc	10.0	106
285	Measurement of Emissions from Air Pollution Sources. 4. C1â°C27Organic Compounds from Cooking with Seed Oils. Environmental Science & Environmental Sc	10.0	328
286	Speciation of Gas-Phase and Fine Particle Emissions from Burning of Foliar Fuels. Environmental Science & Environmental Scienc	10.0	356
287	Source Apportionment of PM2.5 in the Southeastern United States Using Solvent-Extractable Organic Compounds as Tracers. Environmental Science & Enviro	10.0	482
288	Measurement of Emissions from Air Pollution Sources. 5. C1â^'C32 Organic Compounds from Gasoline-Powered Motor Vehicles. Environmental Science & Environmental Science & 1169-1180.	10.0	940

#	Article	IF	CITATIONS
289	Source Reconciliation of Atmospheric Gas-Phase and Particle-Phase Pollutants during a Severe Photochemical Smog Episode. Environmental Science & Envir	10.0	207
290	Highly Polar Organic Compounds Present in Wood Smoke and in the Ambient Atmosphere. Environmental Science & Environmental Scie	10.0	372
291	Measurement of Emissions from Air Pollution Sources. 3. C1â^'C29Organic Compounds from Fireplace Combustion of Wood. Environmental Science & Eamp; Technology, 2001, 35, 1716-1728.	10.0	1,094
292	Size and Composition Distribution of Fine Particulate Matter Emitted from Motor Vehicles. Environmental Science & Environmenta	10.0	406
293	Source Apportionment of Wintertime Gas-Phase and Particle-Phase Air Pollutants Using Organic Compounds as Tracers. Environmental Science & Environment	10.0	533
294	Measurement of Emissions from Air Pollution Sources. 1. C1through C29Organic Compounds from Meat Charbroiling. Environmental Science & Environmental S	10.0	504
295	Size and Composition Distribution of Fine Particulate Matter Emitted from Wood Burning, Meat Charbroiling, and Cigarettes. Environmental Science & Env	10.0	310
296	Measurement of Emissions from Air Pollution Sources. 2. C1through C30Organic Compounds from Medium Duty Diesel Trucks. Environmental Science & Environ	10.0	1,002
297	Highly Polar Organic Compounds Present in Meat Smoke. Environmental Science &	10.0	111
298	Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment, 1996, 30, 3837-3855.	4.1	1,251
299	Detailed Chemical Composition and Particle Size Assessment of Diesel Engine Exhaust. , 0, , .		44
300	Sources of Aerosol Acidity at a Suburban Site of Nanjing and Their Associations with Chlorophyll Depletion. ACS Earth and Space Chemistry, 0, , .	2.7	4
301	Determination of Heterocyclic Aromatic Amines (HAAs) in Urban Particulate Standard Reference Material and Wildfire-Influenced Particulate Matter by High-Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS). Analytical Letters, 0, , 1-14.	1.8	0