LuÃ-sa Mdrs Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4982967/publications.pdf

Version: 2024-02-01

424 papers

16,959 citations

68 h-index 95 g-index

456 all docs

456 docs citations

456 times ranked

9874 citing authors

#	Article	IF	CITATIONS
1	Additions to Metal-Activated Organonitriles. Chemical Reviews, 2002, 102, 1771-1802.	47.7	701
2	Multinuclear Copper Triethanolamine Complexes as Selective Catalysts for the Peroxidative Oxidation of Alkanes under Mild Conditions. Angewandte Chemie - International Edition, 2005, 44, 4345-4349.	13.8	248
3	Vanadium complexes: Recent progress in oxidation catalysis. Coordination Chemistry Reviews, 2015, 301-302, 200-239.	18.8	220
4	Supramolecular Assemblies of Trinuclear Triangular Copper(II) Secondary Building Units through Hydrogen Bonds. Generation of Different Metalâ "Organic Frameworks, Valuable Catalysts for Peroxidative Oxidation of Alkanes. Inorganic Chemistry, 2007, 46, 221-230.	4.0	188
5	Tuning of Redox Potentials for the Design of Ruthenium Anticancer Drugs \hat{a} an Electrochemical Study of [trans-RuCl4L(DMSO)]-and [trans-RuCl4L2]-Complexes, where L = Imidazole, 1,2,4-Triazole, Indazole. Inorganic Chemistry, 2004, 43, 7083-7093.	4.0	159
6	Tris(pyrazol-1-yl)methane metal complexes for catalytic mild oxidative functionalizations of alkanes, alkenes and ketones. Coordination Chemistry Reviews, 2014, 265, 74-88.	18.8	153
7	Direct and Remarkably Efficient Conversion of Methane into Acetic Acid Catalyzed by Amavadine and Related Vanadium Complexes. A Synthetic and a Theoretical DFT Mechanistic Study. Journal of the American Chemical Society, 2007, 129, 10531-10545.	13.7	151
8	Catalytic Oxidation of Alcohols. Advances in Organometallic Chemistry, 2015, , 91-174.	1.0	142
9	Resonanceâ€Assisted Hydrogen Bonding as a Driving Force in Synthesis and a Synthon in the Design of Materials. Chemistry - A European Journal, 2016, 22, 16356-16398.	3 . 3	132
10	Halfâ€Sandwich Scorpionate Vanadium, Iron and Copper Complexes: Synthesis and Application in the Catalytic Peroxidative Oxidation of Cyclohexane under Mild Conditions. Advanced Synthesis and Catalysis, 2008, 350, 706-716.	4.3	131
11	Heterometallic Co ^{III} ₄ Fe ^{III} ₂ Schiff Base Complex: Structure, Electron Paramagnetic Resonance, and Alkane Oxidation Catalytic Activity. Inorganic Chemistry, 2012, 51, 9110-9122.	4.0	126
12	Single-Pot Conversion of Methane into Acetic Acid in the Absence of CO and with Vanadium Catalysts Such as Amavadine. Angewandte Chemie - International Edition, 2003, 42, 821-823.	13.8	124
13	An Aqua-Soluble Copper(II)â^'Sodium Two-Dimensional Coordination Polymer with Intercalated Infinite Chains of Decameric Water Clusters. Crystal Growth and Design, 2006, 6, 2200-2203.	3.0	118
14	Zinc(II)/Ketoxime System as a Simple and Efficient Catalyst for Hydrolysis of Organonitriles. Inorganic Chemistry, 2002, 41, 4798-4804.	4.0	115
15	Self-Assembled Copper(II) Coordination Polymers Derived from Aminopolyalcohols and Benzenepolycarboxylates:  Structural and Magnetic Properties. Inorganic Chemistry, 2008, 47, 162-175.	4.0	113
16	Platinum(IV)-Assisted [2 + 3] Cycloaddition of Nitrones to Coordinated Organonitriles. Synthesis of Î"4-1,2,4-Oxadiazolines. Journal of the American Chemical Society, 2000, 122, 3106-3111.	13.7	110
17	An unprecedented heterotrimetallic Fe/Cu/Co core for mild and highly efficient catalytic oxidation of cycloalkanes by hydrogen peroxide. Chemical Communications, 2006, , 4605.	4.1	106
18	Mono-, di- and polynuclear copper(II) compounds derived from N-butyldiethanolamine: structural features, magnetism and catalytic activity for the mild peroxidative oxidation of cyclohexane. Dalton Transactions, 2009, , 2109.	3.3	105

#	Article	IF	CITATIONS
19	Diorganotin(IV) Derivatives of Substituted Benzohydroxamic Acids with High Antitumor Activity. Chemistry - A European Journal, 2004, 10, 1456-1462.	3.3	100
20	Novel Scorpionate and Pyrazole Dioxovanadium Complexes, Catalysts for Carboxylation and Peroxidative Oxidation of Alkanes. Advanced Synthesis and Catalysis, 2010, 352, 171-187.	4.3	100
21	Copper(II) coordination polymers derived from triethanolamine and pyromellitic acid for bioinspired mild peroxidative oxidation of cyclohexane. Journal of Inorganic Biochemistry, 2008, 102, 1190-1194.	3.5	98
22	Participation of Oligovanadates in Alkane Oxidation with H ₂ O ₂ Catalyzed by Vanadate Anion in Acidified Acetonitrile: Kinetic and DFT Studies. ACS Catalysis, 2011, 1, 1511-1520.	11.2	98
23	Radical Formation in the [MeReO ₃]-Catalyzed Aqueous Peroxidative Oxidation of Alkanes: A Theoretical Mechanistic Study. Inorganic Chemistry, 2009, 48, 307-318.	4.0	97
24	Synthesis and characterization of copper(<scp>ii</scp>) 4′-phenyl-terpyridine compounds and catalytic application for aerobic oxidation of benzylic alcohols. Dalton Transactions, 2014, 43, 4048-4058.	3.3	97
25	Aliphatic Dicarboxylate Directed Assembly of Silver(I) 1,3,5-Triaza-7-phosphaadamantane Coordination Networks: Topological Versatility and Antimicrobial Activity. Crystal Growth and Design, 2014, 14, 5408-5417.	3.0	95
26	Metal–Organic Frameworks with Pyridyl-Based Isophthalic Acid and Their Catalytic Applications in Microwave Assisted Peroxidative Oxidation of Alcohols and Henry Reaction. Crystal Growth and Design, 2016, 16, 1837-1849.	3.0	94
27	Carbon dioxide-to-methanol single-pot conversion using a C-scorpionate iron(<scp>ii</scp>) catalyst. Green Chemistry, 2017, 19, 4811-4815.	9.0	94
28	Amavadine as a catalyst for the peroxidative halogenation, hydroxylation and oxygenation of alkanes and benzene. Chemical Communications, 2000, , 1845-1846.	4.1	93
29	Novel Metal-Mediated (M = Pd, Pt) Coupling between Isonitriles and Benzophenone Hydrazone as a Route to Aminocarbene Complexes Exhibiting High Catalytic Activity (M = Pd) in the Suzukiâ^'Miyaura Reaction. Organometallics, 2009, 28, 6559-6566.	2.3	93
30	Gold nanoparticles supported on carbon materials for cyclohexane oxidation with hydrogen peroxide. Applied Catalysis A: General, 2013, 467, 279-290.	4.3	93
31	Selfâ€Assembled Twoâ€Dimensional Waterâ€Soluble Dipicolinate Cu/Na Coordination Polymer: Structural Features and Catalytic Activity for the Mild Peroxidative Oxidation of Cycloalkanes in Acidâ€Free Medium. European Journal of Inorganic Chemistry, 2008, 2008, 3423-3427.	2.0	92
32	[2 + 3] Cycloaddition of Nitrones to Platinum-Bound Organonitriles:  Effect of Metal Oxidation State and of Nitrile Substituent. Inorganic Chemistry, 2001, 40, 264-271.	4.0	91
33	Homogeneous and heterogenised new gold C-scorpionate complexes as catalysts for cyclohexane oxidation. Catalysis Science and Technology, 2013, 3, 3056.	4.1	91
34	Syntheses, Molecular Structures, Electrochemical Behavior, Theoretical Study, and Antitumor Activities of Organotin(IV) Complexes Containing 1-(4-Chlorophenyl)-1-cyclopentanecarboxylato Ligands. Inorganic Chemistry, 2011, 50, 8158-8167.	4.0	89
35	<i>Ortho</i> -Hydroxyphenylhydrazo- \hat{l}^2 -Diketones: Tautomery, Coordination Ability, and Catalytic Activity of Their Copper(II) Complexes toward Oxidation of Cyclohexane and Benzylic Alcohols. Inorganic Chemistry, 2011, 50, 918-931.	4.0	89
36	Solvent-Dependent Structural Variation of Zinc(II) Coordination Polymers and Their Catalytic Activity in the Knoevenagel Condensation Reaction. Crystal Growth and Design, 2015, 15, 4185-4197.	3.0	89

#	Article	IF	CITATIONS
37	New silver BioMOFs driven by 1,3,5-triaza-7-phosphaadamantane-7-sulfide (PTAî€S): synthesis, topological analysis and antimicrobial activity. CrystEngComm, 2013, 15, 8060.	2.6	88
38	Zinc metal–organic frameworks: efficient catalysts for the diastereoselective Henry reaction and transesterification. Dalton Transactions, 2014, 43, 7795-7810.	3.3	88
39	New coordination polymers based on the triangular [Cu3(μ3-OH)(μ-pz)3]2+ unit and unsaturated carboxylates. Dalton Transactions, 2009, , 4928.	3.3	86
40	Alkanes to carboxylic acids in aqueous medium: metal-free and metal-promoted highly efficient and mild conversions. Chemical Communications, 2009, , 2353.	4.1	85
41	Cull complexes bearing the 2,2,2-tris(1-pyrazolyl)ethanol or 2,2,2-tris(1-pyrazolyl)ethyl methanesulfonate scorpionates. X-Ray structural characterization and application in the mild catalytic peroxidative oxidation of cyclohexane. Dalton Transactions, 2009, , 9207.	3.3	85
42	Waterâ€Soluble Câ€Scorpionate Complexes – Catalytic and Biological Applications. European Journal of Inorganic Chemistry, 2016, 2016, 2236-2252.	2.0	83
43	Application of Ionic Liquids in Electrochemistryâ€"Recent Advances. Molecules, 2020, 25, 5812.	3.8	83
44	Trinuclear Triangular Copper(II) Clusters – Synthesis, Electrochemical Studies and Catalytic Peroxidative Oxidation of Cycloalkanes. European Journal of Inorganic Chemistry, 2009, 2009, 666-676.	2.0	81
45	Topologically Unique 2D Heterometallic Cu ^{II} /Mg Coordination Polymer: Synthesis, Structural Features, and Catalytic Use in Alkane Hydrocarboxylation. Crystal Growth and Design, 2012, 12, 1069-1074.	3.0	81
46	Heterogenisation of a Câ€Scorpionate Fe ^{II} Complex on Carbon Materials for Cyclohexane Oxidation with Hydrogen Peroxide. ChemCatChem, 2013, 5, 3847-3856.	3.7	80
47	Topologically Unique Heterometallic Cu $<$ sup $>$ II $<$ sup $>$ /Li Coordination Polymers Self-Assembled from $<$ i $>$ N $<$ /i $>$, $<$ i $>$ N $<$ /i $>$ -bis $($ 2-Hydroxyethyl $)$ -2-aminoethanesulfonic Acid Biobuffer: Versatile Catalyst Precursors for Mild Hydrocarboxylation of Alkanes to Carboxylic Acids. Inorganic Chemistry, 2012, 51, 5224-5234.	4.0	79
48	Polynuclear diorganotin(IV) complexes with arylhydroxamates: Syntheses, structures and in vitro cytotoxic activities. Journal of Inorganic Biochemistry, 2008, 102, 901-909.	3.5	78
49	Tuning of Redox Properties for the Design of Ruthenium Anticancer Drugs: Part 2. Syntheses, Crystal Structures, and Electrochemistry of Potentially Antitumor [RullI/IICl6-n(Azole)n]z(n= 3, 4, 6) Complexesâ€. Inorganic Chemistry, 2005, 44, 6704-6716.	4.0	77
50	Bringing an "Old―Biological Buffer to Coordination Chemistry: New 1D and 3D Coordination Polymers with [Cu ₄ (Hbes) ₄] Cores for Mild Hydrocarboxylation of Alkanes. Inorganic Chemistry, 2010, 49, 6390-6392.	4.0	77
51	Synthesis, Antimicrobial and Antiproliferative Activity of Novel Silver(I) Tris(pyrazolyl)methanesulfonate and 1,3,5-Triaza-7-phosphadamantane Complexes. Inorganic Chemistry, 2011, 50, 11173-11183.	4.0	77
52	Cobalt complexes bearing scorpionate ligands: synthesis, characterization, cytotoxicity and DNA cleavage. Dalton Transactions, 2012, 41, 12888.	3.3	76
53	Alkali Metal Directed Assembly of Heterometallic V ^v /M (M = Na, K, Cs) Coordination Polymers: Structures, Topological Analysis, and Oxidation Catalytic Properties. Inorganic Chemistry, 2013, 52, 8601-8611.	4.0	76
54	Tautomeric effect of hydrazone Schiff bases in tetranuclear Cu(ii) complexes: magnetism and catalytic activity towards mild hydrocarboxylation of alkanes. Dalton Transactions, 2013, 42, 16578.	3.3	76

#	Article	IF	CITATIONS
55	Generation of HO [•] Radical from Hydrogen Peroxide Catalyzed by Aqua Complexes of the Group III Metals [M(H ₂ O) _{<i>n</i>}] ³⁺ (M = Ga, In, Sc, Y, or La): A Theoretical Study. ACS Catalysis, 2013, 3, 1195-1208.	11.2	76
56	Recent Developments in Transition Metalâ€Catalyzed Crossâ€Dehydrogenative Coupling Reactions of Ethers and Thioethers. ChemCatChem, 2018, 10, 3354-3383.	3.7	76
57	A Hexanuclear Mixed-Valence Oxovanadium(IV,V) Complex as a Highly Efficient Alkane Oxidation Catalyst. Inorganic Chemistry, 2012, 51, 11229-11231.	4.0	75
58	An Efficient Synthesis of Phthalocyanines Based on an Unprecedented Double-Addition of Oximes to Phthalonitriles. Journal of the American Chemical Society, 2004, 126, 15040-15041.	13.7	74
59	Self-Assembled 3D Heterometallic Cu ^{II} /Fe ^{II} Coordination Polymers with Octahedral Net Skeletons: Structural Features, Molecular Magnetism, Thermal and Oxidation Catalytic Properties. Inorganic Chemistry, 2010, 49, 11096-11105.	4.0	74
60	Solvent-free microwave-assisted peroxidative oxidation of secondary alcohols to the corresponding ketones catalyzed by copper(ii) 2,4-alkoxy-1,3,5-triazapentadienato complexes. Chemical Communications, 2010, 46, 2766.	4.1	74
61	A new binuclear oxovanadium(v) complex as a catalyst in combination with pyrazinecarboxylic acid (PCA) for efficient alkane oxygenation by H2O2. Dalton Transactions, $2013, 42, 11791$.	3.3	73
62	Complexes of copper(ii) with 3-(ortho-substituted phenylhydrazo)pentane-2,4-diones: syntheses, properties and catalytic activity for cyclohexane oxidation. Dalton Transactions, 2011, 40, 2822.	3.3	72
63	Cu(I) Complexes Bearing the New Sterically Demanding and Coordination Flexible Tris(3-phenyl-1-pyrazolyl)methanesulfonate Ligand and the Water-Soluble Phosphine 1,3,5-Triaza-7-phosphaadamantane or Related Ligands. Inorganic Chemistry, 2008, 47, 10158-10168.	4.0	71
64	Template Syntheses of Copper(II) Complexes from Arylhydrazones of Malononitrile and their Catalytic Activity towards Alcohol Oxidations and the Nitroaldol Reaction: Hydrogen Bondâ€Assisted Ligand Liberation and ⟨i⟩E⟨ i⟩ ⟨i⟩Z⟨ i⟩ Isomerisation. Chemistry - A European Journal, 2013, 19, 588-600.	3.3	71
65	New Trends in the Conversion of CO2 to Cyclic Carbonates. Catalysts, 2020, 10, 479.	3.5	71
66	Azametallacycles from Ag(I)- or Cu(II)-Promoted Coupling Reactions of Dialkylcyanamides with Oximes at Pt(II). Inorganic Chemistry, 2001, 40, $1134-1142$.	4.0	70
67	1,3,5-Triaza-7-phosphaadamantane-7-oxide (PTAâ•O): New Diamondoid Building Block for Design of Three-Dimensional Metal–Organic Frameworks. Crystal Growth and Design, 2011, 11, 2711-2716.	3.0	70
68	Copper–organic frameworks assembled from in situ generated 5-(4-pyridyl)tetrazole building blocks: synthesis, structural features, topological analysis and catalytic oxidation of alcohols. Dalton Transactions, 2014, 43, 9944-9954.	3.3	70
69	Coupling between 3-Iminoisoindolin-1-ones and Complexed Isonitriles as a Metal-Mediated Route to a Novel Type of Palladium and Platinum Iminocarbene Species. Organometallics, 2008, 27, 5379-5389.	2.3	69
70	Zinc(ii) ortho-hydroxyphenylhydrazo-β-diketonate complexes and their catalytic ability towards diastereoselective nitroaldol (Henry) reaction. Dalton Transactions, 2011, 40, 5352.	3.3	69
71	Poly(vinyl) chloride membrane copper-selective electrode based on 1-phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione. Journal of Hazardous Materials, 2011, 186, 1154-1162.	12.4	68
72	Identification of Hexameric Water and Hybrid Water–Chloride Clusters Intercalated in the Crystal Hosts of (Imidoylamidine)nickel(II) Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 4621-4627.	2.0	67

#	Article	IF	CITATIONS
73	Amavadin and Other Vanadium Complexes as Remarkably Efficient Catalysts for Oneâ€Pot Conversion of Ethane to Propionic and Acetic Acids. Chemistry - A European Journal, 2008, 14, 1828-1842.	3.3	67
74	Self-assembled dicopper(ii) diethanolaminate cores for mild aerobic and peroxidative oxidation of alcohols. Dalton Transactions, 2010, 39, 9879.	3.3	67
75	Oxidovanadium complexes with tridentate aroylhydrazone as catalyst precursors for solvent-free microwave-assisted oxidation of alcohols. Applied Catalysis A: General, 2015, 493, 50-57.	4.3	67
76	Engineering Coordination and Supramolecular Copperâ^'Organic Networks by Aqueous Medium Self-Assembly with 1,3,5-Triaza-7-phosphaadamantane (PTA). Crystal Growth and Design, 2009, 9, 3006-3010.	3.0	66
77	Efficient cyclohexane oxidation with hydrogen peroxide catalysed by a C-scorpionate iron(II) complex immobilized on desilicated MOR zeolite. Applied Catalysis A: General, 2013, 464-465, 43-50.	4.3	66
78	Pyrazole or tris(pyrazolyl)ethanol oxo-vanadium(IV) complexes as homogeneous or supported catalysts for oxidation of cyclohexane under mild conditions. Journal of Molecular Catalysis A, 2013, 367, 52-60.	4.8	66
79	pH dependent synthesis of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) coordination polymers with dicarboxyl-functionalized arylhydrazone of barbituric acid: photoluminescence properties and catalysts for Knoevenagel condensation. New Journal of Chemistry, 2016, 40, 1535-1546.	2.8	66
80	Recent advances on supramolecular isomerism in metal organic frameworks. CrystEngComm, 2017, 19, 4666-4695.	2.6	66
81	Pyrazole and trispyrazolylmethane rhenium complexes as catalysts for ethane and cyclohexane oxidations. Applied Catalysis A: General, 2007, 317, 43-52.	4.3	65
82	Novel Reactivity Mode of Metal Diaminocarbenes: Palladium(II)-Mediated Coupling between Acyclic Diaminocarbenes and Isonitriles Leading to Dinuclear Species. Organometallics, 2011, 30, 3362-3370.	2.3	65
83	Dinuclear Mn(ii,ii) complexes: magnetic properties and microwave assisted oxidation of alcohols. Dalton Transactions, 2014, 43, 3966.	3.3	65
84	Multifunctional gold-nanoparticles: A nanovectorization tool for the targeted delivery of novel chemotherapeutic agents. Journal of Controlled Release, 2017, 245, 52-61.	9.9	64
85	Mechanism of Al ³⁺ -Catalyzed Oxidations of Hydrocarbons: Dramatic Activation of H ₂ O ₂ toward Oâ^'O Homolysis in Complex [Al(H ₂ O) ₄ (OOH)(H ₂ O ₂)] ²⁺ Explains the Formation of HO [•] Radicals, Inorganic Chemistry, 2011, 50, 3996-4005.	4.0	63
86	Water-Soluble Cobalt(II) and Copper(II) Complexes of 3-(5-Chloro-2-hydroxy-3-sulfophenylhydrazo)pentane-2,4-dione as Building Blocks for 3D Supramolecular Networks and Catalysts for TEMPO-Mediated Aerobic Oxidation of Benzylic Alcohols. European Journal of Inorganic Chemistry, 2011, 2011, 4175-4181.	2.0	63
87	Platinum(IV)-Mediated Nitrileâ^'Sulfimide Coupling:Â A Route to Heterodiazadienes. Inorganic Chemistry, 2003, 42, 301-311.	4.0	62
88	The First Copper Complexes Bearing the 1,3,5-Triaza-7-phosphaadamantane (PTA) Ligand. European Journal of Inorganic Chemistry, 2007, 2007, 2686-2692.	2.0	62
89	Cyclic carbonate synthesis from CO2 and epoxides using zinc(II) complexes of arylhydrazones of \hat{I}^2 -diketones. Journal of Catalysis, 2016, 335, 135-140.	6.2	62
90	Platinum(iv)-mediated hydrolysis of nitriles giving metal-bound iminols. Dalton Transactions RSC, 2002, , 1882-1887.	2.3	61

#	Article	IF	CITATIONS
91	Characterization of Coordination Compounds by Electrochemical Parameters. European Journal of Inorganic Chemistry, 2007, 2007, 1473-1482.	2.0	61
92	Mild, Singleâ€Pot Hydrocarboxylation of Gaseous Alkanes to Carboxylic Acids in Metalâ€Free and Copperâ€Promoted Aqueous Systems. Chemistry - A European Journal, 2010, 16, 9485-9493.	3.3	61
93	Recent Advances in Cascade Reactions Initiated by Alcohol Oxidation. ChemCatChem, 2017, 9, 217-246.	3.7	61
94	Cyclohexane oxidation with dioxygen catalyzed by supported pyrazole rhenium complexes. Journal of Molecular Catalysis A, 2008, 285, 92-100.	4.8	60
95	Single-pot template transformations of cyanopyridines on a PdII centre: syntheses of ketoimine and 2,4-dipyridyl-1,3,5-triazapentadiene palladium(II) complexes and their catalytic activity for microwave-assisted Suzuki–Miyaura and Heck reactions. Dalton Transactions, 2009, , 3074.	3.3	60
96	Synthesis, characterization, solid-state photo-luminescence and anti-tumor activity of zinc(II) $4\hat{a}\in^2$ -phenyl-terpyridine compounds. Journal of Inorganic Biochemistry, 2010, 104, 704-711.	3.5	60
97	Microwave-assisted and solvent-free peroxidative oxidation of 1-phenylethanol to acetophenone with a Cull–TEMPO catalytic system. Catalysis Communications, 2014, 48, 69-72.	3.3	59
98	Environmentally benign benzyl alcohol oxidation and C-C coupling catalysed by amide functionalized 3D Co(II) and Zn(II) metal organic frameworks. Journal of Catalysis, 2020, 385, 324-337.	6.2	59
99	Syntheses, Spectroscopy, and Redox Properties of Fluoroâ^'Carbyne and Derived Fluoroâ^'Vinylidene Complexes of Rhenium and of Analogous Chloro Complexes. Organometallics, 1997, 16, 4469-4478.	2.3	58
100	Pop-the-Cork Strategy in Synthetic Utilization of Imines:  Stabilization by Complexation and Activation via Liberation of the Ligated Species. Inorganic Chemistry, 2003, 42, 3602-3608.	4.0	58
101	Copper(II) Complexes with Schiff Bases Containing a Disiloxane Unit: Synthesis, Structure, Bonding Features and Catalytic Activity for Aerobic Oxidation of Benzyl Alcohol. European Journal of Inorganic Chemistry, 2013, 2013, 1458-1474.	2.0	58
102	Synthesis, structure and catalytic application of lead(<scp>ii</scp>) complexes in cyanosilylation reactions. Dalton Transactions, 2015, 44, 268-280.	3.3	58
103	An Infinite Two-Dimensional Hybrid Waterâ^'Chloride Network, Self-Assembled in a Hydrophobic Terpyridine Iron(II) Matrix. Crystal Growth and Design, 2008, 8, 782-785.	3.0	57
104	Metalâ€Mediated [2+3] Cycloaddition of Nitrones to Palladiumâ€Bound Isonitriles. Chemistry - A European Journal, 2009, 15, 5969-5978.	3.3	57
105	Heterometallic Cu/Co and Cu/Co/Zn Complexes Bearing Rare Asymmetric Tetranuclear Cores: Synthesis, Structures, and Magnetic and Catalytic Properties Toward the Peroxidative Oxidation of Cycloalkanes. Inorganic Chemistry, 2011, 50, 4401-4411.	4.0	57
106	Novel Coordination Polymers with (Pyrazolato)-Based Tectons: Catalytic Activity in the Peroxidative Oxidation of Alcohols and Cyclohexane. Crystal Growth and Design, 2015, 15, 2303-2317.	3.0	57
107	Oxidation of olefins with H ₂ O ₂ catalysed by salts of group III metals (Ga, In,) Tj ETQq1 1343-1356.	0.784314 4.1	4 rgBT /Ove 57
108	Areneruthenium(II) 4-Acyl-5-pyrazolonate Derivatives:  Coordination Chemistry, Redox Properties, and Reactivity. Inorganic Chemistry, 2007, 46, 8245-8257.	4.0	56

#	Article	IF	CITATIONS
109	Hydrogen bond assisted activation of a dinitrile towards nucleophilic attack. Chemical Communications, 2011, 47, 7248.	4.1	55
110	Lanthanide metal organic frameworks based on dicarboxyl-functionalized arylhydrazone of barbituric acid: syntheses, structures, luminescence and catalytic cyanosilylation of aldehydes. Dalton Transactions, 2017, 46, 8649-8657.	3.3	55
111	Conversion of alkanenitriles to amidines and carboxylic acids mediated by a cobalt(II)–ketoxime system. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1569-1573.	1.3	54
112	Novel Palladium–Aminocarbene Species Derived from Metal-Mediated Coupling of Isonitriles and 1,3-Diiminoisoindoline: Synthesis and Catalytic Application in Suzuki–Miyaura Cross-Coupling. Organometallics, 2012, 31, 2379-2387.	2.3	54
113	Alkoxyâ€1,3,5â€triazapentadien(e/ato) Copper(II) Complexes: Template Formation and Applications for the Preparation of Pyrimidines and as Catalysts for Oxidation of Alcohols to Carbonyl Products. Chemistry - A European Journal, 2012, 18, 899-914.	3.3	54
114	Trinuclear Cu ^{II} Structural Isomers: Coordination, Magnetism, Electrochemistry and Catalytic Activity towards the Oxidation of Alkanes. European Journal of Inorganic Chemistry, 2015, 2015, 3959-3969.	2.0	54
115	Cooperative Metal–Ligand Assisted <i>E/Z</i> Isomerization and Cyano Activation at Cu ^{II} and Co ^{II} Complexes of Arylhydrazones of Active Methylene Nitriles. Inorganic Chemistry, 2014, 53, 9946-9958.	4.0	53
116	A heterometallic (Fe ₆ Na ₈) cage-like silsesquioxane: synthesis, structure, spin glass behavior and high catalytic activity. RSC Advances, 2016, 6, 48165-48180.	3.6	53
117	Synthesis, characterization, thermal properties and antiproliferative potential of copper(<scp>ii</scp>) 4′-phenyl-terpyridine compounds. Dalton Transactions, 2016, 45, 5339-5355.	3.3	52
118	Scorpionate complexes of vanadium(III or IV) as catalyst precursors for solvent-free cyclohexane oxidation with dioxygen. Pure and Applied Chemistry, 2009, 81, 1217-1227.	1.9	51
119	Trends in properties of <i>para</i> â€substituted 3â€(phenylhydrazo)pentaneâ€2,4â€diones. Journal of Physical Organic Chemistry, 2011, 24, 764-773.	1.9	51
120	Synthesis, characterization, photoluminescent and thermal properties of zinc(ii) 4′-phenyl-terpyridine compounds. New Journal of Chemistry, 2013, 37, 1529.	2.8	51
121	Oxorhenium Complexes Bearing the Water-Soluble Tris(pyrazol-1-yl)methanesulfonate, 1,3,5-Triaza-7-phosphaadamantane, or Related Ligands, as Catalysts for Baeyer–Villiger Oxidation of Ketones. Inorganic Chemistry, 2013, 52, 4534-4546.	4.0	51
122	Catalytic oxidation of cyclohexane with hydrogen peroxide and a tetracopper(II) complex in an ionic liquid. Comptes Rendus Chimie, 2015, 18, 758-765.	0.5	51
123	High Catalytic Activity of Vanadium Complexes in Alkane Oxidations with Hydrogen Peroxide: An Effect of 8-Hydroxyquinoline Derivatives as Noninnocent Ligands. Inorganic Chemistry, 2018, 57, 1824-1839.	4.0	51
124	Synthesis and structural characterization of iron complexes with 2,2,2-tris(1-pyrazolyl)ethanol ligands: Application in the peroxidative oxidation of cyclohexane under mild conditions. Journal of Organometallic Chemistry, 2011, 696, 1310-1318.	1.8	50
125	Aquasoluble iron(III)-arylhydrazone-β-diketone complexes: Structure and catalytic activity for the peroxidative oxidation of C5–C8 cycloalkanes. Journal of Inorganic Biochemistry, 2012, 115, 72-77.	3.5	50
126	Sulfonated Schiff base dinuclear and polymeric copper(<scp>ii</scp>) complexes: crystal structures, magnetic properties and catalytic application in Henry reaction. New Journal of Chemistry, 2015, 39, 3424-3434.	2.8	50

#	Article	IF	CITATIONS
127	Iron(<scp>iii</scp>) and cobalt(<scp>iii</scp>) complexes with both tautomeric (keto and enol) forms of aroylhydrazone ligands: catalysts for the microwave assisted oxidation of alcohols. RSC Advances, 2016, 6, 8079-8088.	3.6	50
128	DNA and BSA binding and cytotoxic properties of copper(<scp>ii</scp>) and iron(<scp>iii</scp>) complexes with arylhydrazone of ethyl 2-cyanoacetate or formazan ligands. New Journal of Chemistry, 2017, 41, 4076-4086.	2.8	50
129	Preparation, structure, and redox properties of isocyanide complexes of molybdenum(0) and tungsten(0). Journal of the Chemical Society Dalton Transactions, 1978, , 165.	1.1	49
130	Microwave synthesis of mono- and bis-tetrazolato complexes via 1,3-dipolar cycloaddition of organonitriles with platinum(ii)-bound azides. Dalton Transactions, 2007, , 5297.	3.3	49
131	Ion Pairs of 5,5-dimethyl-2-(2-hydroxy-3,5-disulfophenylhydrazo)cyclohexane-1,3-dione with Cationic Surface-Active Substances as Analytical Reagent for Determination of Copper(II). Analytical Letters, 2010, 43, 2923-2938.	1.8	49
132	Copper(ii) complexes with a new carboxylic-functionalized arylhydrazone of \hat{l}^2 -diketone as effective catalysts for acid-free oxidations. New Journal of Chemistry, 2012, 36, 1646.	2.8	49
133	Vanadium(V) Complexes with Substituted 1,5-bis(2-hydroxybenzaldehyde)carbohydrazones and Their Use As Catalyst Precursors in Oxidation of Cyclohexane. Inorganic Chemistry, 2016, 55, 9187-9203.	4.0	49
134	î¼â€Chloridoâ€Bridged Dimanganese(II) Complexes of the Schiff Base Derived from [2+2] Condensation of 2,6â€Diformylâ€4â€methylphenol and 1,3â€Bis(3â€aminopropyl)tetramethyldisiloxane: Structure, Magnetism, Electrochemical Behaviour, and Catalytic Oxidation of Secondary Alcohols. European Journal of Inorganic Chemistry, 2014, 2014, 120-131.	2.0	48
135	Halogen-bonded tris(2,4-bis(trichloromethyl)-1,3,5-triazapentadienato)-M(iii) [M = Mn, Fe, Co] complexes and their catalytic activity in the peroxidative oxidation of 1-phenylethanol to acetophenone. New Journal of Chemistry, 2014, 38, 4807-4815.	2.8	48
136	Preparation and Crystal Structures of Benzoylhydrazido- and-diazenidorhenium Complexes with N,O-Ligands and Their Catalytic Activity Towards Peroxidative Oxidation of Cycloalkanes. European Journal of Inorganic Chemistry, 2005, 2005, 2071-2080.	2.0	47
137	Heterometallic Copper(II)–Potassium 3D Coordination Polymers Driven by Multifunctionalized Azo Derivatives of β-Diketones. Crystal Growth and Design, 2011, 11, 4247-4252.	3.0	47
138	Coordination Chemistry of the (Î- ⁶ - <i>p</i> -Cymene)ruthenium(II) Fragment with Bis-, Tris-, and Tetrakis(pyrazol-1-yl)borate Ligands: Synthesis, Structural, Electrochemical, and Catalytic Diastereoselective Nitroaldol Reaction Studies. Organometallics, 2011, 30, 1616-1626.	2.3	47
139	Lanthanide derivatives comprising arylhydrazones of \hat{l}^2 -diketones: cooperative E/Z isomerization and catalytic activity in nitroaldol reaction. Dalton Transactions, 2015, 44, 5602-5610.	3.3	47
140	Syntheses, Structures, and Antimicrobial Activity of New Remarkably Light-Stable and Water-Soluble Tris(pyrazolyl)methanesulfonate Silver(I) Derivatives of <i>N·/i>-Methyl-1,3,5-triaza-7-phosphaadamantane Salt - [mPTA]BF₄. Inorganic Chemistry, 2015, 54, 434-440.</i>	4.0	47
141	2-Dihydromethylpiperazinediium-M ^{II} (M ^{II} = Cu ^{II} , Fe ^{II} ,) Tj ETQq1 nitroaldol (Henry) reaction. Dalton Transactions, 2013, 42, 399-406.	. 1 0.7843 3 . 3	14 rgBT /0 46
142	Synthesis, structure and catalytic applications of amidoterephthalate copper complexes in the diastereoselective Henry reaction in aqueous medium. New Journal of Chemistry, 2014, 38, 4837-4846.	2.8	46
143	Alkane oxidation with peroxides catalyzed by cage-like copper(<scp>ii</scp>) silsesquioxanes. New Journal of Chemistry, 2015, 39, 187-199.	2.8	46
144	Oxidovanadium(V) Complexes Anchored on Carbon Materials as Catalysts for the Oxidation of 1â€Phenylethanol. ChemCatChem, 2016, 8, 2254-2266.	3.7	46

#	Article	IF	CITATIONS
145	Highly efficient and reusable CNT supported iron(<scp>ii</scp>) catalyst for microwave assisted alcohol oxidation. Dalton Transactions, 2016, 45, 6816-6819.	3.3	46
146	Theoretical study of redox induced isomerizations, structure and bonding of nitrile, isocyanide and carbonyl complexes of rhenium. Dalton Transactions, 2003, , 738-747.	3.3	45
147	Rhenium complexes of tris(pyrazolyl)methanes and sulfonate derivative. Dalton Transactions, 2006, , 4954.	3.3	45
148	New water-soluble azido- and derived tetrazolato-platinum(ii) complexes with PTA. Easy metal-mediated synthesis and isolation of 5-substituted tetrazoles. Dalton Transactions, 2008, , 6546.	3.3	45
149	Role of substituents on resonance assisted hydrogen bonding <i>vs.</i> intermolecular hydrogen bonding. CrystEngComm, 2020, 22, 628-633.	2.6	45
150	Conversion of alk-1-ynes into alkyne, alkynyl, alkylidyne and alkylidene complexes of molybdenum and tungsten. Journal of the Chemical Society Dalton Transactions, 1992, , 1775.	1.1	44
151	Waterâ€Soluble Copper(II) Complexes with a Sulfonicâ€Functionalized Arylhydrazone of βâ€Diketone and Their Application in Peroxidative Allylic Oxidation of Cyclohexene. European Journal of Inorganic Chemistry, 2012, 2012, 2305-2313.	2.0	44
152	Supported Gold Nanoparticles as Reusable Catalysts for Oxidation Reactions of Industrial Significance. ChemCatChem, 2017, 9, 1211-1221.	3.7	44
153	Novel Reactivity Mode of Hydroxamic Acids:Â A Metalla-Pinner Reaction. Inorganic Chemistry, 2002, 41, 2981-2986.	4.0	43
154	Unprecedented Metal-Free C(sp3)â^'C(sp3) Bond Cleavage: Switching from N-Alkyl- to N-Methyl-1,3,5-triaza-7-phosphaadamantane. Organometallics, 2009, 28, 1683-1687.	2.3	43
155	Polynuclear Copper(II) Complexes as Catalysts for the Peroxidative Oxidation of Cyclohexane in a Roomâ€Temperature Ionic Liquid. European Journal of Inorganic Chemistry, 2014, 2014, 4541-4550.	2.0	43
156	Amide functionalized metal–organic frameworks for diastereoselective nitroaldol (Henry) reaction in aqueous medium. RSC Advances, 2015, 5, 87400-87410.	3.6	43
157	Nanoporous lanthanide metal–organic frameworks as efficient heterogeneous catalysts for the Henry reaction. CrystEngComm, 2016, 18, 1337-1349.	2.6	43
158	N ₂ O-Free single-pot conversion of cyclohexane to adipic acid catalysed by an iron(<scp>ii</scp>) scorpionate complex. Green Chemistry, 2017, 19, 1499-1501.	9.0	43
159	Syntheses and properties of Re(III) complexes derived from hydrotris(1-pyrazolyl)methanes: molecular structure of [ReCl2(HCpz3)(PPh3)][BF4]. Journal of Organometallic Chemistry, 2005, 690, 1947-1958.	1.8	42
160	Sulfonated Schiff base Sn(IV) complexes as potential anticancer agents. Journal of Inorganic Biochemistry, 2016, 162, 83-95.	3.5	41
161	C-scorpionate complexes: Ever young catalytic tools. Coordination Chemistry Reviews, 2019, 396, 89-102.	18.8	41
162	Activation of Organonitriles toward \hat{l}^2 -Electrophilic Attack. Synthesis and Characterization of Methyleneamide (Azavinylidene) Complexes of Rhenium. Inorganic Chemistry, 2002, 41, 219-228.	4.0	40

#	Article	IF	CITATIONS
163	Extending the Coordination Chemistry of $1,3,5$ -Triaza-7-phosphaadamantane (PTA) to Cobalt Centers: First Examples of Co-PTA Complexes and of a Metal Complex with the PTA Oxide Ligand. Inorganic Chemistry, 2008, 47, 2922-2924.	4.0	40
164	New Coordination Polymers and Porous Supramolecular Metal Organic Network Based on the Trinuclear Triangular Secondary Building Unit $[Cu3(\hat{1}/43-OH)(\hat{1}/4-pz)3]2+$ and $4,4\hat{a}\in^2$ -Bypiridine. $1\hat{A}^\circ$. Crystal Growth and Design, 2012, 12, 2890-2901.	3.0	40
165	Hydrosoluble Cu(<scp>i</scp>)-DAPTA complexes: synthesis, characterization, luminescence thermochromism and catalytic activity for microwave-assisted three-component azide–alkyne cycloaddition click reaction. Dalton Transactions, 2018, 47, 7290-7299.	3.3	40
166	Cobalt and Zinc Compounds Bearing 1,10â€Phenanthrolineâ€5,6â€dione or 1,3,5â€Triazaâ€7â€phosphaadamant Derivatives – Synthesis, Characterization, Cytotoxicity, and Cell Selectivity Studies. European Journal of Inorganic Chemistry, 2013, 2013, 3651-3658.	ane 2.0	39
167	Cobalt Complexes with Pyrazole Ligands as Catalyst Precursors for the Peroxidative Oxidation of Cyclohexane: Xâ€ray Absorption Spectroscopy Studies and Biological Applications. Chemistry - an Asian Journal, 2014, 9, 1132-1143.	3.3	39
168	Polynuclear Heterometallic Complexes from Metal Powders: The "Direct Synthesis―Approach. European Journal of Inorganic Chemistry, 2014, 2014, 4496-4517.	2.0	39
169	A novel route to methyleneamido ligands by protonation of nitriles ligating an electron-rich centre. Synthesis of trans-[ReCl(NCR)(dppe)2](R = alkyl or aryl, dppe = Ph2PCH2CH2PPh2) and [ReCl(NCHC6H4OMe-4)(dppe)2][BF4]. Journal of the Chemical Society Chemical Communications, 1988, , 1052-1053.	2.0	38
170	Biological characterization of the antiproliferative potential of Co(II) and Sn(IV) coordination compounds in human cancer cell lines: a comparative proteomic approach. Drug Metabolism and Drug Interactions, 2013, 28, 167-176.	0.3	38
171	New Fe ^{II} and Cu ^{II} Complexes Bearing Azathia Macrocycles – Catalyst Precursors for Mild Peroxidative Oxidation of Cyclohexane and 1â€Phenylethanol. European Journal of Inorganic Chemistry, 2011, 2011, 3781-3790.	2.0	37
172	Combination of chemotherapy and Au-nanoparticle photothermy in the visible light to tackle doxorubicin resistance in cancer cells. Scientific Reports, 2018, 8, 11429.	3.3	37
173	Recent Advances in Copper Catalyzed Alcohol Oxidation in Homogeneous Medium. Molecules, 2020, 25, 748.	3.8	37
174	An η2-allene complex of rhenium formed form an alkyne: X-ray structure of [ReCl(η2-H2C–CCHPh)(Ph2PCH2CH2PPh2)2]. Journal of the Chemical Society Chemical Communications, 1984, , 992-993.	2.0	36
175	Mechanism of the Formation of Carbyne Complexes of Rhenium upon Protonation of Vinylidene Precursors. Organometallics, 1997, 16, 5441-5448.	2.3	36
176	Mixed Dinitrogenâ-'Organocyanamide Complexes of Molybdenum(0) and Their Protic Conversion into Hydrazide and Amidoazavinylidene Derivatives. Inorganic Chemistry, 2003, 42, 2157-2164.	4.0	36
177	Water-soluble and stable dinitrogen phosphine complexes trans-[ReCl(N ₂)(PTA-H) _n (PTA) _{4â^'n}] ⁿ⁺ (n = 0â€"4), the first with 1,3,5-triaza-7-phosphaadamantane. Dalton Transactions, 2008, , 87-91.	3.3	36
178	Oxadiazoline and Ketoimine Palladium(II) Complexes as Highly Efficient Catalysts for Suzuki–Miyaura Crossâ€Coupling Reactions in Supercritical Carbon Dioxide. Advanced Synthesis and Catalysis, 2011, 353, 1153-1160.	4.3	36
179	C-Homoscorpionate Oxidation Catalystsâ€"Electrochemical and Catalytic Activity. Catalysts, 2017, 7, 12.	3.5	36
180	Selective Styrene Oxidation to Benzaldehyde over Recently Developed Heterogeneous Catalysts. Molecules, 2021, 26, 1680.	3.8	36

#	Article	IF	CITATIONS
181	Chemistry and electrochemistry of phosphonium-functionalized isocyanide and derived carbene and indole complexes of Group 6 transition-metal carbonyls. Journal of the Chemical Society Dalton Transactions, 1992, , 2827.	1.1	35
182	Tetranuclear Copper(II) Complexes with Macrocyclic and Openâ€Chain Disiloxane Ligands as Catalyst Precursors for Hydrocarboxylation and Oxidation of Alkanes and 1â€Phenylethanol. European Journal of Inorganic Chemistry, 2014, 2014, 4946-4956.	2.0	35
183	Heterogenized Câ€Scorpionate Iron(II) Complex on Nanostructured Carbon Materials as Recyclable Catalysts for Microwaveâ€Assisted Oxidation Reactions. ChemCatChem, 2018, 10, 1821-1828.	3.7	35
184	Solvent-Free Microwave-Induced Oxidation of Alcohols Catalyzed by Ferrite Magnetic Nanoparticles. Catalysts, 2017, 7, 222.	3.5	34
185	Syntheses, properties and Mössbauer studies of cyanamide and cyanoguanidine complexes of iron(II). Crystal structures of trans-[FeH(NCNH2)(Ph2PCH2CH2PPh2)2][BF4] and trans-[Fe(NCNEt2)2(Et2PCH2CH2PEt2)2][BF4]2. Inorganica Chimica Acta, 1999, 291, 39-48.	2.4	33
186	Insights into the mechanisms underlying the antiproliferative potential of a Co(II) coordination compound bearing 1,10-phenanthroline-5,6-dione: DNA and protein interaction studies. Journal of Biological Inorganic Chemistry, 2014, 19, 787-803.	2.6	33
187	Reactions of 1-alkynes with trans-[ReCl(N2)(Ph2PCH2CH2PPh2)2]: preparation of the vinylidene compounds trans-[ReCl(CCHR)(Ph2PCH2CH2PPh2)2](R = alkyl or aryl) and X-ray structure of trans-[ReCl(CCHPh)(Ph2PCH2CH2PPh2)2]. Journal of the Chemical Society Dalton Transactions, 1989, , 2381-2387.	1.1	32
188	Allenylidene Iron(II) Complexes and Their Deprotonation, Nucleophilic Addition Reactions, and Cathodic Protonation toward Alkynyl Derivatives: A Chemical and Electrochemical Study. Organometallics, 2005, 24, 4654-4665.	2.3	32
189	Switching between îº ² and îº ³ Bis(pyrazol-1-yl)acetate Ligands by Tuning Reaction Conditions: Synthesis, Spectral, Electrochemical, Structural, and Theoretical Studies on Arene-Ru(II) Derivatives of Bis(azol-1-yl)acetate Ligands. Inorganic Chemistry, 2009, 48, 6096-6108.	4.0	32
190	Copper(<scp>ii</scp>) and iron(<scp>iii</scp>) complexes with arylhydrazone of ethyl 2-cyanoacetate or formazan ligands as catalysts for oxidation of alcohols. New Journal of Chemistry, 2016, 40, 10071-10083.	2.8	32
191	Tuning Cyclohexane Oxidation: Combination of Microwave Irradiation and Ionic Liquid with the C-Scorpionate [FeCl ₂ (Tpm)] Catalyst. Organometallics, 2017, 36, 192-198.	2.3	32
192	Kinetic and Thermodynamic Aspects of the Regioselective Addition of Bifunctional Hydroxylaminooxime-type HO-Nucleophiles to Pt-Complexed Nitriles. Inorganic Chemistry, 2006, 45, 2296-2306.	4.0	31
193	Copper(I) Iodide Complexes Derived from <i>N</i> -Alkyl-1,3,5-triaza-7-phosphaadamantanes: Synthesis, Crystal Structures, Photoluminescence, and Identification of the Unprecedented {Cu ₃ 1 ₅ } _{}_{}_{}_{}_{Parallel Synthesis. Comparison of the Unprecedented for Synthesis. Com}}}}}	2.3	31
194	Molybdenum Complexes Bearing the Tris(1â€pyrazolyl)methanesulfonate Ligand: Synthesis, Characterization and Electrochemical Behaviour. European Journal of Inorganic Chemistry, 2010, 2010, 2415-2424.	2.0	31
195	Ni ^{II} , Cu ^{II} and Zn ^{II} complexes with a sterically hindered scorpionate ligand (Tpms ^{Ph}) and catalytic application in the diasteroselective nitroaldol (Henry) reaction. Dalton Transactions, 2014, 43, 15192-15200.	3.3	31
196	Sulfonated Schiff base copper(ii) complexes as efficient and selective catalysts in alcohol oxidation: syntheses and crystal structures. RSC Advances, 2015, 5, 90079-90088.	3.6	31
197	Mn ^{II} and Cu ^{II} complexes with arylhydrazones of active methylene compounds as effective heterogeneous catalysts for solvent- and additive-free microwave-assisted peroxidative oxidation of alcohols. RSC Advances, 2015, 5, 25979-25987.	3.6	31
198	Aroylhydrazone Cu(II) Complexes in keto Form: Structural Characterization and Catalytic Activity towards Cyclohexane Oxidation. Molecules, 2016, 21, 425.	3.8	31

#	Article	IF	CITATIONS
199	1,3,5â€Triazapentadiene Nickel(II) Complexes Derived from a Ketoximeâ€Mediated Singleâ€Pot Transformation of Nitriles. European Journal of Inorganic Chemistry, 2010, 2010, 2425-2432.	2.0	30
200	Magnetic, high-field EPR studies and catalytic activity of Schiff base tetranuclear Cull2FellI2 complexes obtained by direct synthesis. Dalton Transactions, 2013, 42, 16909.	3.3	30
201	Reactions of a cyanosilane with an iron(II) centre. Synthesis and crystal structure of the isocyanotriphenylborate complex trans-[FeH(CNBPh3)(Ph2PCH2CH2PPh2)2] and anodic deprotonation of the hydrogen isocyanide (CNH) analogue. Journal of the Chemical Society Dalton Transactions, 1999. 467-472.	1.1	29
202	Synthesis and Electrochemical and Theoretical Studies of Fischer-Type Alkenylâ^'Carbyne Tungsten Complexes [(dppe)(CO)2(RNC)W{â<®CCHCCH2CH2(CH2)nCH2}][BF4] (R = Alkyl, Aryl). Organometallics, 2001, 20, 2782-2793.	2.3	29
203	Metalâ°'Hydride Bond Activation and Metalâ°'Metal Interaction in Dinuclear Iron Complexes with Linking Dinitriles:Â A Synthetic, Electrochemical, and Theoretical Study. Inorganic Chemistry, 2002, 41, 6456-6467.	4.0	29
204	Design of Silver(I)â^'PTA Coordination Polymers through Controlled N,P-Coordination of 1,3,5-Triaza-7-phosphaadamantane (PTA) with Arylcarboxylates. Crystal Growth and Design, 2010, 10, 5244-5253.	3.0	29
205	Baeyer–Villiger oxidation of ketones catalysed by rhenium complexes bearing N- or oxo-ligands. Applied Catalysis A: General, 2012, 443-444, 27-32.	4.3	29
206	Hexanuclear and undecanuclear iron(iii) carboxylates as catalyst precursors for cyclohexane oxidation. Dalton Transactions, 2013, 42, 14388.	3.3	29
207	Simple soluble Bi(<scp>iii</scp>) salts as efficient catalysts for the oxidation of alkanes with H ₂ O ₂ . Catalysis Science and Technology, 2015, 5, 2174-2187.	4.1	29
208	Reaction of sodium 2-(2-(2,4-dioxopentan-3-ylidene)hydrazinyl) benzenesulfonate with ethylenediamine on Cu(<scp>ii</scp>) and Ni(<scp>ii</scp>) centres: efficient Cu(<scp>ii</scp>) homogeneous catalysts for cyanosilylation of aldehydes. RSC Advances, 2016, 6, 54263-54269.	3.6	29
209	Green oxidation of cyclohexane catalyzed by recyclable magnetic transition-metal silica coated nanoparticles. Catalysis Communications, 2019, 125, 15-20.	3.3	29
210	Synthesis, Reactivity, Xâ€ray Crystal Structures and Electrochemical Behaviour of Waterâ€Soluble [Tris(pyrazolyl)borato]ruthenium(II) Complexes of 1,3,5â€Triazaâ€7â€phosphaadamantane (PTA). European Journal of Inorganic Chemistry, 2007, 2007, 5523-5532.	2.0	28
211	Pt ^{II} -Promoted [2 + 3] Cycloaddition of Azide to Cyanopyridines: Convenient Tool toward Heterometallic Structures. Inorganic Chemistry, 2008, 47, 11334-11341.	4.0	28
212	A cyclic tetranuclear cuboid type copper(<scp>ii</scp>) complex doubly supported by cyclohexane-1,4-dicarboxylate: molecular and supramolecular structure and cyclohexane oxidation activity. RSC Advances, 2014, 4, 48449-48457.	3.6	28
213	Catalytic behaviour of a novel Fe(<scp>iii</scp>) Schiff base complex in the mild oxidation of cyclohexane. Catalysis Science and Technology, 2015, 5, 1801-1812.	4.1	28
214	A sulfonated Schiff base dimethyltin(<scp>iv</scp>) coordination polymer: synthesis, characterization and application as a catalyst for ultrasound- or microwave-assisted Baeyer–Villiger oxidation under solvent-free conditions. RSC Advances, 2016, 6, 78225-78233.	3.6	28
215	A Cu(<scp>ii</scp>) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium. Dalton Transactions, 2016, 45, 12779-12789.	3.3	28
216	Mixed ligand aroylhydrazone and N-donor heterocyclic Lewis base Cu(II) complexes as potential antiproliferative agents. Journal of Inorganic Biochemistry, 2017, 175, 267-275.	3.5	28

#	Article	IF	CITATIONS
217	Improved Cyclohexane Oxidation Catalyzed by a Heterogenized Iron (II) Complex on Hierarchical Y Zeolite through Surfactant Mediated Technology. ChemCatChem, 2018, 10, 4058-4066.	3.7	28
218	Rates and Mechanism of Oxidative Two-Electron-Transfer-Induced cis to trans Isomerization of the Nitrile Complex [ReCl(NCC6H4Me-4)(Ph2PCH2CH2PPh2)2]. Organometallics, 1994, 13, 3943-3951.	2.3	27
219	Nill-Mediated Coupling between Iminoisoindolinones and Nitriles Leading to Unsymmetrical 1,3,5-Triazapentadienato Complexes. Inorganic Chemistry, 2008, 47, 3088-3094.	4.0	27
220	Crystal engineering with 1,3,5-triaza-7-phosphaadamantane (PTA): first PTA-driven 3D metal–organic frameworks. CrystEngComm, 2011, 13, 6329.	2.6	27
221	Zinc(II) and Copper(II) Metal-Organic Frameworks Constructed from a Terphenyl-4, $4\hat{a}\in^2\hat{a}\in^2$ -dicarboxylic Acid Derivative: Synthesis, Structure, and Catalytic Application in the Cyanosilylation of Aldehydes. European Journal of Inorganic Chemistry, 2016, 2016, 5557-5567.	2.0	27
222	Catalytic Activity of Polynuclear vs. Dinuclear Aroylhydrazone Cu(II) Complexes in Microwave-Assisted Oxidation of Neat Aliphatic and Aromatic Hydrocarbons. Molecules, 2019, 24, 47.	3.8	27
223	New Trends in C–C Cross-Coupling Reactions: The Use of Unconventional Conditions. Molecules, 2020, 25, 5506.	3.8	27
224	Electron-Transfer-Induced Geometrical Isomerization of the Dinitrile Complexescis-[Re(NCR)2(Ph2PCH2CH2PPh2)2][BF4] (R = Aryl, Alkyl):Â Rates, Mechanism, and Ligand Effects. Inorganic Chemistry, 1998, 37, 2344-2350.	4.0	26
225	Copper-mediated imine–nitrile coupling leading to unsymmetric 1,3,5-triazapentadienato complexes containing the incorporated iminoisoindolin-1-one moiety. Dalton Transactions, 2008, , 5220.	3.3	26
226	Cyclic Trinuclear Diorganotin(IV) Complexes – The First Tin Compounds Bearing Oximehydroxamate Ligands: Synthesis, Structural Characterization and High In Vitro Cytotoxicity. European Journal of Inorganic Chemistry, 2009, 2009, 3765-3769.	2.0	26
227	Dimeric diorganotin($\langle scp \rangle iv \langle scp \rangle$) complexes with arylhydrazones of \hat{l}^2 -diketones: synthesis, structures, cytotoxicity and apoptosis properties. RSC Advances, 2015, 5, 45053-45060.	3.6	26
228	Zinc amidoisophthalate complexes and their catalytic application in the diastereoselective Henry reaction. New Journal of Chemistry, 2015, 39, 3004-3014.	2.8	26
229	Ultra-fast and selective oxidation of styrene to benzaldehyde catalyzed by a C-scorpionate Cu(<scp>ii</scp>) complex. Catalysis Science and Technology, 2018, 8, 2285-2288.	4.1	26
230	Synthesis and catalytic activities of a Zn(<scp>ii</scp>) based metallomacrocycle and a metal–organic framework towards one-pot deacetalization-Knoevenagel tandem reactions under different strategies: a comparative study. Dalton Transactions, 2020, 49, 8075-8085.	3.3	26
231	Stepwise reduction of a phosphaalkyne PC bond to a phosphaalkene and a phosphine at the FeH(dppe)2 centre. Crystal and molecular structure of the η1-co-ordinated phosphaalkyne complex trans-[FeH(η1-PCBut)(dppe)2][BPh4]. Journal of the Chemical Society Dalton Transactions, 1998, , 3319-3324.	1.1	25
232	Synthesis of mono- and bis-tetrazolato complexes of Ni(II), Pt(II) and Cu(II) via 1,3-dipolar cycloadditions of 2-cyanopyridines with metal ligated azides in N,N,O-aminoiminophenolato complexes. Dalton Transactions, 2009, , 4778.	3.3	25
233	New diamondoid-like [Cu3B(\hat{l} ¼-O)6] core self-assembled from Bis-Tris biobuffer for mild hydrocarboxylation of alkanes to carboxylic acids. Dalton Transactions, 2011, 40, 6378.	3.3	25
234	Gold nanoparticles deposited on surface modified carbon materials as reusable catalysts for hydrocarboxylation of cyclohexane. Applied Catalysis A: General, 2017, 547, 124-131.	4.3	25

#	Article	IF	CITATIONS
235	Commercial Gold(I) and Gold(III) Compounds Supported on Carbon Materials as Greener Catalysts for the Oxidation of Alkanes and Alcohols. ChemCatChem, 2018, 10, 1804-1813.	3.7	25
236	Vanadium complexes of different nuclearities in the catalytic oxidation of cyclohexane and cyclohexanol $\hat{a}\in$ an experimental and theoretical investigation. New Journal of Chemistry, 2019, 43, 17557-17570.	2.8	25
237	Ab initio study of the protic conversion of an allene into an η2-vinyl complex of Re, and on their structure, bonding and redox behaviour â€. Dalton Transactions RSC, 2000, , 4413-4421.	2.3	24
238	Activation of cyanamide by a molybdenum(0) diphosphinic centre. Formation of cyanoimide and its reactivity with electrophiles. Dalton Transactions RSC, 2002, , 1791-1799.	2.3	24
239	Synthesis, structure and electrochemical behaviour of Na, MgII, MnII, ZnII, CdII and NiII complexes of 3-(2-carboxyphenylhydrazone)pentane-2,4-dione. Polyhedron, 2013, 50, 374-382.	2.2	24
240	New p-tolylimido rhenium(<scp>v</scp>) complexes with carboxylate-based ligands: synthesis, structures and their catalytic potential in oxidations with peroxides. Dalton Transactions, 2014, 43, 5759-5776.	3.3	24
241	V(<scp>iv</scp>), Fe(<scp>ii</scp>), Ni(<scp>ii</scp>) and Cu(<scp>ii</scp>) complexes bearing 2,2,2-tris(pyrazol-1-yl)ethyl methanesulfonate: application as catalysts for the cyclooctane oxidation. New Journal of Chemistry, 2016, 40, 528-537.	2.8	24
242	Copper(II) tetrazolato complexes: Role in oxidation catalysis and protein binding. Polyhedron, 2017, 132, 53-63.	2.2	24
243	A green methodology for the selective catalytic oxidation of styrene by magnetic metal-transition ferrite nanoparticles. Catalysis Communications, 2018, 116, 10-15.	3.3	24
244	Targeting Cancer Resistance via Multifunctional Gold Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 5510.	4.1	24
245	Arylhydrazone ligands as Cu-protectors and -catalysis promoters in the azide–alkyne cycloaddition reaction. Dalton Transactions, 2019, 48, 1774-1785.	3.3	24
246	New Oxidovanadium(IV) Complexes with 2,2′-bipyridine and 1,10-phenathroline Ligands: Synthesis, Structure and High Catalytic Activity in Oxidations of Alkanes and Alcohols with Peroxides. Catalysts, 2019, 9, 217.	3.5	24
247	Unusual shift of a nitro group in a phenylhydrazo-β-diketone. Dalton Transactions, 2011, 40, 12472.	3.3	23
248	Syntheses and crystal structures of benzene-sulfonate and -carboxylate copper polymers and their application in the oxidation of cyclohexane in ionic liquid under mild conditions. Dalton Transactions, 2016, 45, 13957-13968.	3.3	23
249	Supported Câ€Scorpionate Vanadium(IV) Complexes as Reusable Catalysts for Xylene Oxidation. Chemistry - an Asian Journal, 2017, 12, 1915-1919.	3.3	23
250	Peroxidative Oxidation of Alkanes and Alcohols under Mild Conditions by Di- and Tetranuclear Copper (II) Complexes of Bis (2-Hydroxybenzylidene) Isophthalohydrazide. Molecules, 2018, 23, 2699.	3.8	23
251	Oxidation of Saturated Hydrocarbons to Alkyl Hydroperoxides by a â€~H2O2/Titanosilicalite-1/NaOH/MeCN' System. Catalysis Letters, 2008, 123, 135-141.	2.6	22
252	Marked Stabilization of Redox States and Enhanced Catalytic Activity in Galactose Oxidase Models Based on Transition Metal <i>S</i> -Methylisothiosemicarbazonates with â^'SR Group in Ortho Position to the Phenolic Oxygen. Inorganic Chemistry, 2013, 52, 7524-7540.	4.0	22

#	Article	IF	CITATIONS
253	Greener Selective Cycloalkane Oxidations with Hydrogen Peroxide Catalyzed by Copper-5-(4-pyridyl)tetrazolate Metal-Organic Frameworks. Molecules, 2015, 20, 19203-19220.	3.8	22
254	Amavadin and Homologues as Mediators of Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 1489-1492.	13.8	22
255	Copper(II) and Sodium(I) Complexes based on 3,7â€Diacetylâ€1,3,7â€triazaâ€5â€phosphabicyclo[3.3.1]nonaneá Synthesis, Characterization, and Catalytic Activity. Chemistry - an Asian Journal, 2018, 13, 2868-2880.	ì€ 5 ậ€oxid	e: ₂₂
256	Formation of vinyl and dithioformate metallacycles by insertion of an ester-functionalized alkyne or carbon disulfide into an FeH bond: crystal structure ofcis-[Fe(CHCHCOOMe)(Ph2PCH2CH2PPh2)2][BF4]. Journal of Organometallic Chemistry, 1996, 524, 63-66.	1.8	21
257	Synthesis, Structural Characterisation and Electrochemical Studies of Neutral Alkenylcarbyne Tungsten Complexes Bearing Chelating Bidentate and Tridentate Phosphanes. European Journal of Inorganic Chemistry, 2000, 2000, 1707-1715.	2.0	21
258	Kinetic and Mechanistic Study of the Pt(II) versus Pt(IV) Effect in the Platinum-Mediated Nitrileâ^'Hydroxylamine Coupling. Inorganic Chemistry, 2005, 44, 2944-2953.	4.0	21
259	Ruthenium(II) Arene Complexes Bearing Tris(pyrazolyl)methanesulfonate Capping Ligands. Electrochemistry, Spectroscopic, and X-ray Structural Characterization. Organometallics, 2011, 30, 6180-6188.	2.3	21
260	Synthesis, characterization and heterogeneous catalytic application of copper integrated mesoporous matrices. Dalton Transactions, 2014, 43, 3215-3226.	3.3	21
261	Solvent-Free Microwave-Assisted Peroxidative Oxidation of Alcohols Catalyzed by Iron(III)-TEMPO Catalytic Systems. Catalysis Letters, 2015, 145, 2066-2076.	2.6	21
262	Zn ^{II} and Cd ^{II} MOFs based on an amidoisophthalic acid ligand: synthesis, structure and catalytic application in transesterification. RSC Advances, 2016, 6, 89007-89018.	3.6	21
263	Sulfonated Schiff base dimeric and polymeric copper(II) complexes: Temperature dependent synthesis, crystal structure and catalytic alcohol oxidation studies. Inorganica Chimica Acta, 2017, 455, 549-556.	2.4	21
264	Gold Nanoparticles Deposited on Surface Modified Carbon Xerogels as Reusable Catalysts for Cyclohexane C-H Activation in the Presence of CO and Water. Molecules, 2017, 22, 603.	3.8	21
265	1D Copper(II)-Aroylhydrazone Coordination Polymers: Magnetic Properties and Microwave Assisted Oxidation of a Secondary Alcohol. Frontiers in Chemistry, 2020, 8, 157.	3.6	21
266	Mono and Dinuclear Tungsten Alkenyl-Carbyne Complexes Bridged by Cyanide and Diisocyanide Ligands: Synthesis, Electrochemical- and 183W-NMR Studies. European Journal of Inorganic Chemistry, 2000, 2000, 341-350.	2.0	20
267	Synthesis and Coordination Chemistry of a New N ₄ -Polydentate Class of Pyridyl-Functionalized Scorpionate Ligands: Complexes of Fe , Zn , , Ni , V and Use for Heterobimetallic Systems. Inorganic Chemistry, 2010, 49, 7941-7952.	4.0	20
268	Unprecedented Mixed-Valence Cu(I)/Cu(II) Complex Derived from N-Methyl-1,3,5-triaza-7-phosphaadamantane: Synthesis, Structural Features, and Magnetic Properties. Organometallics, 2012, 31, 7921-7925.	2.3	20
269	Metal Azolate/Carboxylate Frameworks as Catalysts in Oxidative and C–C Coupling Reactions. Inorganic Chemistry, 2016, 55, 5804-5817.	4.0	20
270	Synthesis of Metallomacrocycle and Coordination Polymers with Pyridineâ€Based Amidocarboxylate Ligands and Their Catalytic Activities towards the Henry and Knoevenagel Reactions. ChemistryOpen, 2018, 7, 865-877.	1.9	20

#	Article	IF	CITATIONS
271	Copper complexes bearing C-scorpionate ligands: Synthesis, characterization and catalytic activity for azide-alkyne cycloaddition in aqueous medium. Inorganica Chimica Acta, 2018, 483, 371-378.	2.4	20
272	Electrochemically induced dehydrogenation of the hydride complexes [ReCIH(NCR)(Ph2PCH2CH2PPh2)2][BF4]. A mechanistic study. Journal of the Chemical Society Chemical Communications, 1992, , 1289.	2.0	19
070	Deprotonation reactions of the aminocarbyne complex trans-[ReCl(CNH2)(dppe)2][BF4](dppe =) Tj ETQq1 1 0.7		
273	Society Dalton Transactions, 1996, , 2763-2772.	1.1	19
274	New Ru ^{II} (arene) Complexes with Halogenâ€Substituted Bis†and Tris(pyrazolâ€1â€yl)borate Ligands. Chemistry - A European Journal, 2014, 20, 3689-3704.	3.3	19
275	Arylhydrazones of barbituric acid: synthesis, coordination ability and catalytic activity of their Co ^{II} , Co ^{II/III} and Cu ^{II} complexes toward peroxidative oxidation of alkanes. RSC Advances, 2015, 5, 84142-84152.	3.6	19
276	Water soluble heterometallic potassium-dioxidovanadium(V) complexes as potential antiproliferative agents. Journal of Inorganic Biochemistry, 2016, 155, 17-25.	3.5	19
277	C-scorpionate rhenium complexes and their application as catalysts in Baeyer-Villiger oxidation of ketones. Inorganica Chimica Acta, 2017, 455, 390-397.	2.4	19
278	Cu(<scp>ii</scp>) complexes of N-rich aroylhydrazone: magnetism and catalytic activity towards microwave-assisted oxidation of xylenes. Dalton Transactions, 2019, 48, 12839-12849.	3.3	19
279	Versatility of Amide-Functionalized Co(II) and Ni(II) Coordination Polymers: From Thermochromic-Triggered Structural Transformations to Supercapacitors and Electrocatalysts for Water Splitting. Inorganic Chemistry, 2020, 59, 16301-16318.	4.0	19
280	Zeolites and Related Materials as Catalyst Supports for Hydrocarbon Oxidation Reactions. Catalysts, 2022, 12, 154.	3.5	19
281	Nickel(<scp>ii</scp>)-2-amino-4-alkoxy-1,3,5-triazapentadienate complexes as catalysts for Heck and Henry reactions. RSC Advances, 2016, 6, 29159-29163.	3.6	18
282	DNA and BSA binding, anticancer and antimicrobial properties of Co(<scp>ii</scp>), Co(<scp>ii</scp>), Cu(<scp>ii</scp>) and Ag(<scp>i</scp>) complexes of arylhydrazones of barbituric acid. RSC Advances, 2016, 6, 4237-4249.	3.6	18
283	Catalytic Performance of Fe(II)-Scorpionate Complexes towards Cyclohexane Oxidation in Organic, lonic Liquid and/or Supercritical CO2 Media: A Comparative Study. Catalysts, 2017, 7, 230.	3.5	18
284	Highly Efficient Bifunctional Amide Functionalized Zn and Cd Metal Organic Frameworks for One-Pot Cascade Deacetalization–Knoevenagel Reactions. Frontiers in Chemistry, 2019, 7, 699.	3.6	18
285	The role of nanoporous carbon materials in catalytic cyclohexane oxidation. Catalysis Today, 2020, 357, 46-55.	4.4	18
286	Cd(<scp>ii</scp>) coordination compounds as heterogeneous catalysts for microwave-assisted peroxidative oxidation of toluene and 1-phenylethanol. New Journal of Chemistry, 2020, 44, 9163-9171.	2.8	18
287	Proton addition and hydrogen-bond formation in reactions of the dicyano-complex [NBu4][trans-Re(CN)2(dppe)2] with protic reagents. Dalton Transactions RSC, 2000, , 3393-3400.	2.3	17
288	Redox-active cytotoxic diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes: Reduction behaviour and theoretical interpretation. Journal of Inorganic Biochemistry, 2012, 117, 147-156.	3.5	17

#	Article	IF	CITATIONS
289	Diethyldithiocarbamate complexes with metals used as food supplements show different effects in cancer cells. Journal of Applied Biomedicine, 2014, 12, 301-308.	1.7	17
290	Characterization of antiproliferative potential and biological targets of a copper compound containing 4′-phenyl terpyridine. Journal of Biological Inorganic Chemistry, 2015, 20, 935-948.	2.6	17
291	Flexibility and lability of a phenyl ligand in hetero-organometallic 3d metal–Sn(iv) compounds and their catalytic activity in Baeyer–Villiger oxidation of cyclohexanone. Dalton Transactions, 2017, 46, 13364-13375.	3.3	17
292	Structure and catalytic properties of novel copper isatin Schiff base complexes. New Journal of Chemistry, 2019, 43, 188-198.	2.8	17
293	The Catalytic Activity of Carbon-Supported Cu(I)-Phosphine Complexes for the Microwave-Assisted Synthesis of 1,2,3-Triazoles. Catalysts, 2021, 11, 185.	3.5	17
294	Syntheses, properties and Mössbauer studies of mono- and di-nitrile phosphine complexes of iron(II). Crystal structures of trans-[Fe(NCR)2(Et2PCH2CH2PEt2)2][BF4]2 (Râ€=â€Me or CH2C6H4OMe-4) â€. Jou the Chemical Society Dalton Transactions, 1998, , 3311-3318.	r n.a l of	16
295	Structural Versatility of Alkali Metal Coordination Polymers Driven by Arylhydrazones of \hat{l}^2 -Diketones. Crystal Growth and Design, 2013, 13, 5076-5084.	3.0	16
296	Copper(I) and copper(II) metallacycles as catalysts for microwave assisted selective oxidation of cyclohexane. Polyhedron, 2017, 134, 143-152.	2.2	16
297	Nickel(II) Complexes with Redox Noninnocent Octaazamacrocycles as Catalysts in Oxidation Reactions. Inorganic Chemistry, 2019, 58, 11133-11145.	4.0	16
298	A copper-amidocarboxylate based metal organic macrocycle and framework: synthesis, structure and catalytic activities towards microwave assisted alcohol oxidation and Knoevenagel reactions. New Journal of Chemistry, 2019, 43, 9843-9854.	2.8	16
299	Eco-friendly cyclohexane oxidation by a V-scorpionate complex immobilized at hierarchical MOR zeolite. Catalysis Today, 2020, 348, 37-44.	4.4	16
300	Sustainability in Catalytic Cyclohexane Oxidation: The Contribution of Porous Support Materials. Catalysts, 2020, 10, 2.	3.5	16
301	Aroylhydrazone Schiff Base Derived $Cu(II)$ and $V(V)$ Complexes: Efficient Catalysts towards Neat Microwave-Assisted Oxidation of Alcohols. International Journal of Molecular Sciences, 2020, 21, 2832.	4.1	16
302	Organocatalysis Meets Hydrocarbon Oxyfunctionalization: the Role of <i>N</i> â€Hydroxyimides. European Journal of Organic Chemistry, 2021, 2021, 4715-4727.	2.4	16
303	An investigation of two copper(<scp>ii</scp>) complexes with a triazole derivative as a ligand: magnetic and catalytic properties. RSC Advances, 2021, 11, 23442-23449.	3.6	16
304	Redox Potential - (Electronic) Structure Relationships in 18- and 17-Electron Mononitrile (or) Tj ETQq0 0 0 rgBT /O Communications, 2001, 66, 139-154.	verlock 10 1.0	O Tf 50 147
305	Syntheses and characterization of phenyldiazenido and mixed phenyldiazenido–isocyanide complexes of rhenium. Crystal structure of [ReBr2(NNPh)2(PPh3)2]. Journal of the Chemical Society Dalton Transactions, 1998, , 2405-2410.	1.1	15
306	Interplay between Resonanceâ€Assisted Hydrogen Bonding and Coordination in Sulfoâ€Functionalized Arylhydrazones of Active Methylene Compounds. ChemPlusChem, 2014, 79, 1523-1531.	2.8	15

#	Article	IF	CITATIONS
307	A Bis(µâ€chlorido)â€Bridged Cobalt(II) Complex with Silylâ€Containing Schiff Base as a Catalyst Precursor in the Solventâ€Free Oxidation of Cyclohexane. European Journal of Inorganic Chemistry, 2017, 2017, 4324-4332.	2.0	15
308	New Trendy Magnetic C-Scorpionate Iron Catalyst and Its Performance towards Cyclohexane Oxidation. Catalysts, 2018, 8, 69.	3.5	15
309	Antiproliferative activity of heterometallic sodium and potassium-dioxidovanadium(V) polymers. Journal of Inorganic Biochemistry, 2019, 200, 110811.	3.5	15
310	Synthesis and Structure of Copper Complexes of a N6O4 Macrocyclic Ligand and Catalytic Application in Alcohol Oxidation. Catalysts, 2019, 9, 424.	3.5	15
311	Synthesis of a Novel Series of Cu(I) Complexes Bearing Alkylated $1,3,5$ -Triaza-7-phosphaadamantane as Homogeneous and Carbon-Supported Catalysts for the Synthesis of 1 - and 2 -Substituted- $1,2,3$ -triazoles. Nanomaterials, $2021, 11, 2702$.	4.1	15
312	Syntheses and redox properties of the first phosphirene–dinitrogen and phosphirene–diazenide complexes. Journal of the Chemical Society Dalton Transactions, 1999, , 3755-3758.	1.1	14
313	Synthesis, Characterization and Redox Behaviour of Mono- and Dicarbonyl Phosphane Rhenium(I) Complexes Bearing N-, N,N- and N,O-Type Ligands. European Journal of Inorganic Chemistry, 2007, 2007, 1556-1565.	2.0	14
314	Syntheses and Crystal Structures of the First Zinc Complex with 1,3,5-Triaza-7-phosphaadamantane (PTA), [ZnCl2(PTA)2], and of the Hybrid Organic-Inorganic Salts of N-Methyl-1,3,5-triaza-7-phosphaadamantane with Tetrahalozinc [PTA-Me]2Â $\{$ Znl2X2 $\}$ (X = I, Cl). European Journal of Inorganic Chemistry, 2009, 2009, 1181-1186.	2.0	14
315	Silver coordination polymers with tri- and hexacyanoethyl-functionalized macrocyclic ligands. Dalton Transactions, 2015, 44, 1388-1396.	3.3	14
316	Liquid phase oxidation of xylenes catalyzed by the tripodal C-scorpionate iron(II) complex [FeCl2 $\{\hat{l}^2$ 3-HC(pz)3 $\}$]. Polyhedron, 2017, 125, 151-155.	2.2	14
317	Packing polymorphism in 3-amino-2-pyrazinecarboxylate based tin(<scp>ii</scp>) complexes and their catalytic activity towards cyanosilylation of aldehydes. New Journal of Chemistry, 2018, 42, 17513-17523.	2.8	14
318	New palladium(<scp>ii</scp>) complexes with 3-(2-pyridyl)-5-alkyl-1,2,4-triazole ligands as recyclable C–C coupling catalysts. New Journal of Chemistry, 2019, 43, 10973-10984.	2.8	14
319	Styrene oxidation catalyzed by copper(II) C-scorpionates in homogenous medium and immobilized on sucrose derived hydrochars. Catalysis Today, 2020, 357, 56-63.	4.4	14
320	Thiolateisocyanide complexes of molybdenum(II) and tungsten(II): crystal structures of cis-[Mo(SC6H2Pri3-2,4,6)2(CNMe)4], cis-[Mo(SC6H2Pri3-2,4,6)2(CNBut)4] and cis-[W(SC6H2Pri3-2,4,6)2(CNMe)4], and anodically induced isomerisation studies. Journal of the Chemical Society Dalton Transactions, 1997, , 3725.	1.1	13
321	Syntheses and properties of hydride–cyanamide and derived hydrogen-cyanamide complexes of molybdenum(iv). Crystal structure of [MoH2(NCNH2)2(Ph2PCH2CH2PPh2)2][BF4]2. Dalton Transactions, 2003, , 3743-3750.	3.3	13
322	A Dianionic Dinickel(II) Complex and Its Oxidised Phenoxyl Radical States. European Journal of Inorganic Chemistry, 2011, 2011, 2791-2796.	2.0	13
323	Molybdenum- and tungsten(ii) monometallic 3-(2-pyridyl)pyrazole and bimetallic 3-(2-pyridyl)pyrazolate complexes. Dalton Transactions, 2012, 41, 7017.	3.3	13
324	Cu(II) and Fe(III) Complexes Derived from N-Acetylpyrazine-2-Carbohydrazide as Efficient Catalysts Towards Neat Microwave Assisted Oxidation of Alcohols. Catalysts, 2019, 9, 1053.	3.5	13

#	Article	IF	CITATIONS
325	1D Zn(II) Coordination Polymers as Effective Heterogeneous Catalysts in Microwave-Assisted Single-Pot Deacetalization-Knoevenagel Tandem Reactions in Solvent-Free Conditions. Catalysts, 2021, 11, 90.	3.5	13
326	1D hacksaw chain bipyridine–sulfonate Schiff base-dicopper(<scp>ii</scp>) as a host for variable solvent guests. RSC Advances, 2015, 5, 28070-28079.	3.6	12
327	1D Zn(II) coordination polymer of arylhydrazone of 5,5-dimethylcyclohexane-1,3-dione as a pre-catalyst for the Henry reaction. Catalysis Communications, 2016, 87, 49-52.	3.3	12
328	Ni(II)-Aroylhydrazone Complexes as Catalyst Precursors Towards Efficient Solvent-Free Nitroaldol Condensation Reaction. Catalysts, 2019, 9, 554.	3.5	12
329	Cyanosilylation of Aldehydes Catalyzed by $Ag(I)$ - and $Cu(II)$ -Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media. Catalysts, 2019, 9, 284.	3.5	12
330	A mechanistic insight into the rapid and selective removal of Congo Red by an amide functionalised Zn(ii) coordination polymer. Dalton Transactions, 2020, 49, 12970-12984.	3.3	12
331	Heterogeneous Gold Nanoparticle-Based Catalysts for the Synthesis of Click-Derived Triazoles via the Azide-Alkyne Cycloaddition Reaction. Catalysts, 2022, 12, 45.	3.5	12
332	Targeting canine mammary tumours via gold nanoparticles functionalized with promising Co(<scp>II</scp>) and Zn(<scp>II</scp>) compounds. Veterinary and Comparative Oncology, 2017, 15, 1537-1542.	1.8	11
333	Structural characterization and biological properties of silver(I) tris(pyrazolyl)methane sulfonate. Journal of Inorganic Biochemistry, 2019, 199, 110789.	3.5	11
334	Water-Soluble O-, S- and Se-Functionalized Cyclic Acetyl-triaza-phosphines. Synthesis, Characterization and Application in Catalytic Azide-alkyne Cycloaddition. Molecules, 2020, 25, 5479.	3.8	11
335	Adipic Acid Route: Oxidation of Cyclohexene vs. Cyclohexane. Catalysts, 2020, 10, 1443.	3.5	11
336	Novel Chemotherapeutic Agents - The Contribution of Scorpionates. Current Medicinal Chemistry, 2020, 26, 7452-7475.	2.4	11
337	Fast-atom Bombardment (FAB) Mass Spectra of Nitrile or Cyanamide Complexes with the {M(Ph2PCH2CH2Ph2)2}n+ (M=Fe or Re) Metal Sites. Application to Reactions Induced under FAB Conditions. Rapid Communications in Mass Spectrometry, 1996, 10, 447-454.	1.5	10
338	Electron-transfer chain catalysis for the cis-to-trans isomeric conversion of cis-[ReCl(CO)(Ph2PCH2CH2PPh2)2]. Journal of the Chemical Society Dalton Transactions, 1998, , 4139-4146.	1.1	10
339	Reactions of cyclic and linear alkynols with a phosphinic iron(II) centre. Inorganic Chemistry Communication, 2003, 6, 94-96.	3.9	10
340	Reactivity of bulky tris(phenylpyrazolyl)methanesulfonate copper(I) complexes towards small unsaturated molecules. Journal of Organometallic Chemistry, 2012, 714, 47-52.	1.8	10
341	Metal-free regioselective Câ \in "C bond cleavage in 1,3,5-triazine derivatives of \hat{l}^2 -diketones. New Journal of Chemistry, 2014, 38, 495-498.	2.8	10
342	Syntheses, Structures, and Catalytic Hydrocarbon Oxidation Properties of N-Heterocycle-Sulfonated Schiff Base Copper(II) Complexes. Inorganics, 2019, 7, 17.	2.7	10

#	Article	IF	Citations
343	A new amido-phosphane as ligand for copper and silver complexes. Synthesis, characterization and catalytic application for azide–alkyne cycloaddition in glycerol. Dalton Transactions, 2021, 50, 6109-6125.	3.3	10
344	Allenylidene and derived alkynyl complexes of iron(II) with the {FeBr(Et2PCH2CH2PEt2)2}+ centre. Journal of Organometallic Chemistry, 2003, 684, 315-321.	1.8	9
345	Novel Methinic Functionalized and Dendritic C-Scorpionates. Molecules, 2018, 23, 3066.	3.8	9
346	Comparison of microwave and mechanochemical energy inputs in the catalytic oxidation of cyclohexane. Dalton Transactions, 2018, 47, 8193-8198.	3.3	9
347	C-scorpionate Au(III) complexes as pre-catalysts for industrially significant toluene oxidation and benzaldehyde esterification reactions. Inorganica Chimica Acta, 2020, 512, 119881.	2.4	9
348	Glycerol Role in Nano Oxides Synthesis and Catalysis. Catalysts, 2020, 10, 1406.	3.5	9
349	Zn(II)-to-Cu(II) Transmetalation in an Amide Functionalized Complex and Catalytic Applications in Styrene Oxidation and Nitroaldol Coupling. Molecules, 2020, 25, 2644.	3.8	9
350	Unfolding biological properties of a versatile dicopper(II) precursor and its two mononuclear copper(II) derivatives. Journal of Inorganic Biochemistry, 2017, 174, 25-36.	3.5	8
351	Hydrosoluble Complexes Bearing Tris(pyrazolyl)methane Sulfonate Ligand: Synthesis, Characterization and Catalytic Activity for Henry Reaction. Catalysts, 2019, 9, 611.	3.5	8
352	Pyrene Carboxylate Ligand Based Coordination Polymers for Microwave-Assisted Solvent-Free Cyanosilylation of Aldehydes. Molecules, 2021, 26, 1101.	3.8	8
353	First-Row-Transition Ion Metals(II)-EDTA Functionalized Magnetic Nanoparticles as Catalysts for Solvent-Free Microwave-Induced Oxidation of Alcohols. Catalysts, 2017, 7, 335.	3.5	7
354	Synergistic catalytic action of vanadia–titania composites towards the microwave-assisted benzoin oxidation. Dalton Transactions, 2019, 48, 3198-3203.	3.3	7
355	Pentafluorophenyl Platinum(II) Complexes of PTA and its N-Allyl and N-Benzyl Derivatives: Synthesis, Characterization and Biological Activity. Materials, 2019, 12, 3907.	2.9	7
356	A new Cu(II)-O-Carvacrotinate complex: Synthesis, characterization and biological activity. Journal of Inorganic Biochemistry, 2019, 190, 31-37.	3.5	7
357	Solvent-free oxidation of 1 -phenylethanol catalysed by gold nanoparticles supported on carbon powder materials. Catalysis Today, 2020, 357, 22-31.	4.4	7
358	Mechanochemical and Conventional Synthesis of Copper(II) Coordination Polymers Bearing Arylhydrazone of Acetoacetanilide and Their Catalytic Activity in Conversion of Acetone to Acetic Acid. ChemistrySelect, 2020, 5, 7923-7927.	1.5	7
359	Catalytic Performance of a Magnetic Core-Shell Iron(II) C-Scorpionate under Unconventional Oxidation Conditions. Nanomaterials, 2020, 10, 2111.	4.1	7
360	Supported Gold Nanoparticles as Catalysts in Peroxidative and Aerobic Oxidation of 1-Phenylethanol under Mild Conditions. Nanomaterials, 2020, 10, 151.	4.1	7

#	Article	IF	CITATIONS
361	Oxido- and Dioxido-Vanadium(V) Complexes Supported on Carbon Materials: Reusable Catalysts for the Oxidation of Cyclohexane. Nanomaterials, 2021, 11, 1456.	4.1	7
362	Vanadium C-scorpionate supported on mesoporous aptes-functionalized SBA-15 as catalyst for the peroxidative oxidation of benzyl alcohol. Microporous and Mesoporous Materials, 2021, 320, 111111.	4.4	7
363	A Bio-Based Alginate Aerogel as an Ionic Liquid Support for the Efficient Synthesis of Cyclic Carbonates from CO2 and Epoxides. Catalysts, 2021, 11, 872.	3.5	7
364	Water-soluble Al(<scp>iii</scp>), Fe(<scp>iii</scp>) and Cu(<scp>ii</scp>) formazanates: synthesis, structure, and applications in alkane and alcohol oxidations. New Journal of Chemistry, 2022, 46, 5002-5011.	2.8	7
365	Stopped-flow mechanistic study of bromide substitution by an organonitrile at an iron(II) phosphinic centre; a π-electron driven process. Inorganica Chimica Acta, 1996, 250, 311-315.	2.4	6
366	Electrocatalytic reduction of organohalides mediated by the dihalo-molybdenum phosphinic complexes trans-[MoX2(Ph2PCH2CH2PPh2)2] (X = I, Br)—A mechanistic study by cyclic voltammetry digital simulation. Dalton Transactions, 2009, , 4772.	3.3	6
367	Synthesis, characterization and redox behaviour of benzoyldiazenido- and oxorhenium complexes bearing N,N- and S,S-type ligands. Inorganica Chimica Acta, 2010, 363, 1269-1274.	2.4	6
368	Synthesis, characterization, electrochemical behavior and in \hat{A} vitro protein tyrosine kinase inhibitory activity of the cymene-halogenobenzohydroxamato [Ru(\hat{i} -6-cymene)(bha)Cl] complexes. Journal of Organometallic Chemistry, 2013, 730, 137-143.	1.8	6
369	Mononuclear copper(ii) complexes of an arylhydrazone of 1H-indene-1,3(2H)-dione as catalysts for the oxidation of 1-phenylethanol in ionic liquid medium. RSC Advances, 2016, 6, 83412-83420.	3.6	6
370	Elementary and efficient catalyst process for the Knoevenagel condensation of araldehydes with arylmethylidene malononitrile. Inorganica Chimica Acta, 2018, 471, 76-81.	2.4	6
371	New C-scorpionate nickel(II) catalyst for Heck C–C coupling under unconventional conditions. Journal of Organometallic Chemistry, 2019, 896, 32-37.	1.8	6
372	C-scorpionate iron(II) complexes as highly selective catalysts for the hydrocarboxylation of cyclohexane. Inorganica Chimica Acta, 2019, 489, 269-274.	2.4	6
373	Spin state, electronic structure and bonding on C-scorpionate [Fe(II)Cl2(tpm)] catalyst: An experimental and computational study. Catalysis Today, 2020, 358, 403-411.	4.4	6
374	Supported Palladium Nanocatalysts: Recent Findings in Hydrogenation Reactions. Processes, 2020, 8, 1172.	2.8	6
375	Immobilization of Rh(I)-N-Xantphos and Fe(II)-C-Scorpionate onto Magnetic Nanoparticles: Reusable Catalytic System for Sequential Hydroformylation/Acetalization. Catalysts, 2021, 11, 608.	3.5	6
376	Electrochemical Study of Alkynyl Fe(II) Complexes. Portugaliae Electrochimica Acta, 2003, 21, 85-90.	1.1	6
377	Bis[tris(1-pyrazolyl)methane-κ3N,N′,N′′]copper(II) dichloride methanol disolvate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1979-m1979.	0.2	5
378	Gold Nanotriangles as Selective Catalysts for Cyclohexanol and Cyclohexanone Production. Applied Sciences (Switzerland), 2018, 8, 2655.	2.5	5

#	Article	IF	Citations
379	Commercial gold(III) complex supported on functionalized carbon materials as catalyst for cyclohexane hydrocarboxylation. Catalysis Today, 2020, 357, 39-45.	4.4	5
380	Fe@Hierarchical BEA Zeolite Catalyst for MW-Assisted Alcohol Oxidation Reaction: A Greener Approach. Catalysts, 2020, 10, 1029.	3.5	5
381	Nickel(II), Copper(II) and Palladium(II) Complexes with Bis-Semicarbazide Hexaazamacrocycles: Redox-Noninnocent Behavior and Catalytic Activity in Oxidation and C–C Coupling Reactions. Inorganic Chemistry, 2020, 59, 10650-10664.	4.0	5
382	Mechanochemical Preparation of Pd(II) and Pt(II) Composites with Carbonaceous Materials and Their Application in the Suzuki-Miyaura Reaction at Several Energy Inputs. Molecules, 2020, 25, 2951.	3.8	5
383	Selective Oxidation of Ethane to Acetic Acid Catalyzed by a C-Scorpionate Iron(II) Complex: A Homogeneous vs. Heterogeneous Comparison. Molecules, 2020, 25, 5642.	3.8	5
384	Ultrasound and Radiation-Induced Catalytic Oxidation of 1-Phenylethanol to Acetophenone with Iron-Containing Particulate Catalysts. Molecules, 2020, 25, 740.	3.8	5
385	Tetraalkylammonium Functionalized Hydrochars as Efficient Supports for Palladium Nanocatalysts. ChemCatChem, 2020, 12, 2295-2303.	3.7	5
386	A novel <i>>o</i> -vanillin Fe(<scp>iii</scp>) complex catalytically active in C–H oxidation: exploring the magnetic exchange interactions and spectroscopic properties with different DFT functionals. Dalton Transactions, 2021, 50, 14782-14796.	3.3	5
387	Unprecedented Use of NHC Gold (I) Complexes as Catalysts for the Selective Oxidation of Ethane to Acetic Acid. Materials, 2021, 14, 4294.	2.9	5
388	Spectroelectrochemical Properties and Catalytic Activity in Cyclohexane Oxidation of the Hybrid Zr/Hf-Phthalocyaninate-Capped Nickel(II) and Iron(II) tris-Pyridineoximates and Their Precursors. Molecules, 2021, 26, 336.	3.8	5
389	Redox Behaviour of Alkynol-Derived Allenylidene Complexes of Iron(II). Portugaliae Electrochimica Acta, 2001, 19, 361-365.	1.1	5
390	Diastereomeric dinickel(<scp>ii</scp>) complexes with non-innocent bis(octaazamacrocyclic) ligands: isomerization, spectroelectrochemistry, DFT calculations and use in catalytic oxidation of cyclohexane. Dalton Transactions, 2022, 51, 5151-5167.	3.3	5
391	Cyanoimideâ€Bridged, Bi―and Trinuclear, Heterometallic Complexes with an NCN–Mo–NCN Phosphinic Core. European Journal of Inorganic Chemistry, 2009, 2009, 3966-3971.	2.0	4
392	Mono-alkylation of cyanoimide at a molybdenum(IV) diphosphinic center by alkyl halides: synthesis, cathodically induced isomerization and theoretical studies. Electrochimica Acta, 2016, 218, 252-262.	5.2	4
393	Highly Active and Selective Supported Rhenium Catalysts for Aerobic Oxidation of n-Hexane and n-Heptane. Catalysts, 2018, 8, 114.	3.5	4
394	Fe(III) Complexes in Cyclohexane Oxidation: Comparison of Catalytic Activities under Different Energy Stimuli. Catalysts, 2020, 10, 1175.	3.5	4
395	Chapter 8. C–C Bond Formation in the Sustainable Synthesis of Pharmaceuticals. RSC Green Chemistry, 0, , 193-229.	0.1	4
396	Designing and Construction of Polyaromatic Group Containing $Cd(II)$ -based Coordination Polymers for Solvent-free Strecker-type Cyanation of Acetals. New Journal of Chemistry, $0, , .$	2.8	4

#	Article	IF	CITATIONS
397	Acylated cyanoimido-complexes trans-[Mo(NCN){NCNC(O)R}(dppe)2]Cl and their reactions with electrophiles: chemical, electrochemical and theoretical study. Dalton Transactions, 2012, 41, 13876.	3.3	3
398	Thermodynamics of Dissociation of ortho-Hydroxyphenylhydrazo-β-diketones and of Their Complexation with Copper(II) in Aqueous–Ethanol Solutions. Journal of Solution Chemistry, 2012, 41, 491-502.	1.2	3
399	Enhancing alkane oxidation using Co-doped SnO2 nanoparticles as catalysts. Catalysis Communications, 2017, 96, 19-22.	3.3	3
400	Copper(II) Complexes of Arylhydrazone of 1H-Indene-1,3(2H)-dione as Catalysts for the Oxidation of Cyclohexane in Ionic Liquids. Catalysts, 2018, 8, 636.	3 . 5	3
401	Efficient Solventâ€Free Friedelâ€Crafts Benzoylation and Acylation of <i>m</i> â€Xylene Catalyzed by <i>N</i> â€Acetylpyrazineâ€2â€carbohydrazideâ€Fe(III)â€chloro Complexes. ChemistrySelect, 2018, 3, 8349-835	5 ^{1.5}	3
402	A Tale of Two Ends: Repurposing Metallic Compounds from Anti-Tumour Agents to Effective Antibacterial Activity. Antibiotics, 2020, 9, 321.	3.7	3
403	Synthesis, Structures, Electrochemistry, and Catalytic Activity towards Cyclohexanol Oxidation of Mono-, Di-, and Polynuclear Iron(III) Complexes with 3-Amino-2-Pyrazinecarboxylate. Applied Sciences (Switzerland), 2020, 10, 2692.	2.5	3
404	Efficient and Reusable Iron Catalyst to Convert CO2 into Valuable Cyclic Carbonates. Molecules, 2021, 26, 1089.	3.8	3
405	Comparative Electrochemical Behaviour of the Complexes trans- $[Mo(NCN){NCNC(O)R}(dppe)2]Cl(R =) TjETQq1$	1.0.7843	14 rgBT /O∨
406	The importance of green chemistry metrics. , 2021, , 37-62.		2
406	The importance of green chemistry metrics. , 2021, , 37-62. Highlights of the Nanocatalysis in Organic Chemistry. Catalysts, 2021, 11, 213.	3.5	2
		3.5	
407	Highlights of the Nanocatalysis in Organic Chemistry. Catalysts, 2021, 11, 213. Highly Selective Cyclohexane Oxidation Catalyzed by Ferrocene in Ionic Liquid Medium. Letters in		2
407	Highlights of the Nanocatalysis in Organic Chemistry. Catalysts, 2021, 11, 213. Highly Selective Cyclohexane Oxidation Catalyzed by Ferrocene in Ionic Liquid Medium. Letters in Organic Chemistry, 2017, 14, . Redox Behaviour of a Tris(pyrazolyl)methanesulfonate Vanadium Complex, a Preliminary Study.	0.5	2
407	Highlights of the Nanocatalysis in Organic Chemistry. Catalysts, 2021, 11, 213. Highly Selective Cyclohexane Oxidation Catalyzed by Ferrocene in Ionic Liquid Medium. Letters in Organic Chemistry, 2017, 14, . Redox Behaviour of a Tris(pyrazolyl)methanesulfonate Vanadium Complex, a Preliminary Study. Portugaliae Electrochimica Acta, 2006, 24, 257-259. Electrochemical Properties of (h5-C5Me5)–Rhodium and –Iridium Complexes Containing	0.5	2 2
407 408 409 410	Highlights of the Nanocatalysis in Organic Chemistry. Catalysts, 2021, 11, 213. Highly Selective Cyclohexane Oxidation Catalyzed by Ferrocene in Ionic Liquid Medium. Letters in Organic Chemistry, 2017, 14, . Redox Behaviour of a Tris(pyrazolyl)methanesulfonate Vanadium Complex, a Preliminary Study. Portugaliae Electrochimica Acta, 2006, 24, 257-259. Electrochemical Properties of (h5-C5Me5)–Rhodium and –Iridium Complexes Containing Bis(pyrazolyl)alkane Ligands. Portugaliae Electrochimica Acta, 2014, 32, 253-257. C-Heterogenized Re Nanoparticles as Effective Catalysts for the Reduction of 4-Nitrophenol and	0.5	2 2 2
407 408 409 410 411	Highlights of the Nanocatalysis in Organic Chemistry. Catalysts, 2021, 11, 213. Highly Selective Cyclohexane Oxidation Catalyzed by Ferrocene in Ionic Liquid Medium. Letters in Organic Chemistry, 2017, 14, . Redox Behaviour of a Tris(pyrazolyl)methanesulfonate Vanadium Complex, a Preliminary Study. Portugaliae Electrochimica Acta, 2006, 24, 257-259. Electrochemical Properties of (h5-C5Me5)–Rhodium and –Iridium Complexes Containing Bis(pyrazolyl)alkane Ligands. Portugaliae Electrochimica Acta, 2014, 32, 253-257. C-Heterogenized Re Nanoparticles as Effective Catalysts for the Reduction of 4-Nitrophenol and Oxidation of 1-Phenylethanol. Catalysts, 2022, 12, 285. Catalytic applications of recent metal poly(1H-pyrazol-1-yl)-methane scorpionates. Inorganica Chimica	0.5 1.1 1.1 2.5 2.4	2 2 2 2 2 2

#	Article	IF	CITATIONS
415	Neutral Lipophilic Palladium(II) Complexes and their Applications in Electrocatalytic Hydrogen Production and C Coupling Reactions. European Journal of Inorganic Chemistry, 2020, 2020, 813-822.	2.0	1
416	Degradation of crystallins from a psoriatic patient undergoing PUVA therapy. FEBS Letters, 1990, 268, 72-74.	2.8	0
417	Commercial Gold(I) and Gold(III) Compounds Supported on Carbon Materials as Greener Catalysts for the Oxidation of Alkanes and Alcohols. ChemCatChem, 2018, 10, 1661-1662.	3.7	0
418	Biographical sketch of Professor Armando J. L. Pombeiro. Coordination Chemistry Reviews, 2019, 380, 601-603.	18.8	0
419	Glycerol: The liquid support for nanocatalysts. , 2021, , 585-612.		O
420	Redox Behaviour of a BiscyanamideDihydride Mo Complex. A Preliminary Study. Portugaliae Electrochimica Acta, 2001, 19, 357-360.	1.1	0
421	Baeyer–Villiger Oxidation Promoted by Noncovalent Interactions. RSC Catalysis Series, 2019, , 283-301.	0.1	0
422	Carbon-supported Vanadium Catalysis. RSC Catalysis Series, 2020, , 285-320.	0.1	0
423	Commercial Gold Complexes Supported on Functionalised Carbon Materials as Efficient Catalysts for the Direct Oxidation of Ethane to Acetic Acid. Catalysts, 2022, 12, 165.	3.5	0
424	Unprecedented Mechanochemical Synthesis and Heterogenization of a C-Scorpionate Au(III) Catalyst for Microwave-Assisted Biomass Valorization. Nanomaterials, 2022, 12, 362.	4.1	O