Marianne Liebi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4982554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D Binary Mesocrystals from Anisotropic Nanoparticles<0:p>. Angewandte Chemie, 2022, 134, e202112461.	2.0	0
2	3D Binary Mesocrystals from Anisotropic Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
3	Inâ€situ Investigations on Gold Nanoparticles Stabilization Mechanisms in Biological Environments Containing HSA. Advanced Functional Materials, 2022, 32, 2110253.	14.9	8
4	Amphiphilic Polymer Coâ€Network: A Versatile Matrix for Tailoring the Photonic Energy Transfer in Wearable Energy Harvesting Devices. Advanced Energy Materials, 2022, 12, .	19.5	10
5	Photoresponsive Movement in 3D Printed Cellulose Nanocomposites. ACS Applied Materials & Interfaces, 2022, 14, 16703-16717.	8.0	11
6	Titelbild: BinÃæ 3Dâ€Mesokristalle aus anisotropen Nanopartikeln (Angew. Chem. 2/2022). Angewandte Chemie, 2022, 134, .	2.0	0
7	Fingerprinting soft material nanostructure response to complex flow histories. Physical Review Materials, 2022, 6, .	2.4	6
8	Quantifying the hydroxyapatite orientation near the ossification front in a piglet femoral condyle using X-ray diffraction tensor tomography. Scientific Reports, 2021, 11, 2144.	3.3	7
9	Highly Permeable Fluorinated Polymer Nanocomposites for Plasmonic Hydrogen Sensing. ACS Applied Materials & Interfaces, 2021, 13, 21724-21732.	8.0	17
10	Nanostructure-specific X-ray tomography reveals myelin levels, integrity and axon orientations in mouse and human nervous tissue. Nature Communications, 2021, 12, 2941.	12.8	33
11	3D nanoscale analysis of bone healing around degrading Mg implants evaluated by X-ray scattering tensor tomography. Acta Biomaterialia, 2021, 134, 804-817.	8.3	14
12	Nanostructure and anisotropy of 3D printed lyotropic liquid crystals studied by scattering and birefringence imaging. Additive Manufacturing, 2021, 47, 102289.	3.0	5
13	In Situ Visualization of the Structural Evolution and Alignment of Lyotropic Liquid Crystals in Confined Flow. Small, 2021, 17, e2006229.	10.0	12
14	NanoMAX: the hard X-ray nanoprobe beamline at the MAX IV Laboratory. Journal of Synchrotron Radiation, 2021, 28, 1935-1947.	2.4	31
15	Tough Ordered Mesoporous Elastomeric Biomaterials Formed at Ambient Conditions. ACS Nano, 2020, 14, 241-254.	14.6	8
16	Multiscale Characterization of Embryonic Long Bone Mineralization in Mice. Advanced Science, 2020, 7, 2002524.	11.2	8
17	Bulk-Processed Pd Nanocube–Poly(methyl methacrylate) Nanocomposites as Plasmonic Plastics for Hydrogen Sensing. ACS Applied Nano Materials, 2020, 3, 8438-8445. 	5.0	20
18	Mapping the 3D orientation of nanocrystals and nanostructures in human bone: Indications of novel structural features. Science Advances, 2020, 6, eaba4171.	10.3	51

Marianne Liebi

#	Article	IF	CITATIONS
19	Validation study of small-angle X-ray scattering tensor tomography. Journal of Synchrotron Radiation, 2020, 27, 779-787.	2.4	16
20	Assessing lesion malignancy by scanning small-angle x-ray scattering of breast tissue with microcalcifications. Physics in Medicine and Biology, 2019, 64, 155010.	3.0	4
21	High-speed tensor tomography: iterative reconstruction tensor tomography (IRTT) algorithm. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, 223-238.	0.1	20
22	Fabrication Procedures and Birefringence Measurements for Designing Magnetically Responsive Lanthanide Ion Chelating Phospholipid Assemblies. Journal of Visualized Experiments, 2018, , .	0.3	1
23	Bioinspired Structural Hierarchy within Macroscopic Volumes of Synthetic Composites. Advanced Healthcare Materials, 2018, 7, e1800466.	7.6	7
24	Automated Analysis of Spatially Resolved X-ray Scattering and Micro Computed Tomography of Artificial and Natural Enamel Carious Lesions. Journal of Imaging, 2018, 4, 81.	3.0	6
25	Small-angle X-ray scattering tensor tomography: model of the three-dimensional reciprocal-space map, reconstruction algorithm and angular sampling requirements. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 12-24.	0.1	46
26	Intermicellar Interactions and the Viscoelasticity of Surfactant Solutions: Complementary Use of SANS and SAXS. Langmuir, 2017, 33, 2617-2627.	3.5	21
27	Rapid Acquisition of Xâ€Ray Scattering Data from Dropletâ€Encapsulated Protein Systems. ChemPhysChem, 2017, 18, 1220-1223.	2.1	14
28	Mastering the magnetic susceptibility of magnetically responsive bicelles with 3β-amino-5-cholestene and complexed lanthanide ions. Physical Chemistry Chemical Physics, 2017, 19, 10820-10824.	2.8	6
29	Time-Resolved X-Ray Solution Scattering Reveals the Structural Photoactivation of a Light-Oxygen-Voltage Photoreceptor. Structure, 2017, 25, 933-938.e3.	3.3	34
30	Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase. Nature Communications, 2017, 8, 284.	12.8	55
31	Ionic micelles and aromatic additives: a closer look at the molecular packing parameter. Physical Chemistry Chemical Physics, 2017, 19, 21869-21877.	2.8	29
32	High-acceptance versatile microfocus module based on elliptical Fresnel zone plates for small-angle X-ray scattering. Optics Express, 2017, 25, 21145.	3.4	5
33	Multiscale Description of Shale Pore Systems by Scanning SAXS and WAXS Microscopy. Energy & Fuels, 2016, 30, 10282-10297.	5.1	92
34	Viscoelasticity Enhancement of Surfactant Solutions Depends on Molecular Conformation: Influence of Surfactant Headgroup Structure and Its Counterion. Langmuir, 2016, 32, 4239-4250.	3.5	36
35	Scanning-SAXS of microfluidic flows: nanostructural mapping of soft matter. Lab on A Chip, 2016, 16, 4028-4035.	6.0	42
36	Controlling water evaporation through self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10275-10280.	7.1	37

Marianne Liebi

#	Article	IF	CITATIONS
37	Tailoring Bicelle Morphology and Thermal Stability with Lanthanide-Chelating Cholesterol Conjugates. Langmuir, 2016, 32, 9005-9014.	3.5	11
38	Interfibrillar packing of bovine cornea by table-top and synchrotron scanning SAXS microscopy. Journal of Applied Crystallography, 2016, 49, 1231-1239.	4.5	16
39	Controlling Orientational and Translational Order of Iron Oxide Nanocubes by Assembly in Nanofluidic Containers. Langmuir, 2015, 31, 12537-12543.	3.5	14
40	Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography. Nature, 2015, 527, 349-352.	27.8	170
41	Six-dimensional real and reciprocal space small-angle X-ray scattering tomography. Nature, 2015, 527, 353-356.	27.8	149
42	Magnetically Enhanced Bicelles Delivering Switchable Anisotropy in Optical Gels. ACS Applied Materials & Interfaces, 2014, 6, 1100-1105.	8.0	19
43	Cholesterol-Diethylenetriaminepentaacetate Complexed with Thulium Ions Integrated into Bicelles To Increase Their Magnetic Alignability. Journal of Physical Chemistry B, 2013, 117, 14743-14748.	2.6	10
44	Alignment of Bicelles Studied with High-Field Magnetic Birefringence and Small-Angle Neutron Scattering Measurements. Langmuir, 2013, 29, 3467-3473.	3.5	19
45	Cholesterol Increases the Magnetic Aligning of Bicellar Disks from an Aqueous Mixture of DMPC and DMPE–DTPA with Complexed Thulium Ions. Langmuir, 2012, 28, 10905-10915.	3.5	21
46	Novel Type of Bicellar Disks from a Mixture of DMPC and DMPE-DTPA with Complexed Lanthanides. Langmuir, 2010, 26, 5382-5387.	3.5	26
47	Magnetic Field Alignable Domains in Phospholipid Vesicle Membranes Containing Lanthanides. Journal of Physical Chemistry B, 2010, 114, 174-186.	2.6	11