Peter J Fried

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/498225/publications.pdf Version: 2024-02-01

DETED | FDIED

#	Article	IF	CITATIONS
1	Concordance Between BeamF3 and MRI-neuronavigated Target SitesÂfor Repetitive Transcranial Magnetic Stimulation of the LeftÂDorsolateral Prefrontal Cortex. Brain Stimulation, 2015, 8, 965-973.	1.6	153
2	ls neuroenhancement by noninvasive brain stimulation a net zero-sum proposition?. Neurolmage, 2014, 85, 1058-1068.	4.2	102
3	Chronic Olanzapine Treatment Causes Differential Expression of Genes in Frontal Cortex of Rats as Revealed by DNA Microarray Technique. Neuropsychopharmacology, 2006, 31, 1888-1899.	5.4	96
4	Optimal number of pulses as outcome measures of neuronavigated transcranial magnetic stimulation. Clinical Neurophysiology, 2016, 127, 2892-2897.	1.5	95
5	Large-scale analysis of interindividual variability in theta-burst stimulation data: Results from the â€~Big TMS Data Collaboration'. Brain Stimulation, 2020, 13, 1476-1488.	1.6	81
6	Transcranial magnetic stimulation: Neurophysiological and clinical applications. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 163, 73-92.	1.8	75
7	Reproducibility of Single-Pulse, Paired-Pulse, and Intermittent Theta-Burst TMS Measures in Healthy Aging, Type-2 Diabetes, and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2017, 9, 263.	3.4	59
8	Non-invasive Brain Stimulation: Probing Intracortical Circuits and Improving Cognition in the Aging Brain. Frontiers in Aging Neuroscience, 2018, 10, 177.	3.4	53
9	EEG spectral power abnormalities and their relationship with cognitive dysfunction in patients with Alzheimer's disease and type 2 diabetes. Neurobiology of Aging, 2020, 85, 83-95.	3.1	53
10	Therapeutic noninvasive brain stimulation in Alzheimer's disease and related dementias. Current Opinion in Neurology, 2019, 32, 292-304.	3.6	50
11	Causal evidence supporting functional dissociation of verbal and spatial working memory in the human dorsolateral prefrontal cortex. European Journal of Neuroscience, 2014, 39, 1973-1981.	2.6	49
12	Therapeutic Noninvasive Brain Stimulation in Alzheimer's Disease. Current Alzheimer Research, 2017, 14, 362-376.	1.4	47
13	Humans with Type-2 Diabetes Show Abnormal Long-Term Potentiation-Like Cortical Plasticity Associated with Verbal Learning Deficits. Journal of Alzheimer's Disease, 2016, 55, 89-100.	2.6	43
14	Reproducibility of cortical response modulation induced by intermittent and continuous theta-burst stimulation of the human motor cortex. Brain Stimulation, 2021, 14, 949-964.	1.6	42
15	Test–Retest Reliability of the Effects of Continuous Theta-Burst Stimulation. Frontiers in Neuroscience, 2019, 13, 447.	2.8	41
16	The Effects of Waveform and Current Direction on the Efficacy and Test–Retest Reliability of Transcranial Magnetic Stimulation. Neuroscience, 2018, 393, 97-109.	2.3	38
17	Training in the practice of noninvasive brain stimulation: Recommendations from an IFCN committee. Clinical Neurophysiology, 2021, 132, 819-837.	1.5	38
18	Large-scale analysis of interindividual variability in single and paired-pulse TMS data. Clinical Neurophysiology, 2021, 132, 2639-2653.	1.5	36

Peter J Fried

#	Article	IF	CITATIONS
19	The Role of Cognitive Reserve in Alzheimer's Disease and Aging: A Multi-Modal Imaging Review. Journal of Alzheimer's Disease, 2018, 66, 1341-1362.	2.6	32
20	Corticomotor Plasticity Predicts Clinical Efficacy of Combined Neuromodulation and Cognitive Training in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 200.	3.4	29
21	Characterization of Visual Percepts Evoked by Noninvasive Stimulation of the Human Posterior Parietal Cortex. PLoS ONE, 2011, 6, e27204.	2.5	28
22	Light aerobic exercise modulates executive function and cortical excitability. European Journal of Neuroscience, 2020, 51, 1723-1734.	2.6	27
23	Direct current stimulation over the human sensorimotor cortex modulates the brain's hemodynamic response to tactile stimulation. European Journal of Neuroscience, 2015, 42, 1933-1940.	2.6	24
24	Diabetes and the link between neuroplasticity and glutamate in the aging human motor cortex. Clinical Neurophysiology, 2019, 130, 1502-1510.	1.5	23
25	A structured ICA-based process for removing auditory evoked potentials. Scientific Reports, 2022, 12, 1391.	3.3	22
26	Intermittent theta-burst stimulation induces correlated changes in cortical and corticospinal excitability in healthy older subjects. Clinical Neurophysiology, 2017, 128, 2419-2427.	1.5	21
27	Higher motor cortical excitability linked to greater cognitive dysfunction in Alzheimer's disease: results from two independent cohorts. Neurobiology of Aging, 2021, 108, 24-33.	3.1	15
28	LTP-like plasticity is impaired in amyloid-positive amnestic MCI but independent of PET-amyloid burden. Neurobiology of Aging, 2020, 96, 109-116.	3.1	14
29	A Novel Approach for Documenting Phosphenes Induced by Transcranial Magnetic Stimulation. Journal of Visualized Experiments, 2010, , .	0.3	13
30	Atrophy in Distributed Networks Predicts Cognition in Alzheimer's Disease and Type 2 Diabetes. Journal of Alzheimer's Disease, 2018, 65, 1301-1312.	2.6	10
31	From qualia to quantia: A system to document and quantify phosphene percepts elicited by non-invasive neurostimulation of the human occipital cortex. Journal of Neuroscience Methods, 2011, 198, 149-157.	2.5	8
32	Corticomotor plasticity as a predictor of response to high frequency transcranial magnetic stimulation treatment for major depressive disorder. Journal of Affective Disorders, 2022, 303, 114-122.	4.1	7
33	Aftereffects of Intermittent Theta-Burst Stimulation in Adjacent, Non-Target Muscles. Neuroscience, 2019, 418, 157-165.	2.3	5
34	Speech Perception Triggers Articulatory Action: Evidence From Mechanical Stimulation. Frontiers in Communication, 2020, 5, .	1.2	4
35	Efficacy of mechanisms of neuroplasticity after a stroke. Restorative Neurology and Neuroscience, 2022, , 1-12.	0.7	3
36	Editorial: Non-invasive Brain Stimulation for Neurodegenerative Disorders: From Investigation to Therapeutic Application. Frontiers in Neurology, 2022, 13, 820942.	2.4	2

Peter J Fried

#	Article	IF	CITATIONS
37	Modulation of corticomotor excitability following 10 Hz repetitive transcranial magnetic stimulation predicts clinical response in patients with treatment-resistant depression. Brain Stimulation, 2018, 11, e15.	1.6	1
38	An assessment of the discrepancy between BeamF3 versus MRI-neuronavigated target sites for repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in 100 patients. Brain Stimulation, 2015, 8, 338-339.	1.6	0
39	[P4–535]: ATROPHY IN DISTRIBUTED BRAIN NETWORKS CORRELATES WITH PERFORMANCE ON MEMORY TESTS IN AD PATIENTS. Alzheimer's and Dementia, 2017, 13, P1555.	0.8	0
40	TMSâ€measures of cortical excitability are abnormal in amyloidâ€positive MCI, relate to amyloid burden, and predict faster cognitive decline. Alzheimer's and Dementia, 2020, 16, e045478.	0.8	0