Len Margolin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4982165/publications.pdf

Version: 2024-02-01

30	1,118	17 h-index	29
papers	citations		g-index
31	31	31	658 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Finite scale theory: Predicting nature's shocks. Wave Motion, 2020, 98, 102647.	2.0	5
2	Damage and Failure in a Statistical Crack Model. Applied Sciences (Switzerland), 2020, 10, 8700.	2.5	2
3	A finite scale model for shock structure. Physica D: Nonlinear Phenomena, 2020, 403, 132308.	2.8	8
4	Discrete regularization. Evolution Equations and Control Theory, 2019, 8, 117-137.	1.3	5
5	Scale matters. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170235.	3.4	5
6	Discrete thermodynamics. Mechanics Research Communications, 2018, 93, 103-107.	1.8	4
7	Fully compressible solutions for early stage Richtmyer–Meshkov instability. Computers and Fluids, 2017, 151, 46-57.	2.5	5
8	Entropy in self-similar shock profiles. International Journal of Non-Linear Mechanics, 2017, 95, 333-346.	2.6	16
9	Nonequilibrium Entropy in a Shock. Entropy, 2017, 19, 368.	2.2	15
10	A strain space framework for numerical hyperplasticity. Mathematics and Computers in Simulation, 2016, 127, 178-188.	4.4	0
11	Finite scale theory: The role of the observer in classical fluid flow. Mechanics Research Communications, 2014, 57, 10-17.	1.8	18
12	Traveling wave solutions for finite scale equations. Mechanics Research Communications, 2012, 45, 64-69.	1.8	14
13	Finite-scale equations for compressible fluid flow. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 2861-2871.	3.4	35
14	Finite volume methods and the equations of finite scale: A mimetic approach. International Journal for Numerical Methods in Fluids, 2008, 56, 991-1002.	1.6	17
15	MPDATA: gauge transformations, limiters and monotonicity. International Journal for Numerical Methods in Fluids, 2006, 50, 1193-1206.	1.6	8
16	Remapping, recovery and repair on a staggered grid. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 4139-4155.	6.6	40
17	Second-order sign-preserving conservative interpolation (remapping) on general grids. Journal of Computational Physics, 2003, 184, 266-298.	3.8	143
18	On balanced approximations for time integration of multiple time scale systems. Journal of Computational Physics, 2003, 185, 583-611.	3.8	97

#	Article	IF	CITATION
19	A rationale for implicit turbulence modelling. International Journal for Numerical Methods in Fluids, 2002, 39, 821-841.	1.6	178
20	Coupled Atmospheric–Fire Modeling Employing the Method of Averages. Monthly Weather Review, 2000, 128, 3683-3691.	1.4	48
21	Large-eddy simulations of convective boundary layers using nonoscillatory differencing. Physica D: Nonlinear Phenomena, 1999, 133, 390-397.	2.8	118
22	Using a Curvilinear Grid to Construct Symmetry-Preserving Discretizations for Lagrangian Gas Dynamics. Journal of Computational Physics, 1999, 149, 389-417.	3.8	38
23	Antidiffusive Velocities for Multipass Donor Cell Advection. SIAM Journal of Scientific Computing, 1998, 20, 907-929.	2.8	50
24	Application of the Volume-of-Fluid Method to the Advection–Condensation Problem. Monthly Weather Review, 1997, 125, 2265-2273.	1.4	32
25	On Simulating Flows with Multiple Time Scales Using a Method of Averages. Theoretical and Computational Fluid Dynamics, 1997, 9, 281-292.	2.2	21
26	Introduction to "An Arbitrary Lagrangian–Eulerian Computing Method for All Flow Speeds― Journal of Computational Physics, 1997, 135, 198-202.	3.8	104
27	Numerical validation of a constitutive theory for an arbitrarily fractured solid. Engineering Computations, 1995, 12, 125-134.	1.4	3
28	A NUMERICAL LABORATORY FOR GRANULAR SOLIDS. Engineering Computations, 1992, 9, 191-197.	1.4	20
29	A generalized Griffith criterion for crack propagation. Engineering Fracture Mechanics, 1984, 19, 539-543.	4.3	47
30	Microphysical models for inelastic material response. International Journal of Engineering Science, 1984, 22, 1171-1179.	5.0	22