Michael W Beresford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4981566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Panel sequencing links rare, likely damaging gene variants with distinct clinical phenotypes and outcomes in juvenile-onset SLE. Rheumatology, 2023, 62, SI210-SI225.	1.9	9
2	The clinical significance of antinuclear antibodies and specific autoantibodies in juvenile and adult systemic lupus erythematosus patients. Asian Pacific Journal of Allergy and Immunology, 2022, , .	0.4	3
3	Prospective epidemiological study of juvenile-onset systemic lupus erythematosus in the UK and Republic of Ireland. Rheumatology, 2022, 61, 4097-4106.	1.9	3
4	Longitudinal analysis of urinary proteins in lupus nephritis – A pilot study. Clinical Immunology, 2022, 236, 108948.	3.2	4
5	Attainment of low disease activity and remission targets reduces the risk of severe flare and new damage in childhood lupus. Rheumatology, 2022, 61, 3378-3389.	1.9	17
6	What Have We Learnt About the Treatment of Juvenile-Onset Systemic Lupus Erythematous Since Development of the SHARE Recommendations 2012?. Frontiers in Pediatrics, 2022, 10, 884634.	1.9	4
7	Real world treatment of juvenile-onset systemic lupus erythematosus: Data from the UK JSLE cohort study. Clinical Immunology, 2022, 239, 109028.	3.2	6
8	A panel of urinary proteins predicts active lupus nephritis and response to rituximab treatment. Rheumatology, 2021, 60, 3747-3759.	1.9	26
9	Kidney outcomes for children with lupus nephritis. Pediatric Nephrology, 2021, 36, 1377-1385.	1.7	53
10	Patient-reported wellbeing and clinical disease measures over time captured by multivariate trajectories of disease activity in individuals with juvenile idiopathic arthritis in the UK: a multicentre prospective longitudinal study. Lancet Rheumatology, The, 2021, 3, e111-e121.	3.9	23
11	Clinical and laboratory phenotypes in juvenile-onset Systemic Lupus Erythematosus across ethnicities in the UK. Lupus, 2021, 30, 597-607.	1.6	24
12	†lt is good to have a target in mind': qualitative views of patients and parents informing a treat to target clinical trial in juvenile-onset systemic lupus erythematosus. Rheumatology, 2021, 60, 5630-5641.	1.9	17
13	Behçet's syndrome in children and young people in the United Kingdom and the Republic of Ireland: a prospective epidemiological study. Rheumatology, 2021, 60, 4728-4736.	1.9	6
14	Limited sensitivity and specificity of the ACR/EULAR-2019 classification criteria for SLE in JSLE?—observations from the UK JSLE Cohort Study. Rheumatology, 2021, 60, 5271-5281.	1.9	21
15	Juvenile Idiopathic Arthritis Associated Uveitis. Children, 2021, 8, 646.	1.5	15
16	Mycophenolate Mofetil Versus Cyclophosphamide for Remission Induction in Childhood Polyarteritis Nodosa: An Open‣abel, Randomized, Bayesian Noninferiority Trial. Arthritis and Rheumatology, 2021, 73, 1673-1682.	5.6	17
17	Serum protein signatures differentiate paediatric autoimmune/inflammatory disorders. Clinical Immunology, 2021, 229, 108790.	3.2	4
18	Comment on: Limited sensitivity and specificity of the ACR/EULAR-2019 classification criteria for SLE in JSLE?: Reply. Rheumatology, 2021, , .	1.9	0

#	Article	IF	CITATIONS
19	Juvenile idiopathic arthritis: from aetiopathogenesis to therapeutic approaches. Pediatric Rheumatology, 2021, 19, 135.	2.1	85
20	1675â€Real world treatment of juvenile systemic lupus erythematosus (JSLE): evidence from the UK JSLE cohort study. , 2021, , .		0
21	Neuropsychiatric involvement in juvenile-onset systemic lupus erythematosus: Data from the UK Juvenile-onset systemic lupus erythematosus cohort study. Lupus, 2021, 30, 1955-1965.	1.6	16
22	The risk of uveitis in patients with JIA receiving etanercept: the challenges of analysing real-world data. Rheumatology, 2020, 59, 1391-1397.	1.9	12
23	Establishing an international awareness day for paediatric rheumatic diseases: reflections from the inaugural World Young Rheumatic Diseases (WORD) Day 2019. Pediatric Rheumatology, 2020, 18, 71.	2.1	1
24	Urine and serum S100A8/A9 and S100A12 associate with active lupus nephritis and may predict response to rituximab treatment. RMD Open, 2020, 6, e001257.	3.8	21
25	Frequency of biologic switching and the outcomes of switching in children and young people with juvenile idiopathic arthritis: a national cohort study. Lancet Rheumatology, The, 2020, 2, e217-e226.	3.9	25
26	Differential analysis of serum and urine S100 proteins in juvenile-onset systemic lupus erythematosus (jSLE). Clinical Immunology, 2020, 214, 108375.	3.2	19
27	A systematic review of the role of eculizumab in systemic lupus erythematosus-associated thrombotic microangiopathy. BMC Nephrology, 2020, 21, 245.	1.8	46
28	Tocilizumab in patients with anti-TNF refractory juvenile idiopathic arthritis-associated uveitis (APTITUDE): a multicentre, single-arm, phase 2 trial. Lancet Rheumatology, The, 2020, 2, e135-e141.	3.9	62
29	Contribution of rare and predicted pathogenic gene variants to childhood-onset lupus: a large, genetic panel analysis of British and French cohorts. Lancet Rheumatology, The, 2020, 2, e99-e109.	3.9	38
30	Clinical and laboratory characteristics in juvenile-onset systemic lupus erythematosus across age groups. Lupus, 2020, 29, 474-481.	1.6	62
31	Different corticosteroid induction regimens in children and young people with juvenile idiopathic arthritis: the SIRJIA mixed-methods feasibility study. Health Technology Assessment, 2020, 24, 1-152.	2.8	3
32	Short-term outcomes in patients with systemic juvenile idiopathic arthritis treated with either tocilizumab or anakinra. Rheumatology, 2019, 58, 94-102.	1.9	20
33	The prevention and treatment of glucocorticoid-induced osteopaenia in juvenile rheumatic disease: A randomised double-blind controlled trial. EClinicalMedicine, 2019, 12, 79-87.	7.1	24
34	P07 Identifying the primary outcome measure and protocol components for a prospective feasibility study of corticosteroid regimens for CYP with JIA using consensus methods with young people, families and professionals. Rheumatology, 2019, 58, .	1.9	0
35	cAMP Response Element Modulator α Induces Dual Specificity Protein Phosphatase 4 to Promote Effector T Cells in Juvenile-Onset Lupus. Journal of Immunology, 2019, 203, 2807-2816.	0.8	21
36	Juvenile-onset systemic lupus erythematosus: Update on clinical presentation, pathophysiology and treatment options. Clinical Immunology, 2019, 209, 108274.	3.2	94

#	Article	IF	CITATIONS
37	The European network for care of children with paediatric rheumatic diseases: care across borders. Rheumatology, 2019, 58, 1188-1195.	1.9	15
38	American College of Rheumatology Provisional Criteria for Clinically Relevant Improvement in Children and Adolescents With Childhoodâ€Onset Systemic Lupus Erythematosus. Arthritis Care and Research, 2019, 71, 579-590.	3.4	15
39	Adalimumab in Juvenile Idiopathic Arthritis–Associated Uveitis: 5-Year Follow-up of the Bristol Participants of the SYCAMORE Trial. American Journal of Ophthalmology, 2019, 207, 170-174.	3.3	35
40	Defining consensus opinion to develop randomised controlled trials in rare diseases using Bayesian design: An example of a proposed trial of adalimumab versus pamidronate for children with CNO/CRMO. PLoS ONE, 2019, 14, e0215739.	2.5	19
41	The human glomerular endothelial cells are potent pro-inflammatory contributors in an in vitro model of lupus nephritis. Scientific Reports, 2019, 9, 8348.	3.3	23
42	Outcomes following mycophenolate mofetil versus cyclophosphamide induction treatment for proliferative juvenile-onset lupus nephritis. Lupus, 2019, 28, 613-620.	1.6	33
43	European consensus-based recommendations for diagnosis and treatment of immunoglobulin A vasculitis—the SHARE initiative. Rheumatology, 2019, 58, 1607-1616.	1.9	165
44	Methotrexate persistence and adverse drug reactions in patients with juvenile idiopathic arthritis. Rheumatology, 2019, 58, 1453-1458.	1.9	11
45	Working together to deliver stratified medicine research effectively. British Medical Bulletin, 2019, 129, 107-116.	6.9	3
46	Challenges of achieving clinical remission in a national cohort of juvenile-onset systemic lupus erythematosus patients. Lupus, 2019, 28, 667-674.	1.6	7
47	Reply. Ophthalmology, 2019, 126, e24-e25.	5.2	0
48	Mesangial cells are key contributors to the fibrotic damage seen in the lupus nephritis glomerulus. Journal of Inflammation, 2019, 16, 22.	3.4	20
49	A Markov Multi-State model of lupus nephritis urine biomarker panel dynamics in children: Predicting changes in disease activity. Clinical Immunology, 2019, 198, 71-78.	3.2	12
50	Ophthalmology research in the UK's National Health Service: the structure and performance of the NIHR's Ophthalmology research portfolio. Eye, 2019, 33, 610-618.	2.1	4
51	Cost-Effectiveness Analysis of Adalimumab for the Treatment of Uveitis Associated with Juvenile Idiopathic Arthritis. Ophthalmology, 2019, 126, 415-424.	5.2	18
52	Use and effectiveness of rituximab in children and young people with juvenile idiopathic arthritis in a cohort study in the United Kingdom. Rheumatology, 2019, 58, 331-335.	1.9	27
53	European consensus-based recommendations for the diagnosis and treatment of rare paediatric vasculitides $\hat{a} \in $ the SHARE initiative. Rheumatology, 2019, 58, 656-671.	1.9	77
54	European consensus-based recommendations for the diagnosis and treatment of Kawasaki disease – the SHARE initiative. Rheumatology, 2019, 58, 672-682.	1.9	103

#	Article	IF	CITATIONS
55	Big data and stratified medicine: what does it mean for children?. Archives of Disease in Childhood, 2019, 104, 389-394.	1.9	11
56	Toward New Classification Criteria for Juvenile Idiopathic Arthritis: First Steps, Pediatric Rheumatology International Trials Organization International Consensus. Journal of Rheumatology, 2019, 46, 190-197.	2.0	318
57	Adalimumab in combination with methotrexate for refractory uveitis associated with juvenile idiopathic arthritis: a RCT. Health Technology Assessment, 2019, 23, 1-140.	2.8	18
58	American College of Rheumatology Provisional Criteria for Global Flares in Childhoodâ€Onset Systemic Lupus Erythematosus. Arthritis Care and Research, 2018, 70, 813-822.	3.4	19
59	Treating juvenile idiopathic arthritis to target: recommendations of an international task force. Annals of the Rheumatic Diseases, 2018, 77, annrheumdis-2018-213030.	0.9	183
60	Measuring Disease Damage and Its Severity in Childhoodâ€Onset Systemic Lupus Erythematosus. Arthritis Care and Research, 2018, 70, 1621-1629.	3.4	28
61	Child-centred research is the key to progress. Nature Reviews Rheumatology, 2018, 14, 69-70.	8.0	1
62	Neutrophil activation signature in juvenile idiopathic arthritis indicates the presence of low-density granulocytes. Rheumatology, 2018, 57, 488-498.	1.9	30
63	Anti-neutrophil cytoplasmic antibodies and their clinical significance. Clinical Rheumatology, 2018, 37, 875-884.	2.2	37
64	Tocilizumab as a potential therapeutic option for children with severe, refractory juvenile localized scleroderma. Rheumatology, 2018, 57, 398-401.	1.9	36
65	Recommendations for collaborative paediatric research including biobanking in Europe: a Single Hub and Access point for paediatric Rheumatology in Europe (SHARE) initiative. Annals of the Rheumatic Diseases, 2018, 77, 319-327.	0.9	9
66	Development of a consensus core dataset in juvenile dermatomyositis for clinical use to inform research. Annals of the Rheumatic Diseases, 2018, 77, 241-250.	0.9	36
67	Protective parents and permissive children: what qualitative interviews with parents and children can tell us about the feasibility of juvenile idiopathic arthritis trials. Pediatric Rheumatology, 2018, 16, 76.	2.1	6
68	CS-10â€Criteria for clinically relevant improvement in children & adolescents with childhood-onset systemic lupus erythematosus. , 2018, , .		0
69	Clinical predictors of active LN development in children – evidence from the UK JSLE Cohort Study. Lupus, 2018, 27, 2020-2028.	1.6	12
70	Growing international evidence for urinary biomarker panels identifying lupus nephritis in children – verification within the South African Paediatric Lupus Cohort. Lupus, 2018, 27, 2190-2199.	1.6	10
71	The effectiveness and safety of biological therapeutics in juvenile-onset systemic lupus erythematosus (JSLE): a systematic review. Lupus, 2018, 27, 2135-2145.	1.6	13
72	Podocytes contribute, and respond, to the inflammatory environment in lupus nephritis. American Journal of Physiology - Renal Physiology, 2018, 315, F1683-F1694.	2.7	24

#	Article	IF	CITATIONS
73	Clinical predictors of proteinuric remission following an LN flare - evidence from the UK JSLE cohort study. Pediatric Rheumatology, 2018, 16, 14.	2.1	8

A phase II trial protocol of Tocilizumab in anti-TNF refractory patients with JIA-associated uveitis (the) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

75	Urinary biomarkers in childhood lupus nephritis. Clinical Immunology, 2017, 185, 21-31.	3.2	17
76	Optimising the use of medicines to reduce acute kidney injury in children and babies. , 2017, 174, 55-62.		8
77	Inter-observer variability of the histological classification of lupus glomerulonephritis in children. Lupus, 2017, 26, 1205-1211.	1.6	25
78	Oral Ulcers in Juvenile-Onset Systemic Lupus Erythematosus: A Review of the Literature. American Journal of Clinical Dermatology, 2017, 18, 755-762.	6.7	20
79	European evidence-based recommendations for diagnosis and treatment of paediatric antiphospholipid syndrome: the SHARE initiative. Annals of the Rheumatic Diseases, 2017, 76, 1637-1641.	0.9	75
80	Adalimumab plus Methotrexate for Uveitis in Juvenile Idiopathic Arthritis. New England Journal of Medicine, 2017, 376, 1637-1646.	27.0	315
81	European evidence-based recommendations for diagnosis and treatment of childhood-onset systemic lupus erythematosus: the SHARE initiative. Annals of the Rheumatic Diseases, 2017, 76, 1788-1796.	0.9	139
82	NIHR Clinical Research Networks: what they do and how they help paediatric research. Archives of Disease in Childhood, 2017, 102, 755-759.	1.9	10
83	Evaluation of the ACR and SLICC classification criteria in juvenile-onset systemic lupus erythematosus: a longitudinal analysis. Lupus, 2017, 26, 1285-1290.	1.6	28
84	Do classic blood biomarkers of JSLE identify active lupus nephritis? Evidence from the UK JSLE Cohort Study. Lupus, 2017, 26, 1212-1217.	1.6	5
85	Mortality rates are increased in patients with systemic juvenile idiopathic arthritis. Archives of Disease in Childhood, 2017, 102, 206.2-207.	1.9	14
86	Adalimumab for Uveitis in Juvenile Idiopathic Arthritis. New England Journal of Medicine, 2017, 377, 789-790.	27.0	14
87	European evidence-based recommendations for the diagnosis and treatment of childhood-onset lupus nephritis: the SHARE initiative. Annals of the Rheumatic Diseases, 2017, 76, 1965-1973.	0.9	105
88	Tools for the Individualized Therapy of Teicoplanin for Neonates and Children. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	14
89	Autoantibodies in juvenile-onset myositis: Their diagnostic value and associated clinical phenotype in a large UK cohort. Journal of Autoimmunity, 2017, 84, 55-64.	6.5	121
90	International validation of a urinary biomarker panel for identification of active lupus nephritis in children. Pediatric Nephrology, 2017, 32, 283-295.	1.7	46

#	Article	IF	CITATIONS
91	Preface: Recent advances in autoimmune and auto-inflammatory diseases in childhood. Best Practice and Research in Clinical Rheumatology, 2017, 31, 439-440.	3.3	0
92	Juvenile-onset systemic lupus erythematosus (jSLE) – Pathophysiological concepts and treatment options. Best Practice and Research in Clinical Rheumatology, 2017, 31, 488-504.	3.3	62
93	Differences in disease phenotype and severity in SLE across age groups. Lupus, 2016, 25, 1542-1550.	1.6	159
94	Differential changes in gene expression in human neutrophils following TNF-α stimulation: Up-regulation of anti-apoptotic proteins and down-regulation of proteins involved in death receptor signaling. Immunity, Inflammation and Disease, 2016, 4, 35-44.	2.7	17
95	Population pharmacokinetics and pharmacodynamics of teicoplanin in neonates: making better use of C-reactive protein to deliver individualized therapy. Journal of Antimicrobial Chemotherapy, 2016, 71, 3168-3178.	3.0	21
96	Pharmacological Management of Childhood-Onset Systemic Lupus Erythematosus. Paediatric Drugs, 2016, 18, 181-195.	3.1	19
97	Factors associated with choice of biologic among children with Juvenile Idiopathic Arthritis: results from two UK paediatric biologic registers. Rheumatology, 2016, 55, 1556-1565.	1.9	38
98	Increased concentration of plasma TNFR1 and TNFR2 in paediatric lupus nephritis. Lupus, 2016, 25, 1040-1044.	1.6	16
99	Increased expression of low density granulocytes in juvenile-onset systemic lupus erythematosus patients correlates with disease activity. Lupus, 2016, 25, 407-411.	1.6	45
100	Development of an internationally agreed minimal dataset for juvenile dermatomyositis (JDM) for clinical and research use. Trials, 2015, 16, 268.	1.6	17
101	Methotrexate polyglutamates as a potential marker of adherence to long-term therapy in children with juvenile idiopathic arthritis and juvenile dermatomyositis: an observational, cross-sectional study. Arthritis Research and Therapy, 2015, 17, 295.	3.5	30
102	OP3. Developing a urinary biomarker panel for monitoring LUPUS NEPHRITIS disease activity. Rheumatology, 2015, 54, ii3-ii3.	1.9	0
103	PP6. Felty's syndrome in rheumatoid factor positive polyarticular juvenile idiopathic arthritis: the role of rituximab. Rheumatology, 2015, 54, ii7-ii7.	1.9	Ο
104	PP1. Factors associated with choice of first biologic among children with JIA: a combined analysis from two UK paediatric biologic registers. Rheumatology, 2015, 54, ii5-ii5.	1.9	0
105	274. Factors Associated with Choice of First Biologic Among Children with Juvenile Idiopathic Arthritis: A Combined Analysis from Two UK Paediatric Biologic Registers. Rheumatology, 2015, , .	1.9	Ο
106	Co-existence of juvenile-onset systemic lupus erythematosus and juvenile myasthenia gravis. Lupus, 2015, 24, 1462-1463.	1.6	1
107	Characterization of human disease phenotypes associated with mutations in <i>TREX1</i> , <i>RNASEH2A</i> , <i>RNASEH2B</i> , <i>RNASEH2C</i> , <i>SAMHD1</i> , <i>ADAR</i> , and <i>IFIH1</i> . American Journal of Medical Genetics, Part A, 2015, 167, 296-312.	1.2	447
108	Mucocutaneous manifestations in juvenile-onset systemic lupus erythematosus: a review of literature. Pediatric Rheumatology, 2015, 13, 1.	2.1	61

#	Article	IF	CITATIONS
109	The development and assessment of biological treatments for children. British Journal of Clinical Pharmacology, 2015, 79, 379-394.	2.4	8
110	Increased soluble phagocytic receptors sMer, sTyro3 and sAxl and reduced phagocytosis in Juvenile-onset Systemic Lupus Erythematosus. Pediatric Rheumatology, 2015, 13, 10.	2.1	39
111	Juvenile-onset systemic lupus erythematosus: how to diagnose and manage. Paediatrics and Child Health (United Kingdom), 2015, 25, 555-560.	0.4	0
112	The indications, efficacy and adverse events of rituximab in a large cohort of patients with juvenile-onset SLE. Lupus, 2015, 24, 10-17.	1.6	70
113	The protective effect of GM-CSF on serum-induced neutrophil apoptosis in juvenile systemic lupus erythematosus patients. Clinical Rheumatology, 2015, 34, 85-91.	2.2	23
114	Elicitation of Expert Prior Opinion: Application to the MYPAN Trial in Childhood Polyarteritis Nodosa. PLoS ONE, 2015, 10, e0120981.	2.5	32
115	Connective tissue diseases in children. , 2015, , 868-875.		1
116	A Novel Dried Blood Spot-LCMS Method for the Quantification of Methotrexate Polyglutamates as a Potential Marker for Methotrexate Use in Children. PLoS ONE, 2014, 9, e89908.	2.5	33
117	Biologic choices after first-line anti-tumour necrosis factor failure in non-systemic juvenile idiopathic arthritis. Rheumatology, 2014, , .	1.9	0
118	Investigating biomarkers of disease activity in juvenile-onset lupus nephritis. Rheumatology, 2014, , .	1.9	0
119	Investigating phagocytosis receptors in serum from juvenile-onset systemic lupus erythrematosus patients. Rheumatology, 2014, , .	1.9	0
120	Improving care in paediatric rheumatic diseases: the SHARE project. Rheumatology, 2014, , .	1.9	0
121	Methodology of clinical trials for rare diseases. Best Practice and Research in Clinical Rheumatology, 2014, 28, 247-262.	3.3	28
122	A randomised controlled trial of the clinical effectiveness, safety and cost-effectiveness of adalimumab in combination with methotrexate for the treatment of juvenile idiopathic arthritis associated uveitis (SYCAMORE Trial). Trials, 2014, 15, 14.	1.6	89
123	Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nature Genetics, 2014, 46, 503-509.	21.4	490
124	Urine biomarkers for monitoring juvenile lupus nephritis: a prospective longitudinal study. Pediatric Nephrology, 2014, 29, 397-405.	1.7	42
125	The pro-inflammatory potential of T cells in juvenile-onset systemic lupus erythematosus. Pediatric Rheumatology, 2014, 12, 4.	2.1	22
126	Mucocutaneous manifestations in a UK national cohort of juvenile-onset systemic lupus erythematosus patients. Rheumatology, 2014, 53, 1504-1512.	1.9	30

#	Article	IF	CITATIONS
127	Population Pharmacokinetics of Teicoplanin in Children. Antimicrobial Agents and Chemotherapy, 2014, 58, 6920-6927.	3.2	29
128	New insights into the pathogenesis and management of lupus in children. Archives of Disease in Childhood, 2014, 99, 563-567.	1.9	27
129	Developing a provisional, international Minimal Dataset for Juvenile Dermatomyositis: for use in clinical practice to inform research. Pediatric Rheumatology, 2014, 12, 31.	2.1	9
130	Predictors of access to care in juvenile systemic lupus erythematosus: evidence from the UK JSLE Cohort Study. Rheumatology, 2014, 53, 557-561.	1.9	11
131	The Medicines for Children Research Network: building on current success as we move forward. Clinical Investigation, 2014, 4, 399-405.	0.0	2
132	Urine biomarkers in juvenile-onset SLE nephritis. Pediatric Nephrology, 2013, 28, 363-374.	1.7	32
133	Paediatric use of mycophenolate mofetil. British Journal of Clinical Pharmacology, 2013, 75, 45-59.	2.4	39
134	International Consensus for Provisions of Qualityâ€Driven Care in Childhoodâ€Onset Systemic Lupus Erythematosus. Arthritis Care and Research, 2013, 65, 1416-1423.	3.4	53
135	Children and adolescents with SLE: not just little adults. Lupus, 2013, 22, 1309-1319.	1.6	42
136	Adding to complexity: comorbidity in paediatric rheumatic disease. Rheumatology, 2013, 52, 22-33.	1.9	10
137	Protein Kinase Cl̂´ Deficiency Causes Mendelian Systemic Lupus Erythematosus With B Cellâ€Đefective Apoptosis and Hyperproliferation. Arthritis and Rheumatism, 2013, 65, 2161-2171.	6.7	155
138	How to use… lupus anticoagulants: TableÂ1. Archives of Disease in Childhood: Education and Practice Edition, 2013, 98, 52-57.	0.5	4
139	Recent developments in disease activity indices and outcome measures for juvenile idiopathic arthritis. Rheumatology, 2013, 52, 1941-1951.	1.9	27
140	Validity of a three-variable Juvenile Arthritis Disease Activity Score in children with new-onset juvenile idiopathic arthritis. Annals of the Rheumatic Diseases, 2013, 72, 1983-1988.	0.9	126
141	NIHR Medicines for Children Research Network: improving children's health through clinical research. Expert Review of Clinical Pharmacology, 2013, 6, 581-587.	3.1	17
142	Paediatric-onset systemic lupus erythematosus. , 2013, , .		1
143	Multi-disciplinary care in juvenile-onset systemic lupus erythematosus. British Journal of School Nursing, 2012, 7, 325-330.	0.1	0
144	Standard 5: Selection, Measurement, and Reporting of Outcomes in Clinical Trials in Children. Pediatrics, 2012, 129, S146-S152.	2.1	67

#	Article	IF	CITATIONS
145	Expression of Toll-like receptors and their detection of nuclear self-antigen leading to immune activation in JSLE. Rheumatology, 2012, 51, 824-832.	1.9	21
146	Increased Serum Concentration of Sphingosine-1-phosphate in Juvenile-onset Systemic Lupus Erythematosus. Journal of Clinical Immunology, 2012, 32, 1019-1025.	3.8	41
147	Juvenile idiopathic arthritis: Managing the condition. British Journal of School Nursing, 2012, 7, 170-174.	0.1	2
148	Inactive disease and remission in childhoodâ€onset systemic lupus erythematosus. Arthritis Care and Research, 2012, 64, 683-693.	3.4	34
149	Disease activity, severity, and damage in the UK juvenileâ€onset systemic lupus erythematosus cohort. Arthritis and Rheumatism, 2012, 64, 2356-2365.	6.7	170
150	Henoch Schonlein Purpura – A 5-Year Review and Proposed Pathway. PLoS ONE, 2012, 7, e29512.	2.5	41
151	Differential expression of factors involved in the intrinsic and extrinsic apoptotic pathways in juvenile systemic lupus erythematosus. Lupus, 2011, 20, 71-79.	1.6	14
152	Juvenile Idiopathic Arthritis. Paediatric Drugs, 2011, 13, 161-173.	3.1	30
153	Diagnosis and management of juvenile-onset SLE. Paediatrics and Child Health (United Kingdom), 2011, 21, 539-545.	0.4	5
154	Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nature Genetics, 2011, 43, 127-131.	21.4	214
155	Needle-free and microneedle drug delivery in children: A case for disease-modifying antirheumatic drugs (DMARDs). International Journal of Pharmaceutics, 2011, 416, 1-11.	5.2	74
156	Preliminary criteria for global flares in childhoodâ€onset systemic lupus erythematosus. Arthritis Care and Research, 2011, 63, 1213-1223.	3.4	28
157	Cellular localization of nuclear antigen during neutrophil apoptosis: mechanism for autoantigen exposure?. Lupus, 2011, 20, 641-646.	1.6	20
158	Communication about Children's Clinical Trials as Observed and Experienced: Qualitative Study of Parents and Practitioners. PLoS ONE, 2011, 6, e21604.	2.5	57
159	Disease modifying immunosuppressant drugs for juvenile-onset systemic lupus erythematosus. The Cochrane Library, 2010, , .	2.8	0
160	A randomized comparative trial of generalized vs targeted physiotherapy in the management of childhood hypermobility. Rheumatology, 2010, 49, 315-325.	1.9	66
161	Comment on: Developing standards of care for patients with juvenile idiopathic arthritis. Rheumatology, 2010, 49, 2227-2229.	1.9	9
162	A retrospective clinical analysis of pharmacological modalities used for symptomatic relief of Raynaud's phenomenon in children treated in a UK paediatric rheumatology centre. Rheumatology, 2010, 49, 193-194.	1.9	13

#	Article	IF	CITATIONS
163	New advances in the management of juvenile idiopathic arthritis2: The era of biologicals. Archives of Disease in Childhood: Education and Practice Edition, 2009, 94, 151-156.	0.5	48
164	New advances in the management of juvenile idiopathic arthritis1: Non-biological therapy. Archives of Disease in Childhood: Education and Practice Edition, 2009, 94, 144-150.	0.5	23
165	The role of neutrophil apoptosis in juvenileâ€onset systemic lupus erythematosus. Arthritis and Rheumatism, 2009, 60, 2390-2401.	6.7	77
166	Costing juvenile idiopathic arthritis: examining patient-based costs during the first year after diagnosis. Rheumatology, 2008, 47, 985-990.	1.9	35
167	Improving the evidence base for treatment of juvenile idiopathic arthritis: the challenge and opportunity facing the MCRN/ARC Paediatric Rheumatology Clinical Studies Group. Rheumatology, 2008, 47, 563-566.	1.9	12
168	ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency. Brain, 2007, 130, 2045-2054.	7.6	292
169	Acrimonious acronyms: CRMO, SAPHO and a sore shin. Clinical Immunology, 2007, 122, 252-254.	3.2	3
170	So doctor, what exactly is wrong with my muscles? Glutaric aciduria type II presenting in a teenager. Neuromuscular Disorders, 2006, 16, 269-273.	0.6	33
171	"So doctor, what exactly is wrong with my muscles? Glutaric aciduria type II presenting in a teenager― Neuromuscular Disorders, 2006, 16, 613.	0.6	2
172	Adolescent development and SLE. Best Practice and Research in Clinical Rheumatology, 2006, 20, 353-368.	3.3	19
173	Twelve-Month Prospective Study of Oxygen Saturation Measurements among Term and Preterm Infants. Journal of Perinatology, 2005, 25, 30-32.	2.0	15
174	Cardio-pulmonary involvement in juvenile systemic lupus erythematosus. Lupus, 2005, 14, 152-158.	1.6	52
175	Does sustained lung inflation at resuscitation reduce lung injury in the preterm infant?. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2005, 90, F406-F410.	2.8	83
176	Does the use of 50% oxygen at birth in preterm infants reduce lung injury?. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2005, 90, F401-F405.	2.8	44
177	Pamidronate in the treatment of childhood SAPHO syndrome. British Journal of Rheumatology, 2004, 43, 1246-1251.	2.3	99
178	Bronchoalveolar Lavage Surfactant Protein A, B, and D Concentrations in Preterm Infants Ventilated for Respiratory Distress Syndrome Receiving Natural and Synthetic Surfactants. Pediatric Research, 2003, 53, 663-670.	2.3	40
179	Randomised double blind placebo controlled trial of inhaled fluticasone propionate in infants with chronic lung disease. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2002, 87, 62F-63.	2.8	24
180	Detectable IL-8 and IL-10 in Bronchoalveolar Lavage Fluid from Preterm Infants Ventilated for Respiratory Distress Syndrome. Pediatric Research, 2002, 52, 973-978.	2.3	61

#	Article	IF	CITATIONS
181	Detectable IL-8 and IL-10 in Bronchoalveolar Lavage Fluid from Preterm Infants Ventilated for Respiratory Distress Syndrome. Pediatric Research, 2002, 52, 973-978.	2.3	9
182	Outcome of congenital diaphragmatic hernia. Pediatric Pulmonology, 2000, 30, 249-256.	2.0	88
183	Randomised controlled trial of patient triggered and conventional fast rate ventilation in neonatal respiratory distress syndrome. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2000, 82, F14-F18.	2.8	54
184	Respiratory syncytial virus infection in high risk infants and the potential impact of prophylaxis in a United Kingdom cohort. Archives of Disease in Childhood, 2000, 83, 313-316.	1.9	73
185	Pumactant and poractant alfa for treatment of respiratory distress syndrome in neonates born at 25–29 weeks' gestation: a randomised trial. Lancet, The, 2000, 355, 1387-1392.	13.7	110
186	H. C. Darby (ed.): A new historical geography of England. Cambridge: University Press, 1973. 781 pp., 158 figs. £13.00, \$38.50 Antiquity, 1975, 49, 155-156.	1.0	0
187	Two cases of juvenile systemic lupus erythematosus with uncommon associations and challenges in therapy. Rheumatology, 0, , .	1.9	0
188	Prior elicitation of the efficacy and tolerability of Methotrexate and Mycophenolate Mofetil in Juvenile Localised Scleroderma. AMRC Open Research, 0, 3, 20.	1.7	2
189	A systematic literature review on diagnosis and treatment of paediatric rheumatic diseases: a shared initiative. Rheumatology, 0, , .	1.9	0