Alba Duch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/498148/publications.pdf

Version: 2024-02-01

	840776	1125743
453	11	13
citations	h-index	g-index
1.0	1.0	656
13	13	656
docs citations	times ranked	citing authors
	citations 13	453 11 citations h-index 13 13

#	Article	IF	CITATIONS
1	Hog1 activation delays mitotic exit via phosphorylation of Net1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8924-8933.	7.1	11
2	Multiple signaling kinases target Mrc1 to prevent genomic instability triggered by transcription-replication conflicts. Nature Communications, 2018, 9, 379.	12.8	32
3	A novel mechanism for the prevention of transcription replication conflicts. Molecular and Cellular Oncology, 2018, 5, e1451233.	0.7	2
4	Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature, 2013, 493, 116-119.	27.8	76
5	Dealing with Transcriptional Outbursts during S Phase to Protect Genomic Integrity. Journal of Molecular Biology, 2013, 425, 4745-4755.	4.2	14
6	The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Molecular Biology of the Cell, 2012, 23, 4286-4296.	2.1	51
7	The p38 and Hog1 SAPKs control cell cycle progression in response to environmental stresses. FEBS Letters, 2012, 586, 2925-2931.	2.8	52
8	Time-Dependent Quantitative Multicomponent Control of the G $<$ sub $>$ 1 $<$ /sub $>$ -S Network by the Stress-Activated Protein Kinase Hog1 upon Osmostress. Science Signaling, 2011, 4, ra63.	3.6	48
9	A Dbf4 Mutant Contributes to Bypassing the Rad53-mediated Block of Origins of Replication in Response to Genotoxic Stress*. Journal of Biological Chemistry, 2011, 286, 2486-2491.	3.4	27
10	Cyclin Regulation by the S Phase Checkpoint. Journal of Biological Chemistry, 2010, 285, 26431-26440.	3.4	15
11	Keratin 7 promoter selectively targets transgene expression to normal and neoplastic pancreatic ductal cells <i>in vitro</i> and <i>in vivo</i> FASEB Journal, 2009, 23, 1366-1375.	0.5	17
12	The Stress-activated Protein Kinase Hog1 Mediates S Phase Delay in Response to Osmostress. Molecular Biology of the Cell, 2009, 20, 3572-3582.	2.1	57
13	Distinct Phosphatases Mediate the Deactivation of the DNA Damage Checkpoint Kinase Rad53. Journal of Biological Chemistry, 2008, 283, 17123-17130.	3.4	51