Moritz K Riede

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4980874/publications.pdf

Version: 2024-02-01

182 papers

11,365 citations

54 h-index 103 g-index

189 all docs

 $\frac{189}{\text{docs citations}}$

189 times ranked 11219 citing authors

#	Article	IF	Citations
1	Charge transfer state characterization and voltage losses of organic solar cells. JPhys Materials, 2022, 5, 024002.	4.2	19
2	Geminate and Nongeminate Pathways for Triplet Exciton Formation in Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	22
3	Properties and Applications of Copper(I) Thiocyanate Holeâ€Transport Interlayers Processed from Different Solvents. Advanced Electronic Materials, 2022, 8, .	5.1	9
4	Interfacial rearrangements and strain evolution in the thin film growth of ZnPc on glass. Physical Review Materials, 2022, 6, .	2.4	1
5	Organic Solar Cells—The Path to Commercial Success. Advanced Energy Materials, 2021, 11, 2002653.	19.5	287
6	Electron spin as fingerprint for charge generation and transport in doped organic semiconductors. Journal of Materials Chemistry C, 2021, 9, 2944-2954.	5 . 5	15
7	The role of spin in the degradation of organic photovoltaics. Nature Communications, 2021, 12, 471.	12.8	16
8	Chain Conformation Control of Fluorene-Benzothiadiazole Copolymer Light-Emitting Diode Efficiency and Lifetime. ACS Applied Materials & Samp; Interfaces, 2021, 13, 2919-2931.	8.0	6
9	Direct observation and evolution of electronic coupling between organic semiconductors. Physical Review Materials, 2021, 5, .	2.4	1
10	Perspectives of Organic and Perovskiteâ€Based Spintronics. Advanced Optical Materials, 2021, 9, 2100215.	7.3	46
11	Studying the Effect of High Substrate Temperature on the Microstructure of Vacuum Evaporated TAPC: C60 Organic Solar Thin Films. Materials, 2021, 14, 1733.	2.9	3
12	Adduct-based p-doping of organic semiconductors. Nature Materials, 2021, 20, 1248-1254.	27.5	40
13	Organic Electronics and Beyond. Advanced Optical Materials, 2021, 9, 2101108.	7.3	1
14	Perspectives of Organic and Perovskiteâ€Based Spintronics (Advanced Optical Materials 14/2021). Advanced Optical Materials, 2021, 9, 2170053.	7.3	1
15	The role of charge recombination to triplet excitons in organic solar cells. Nature, 2021, 597, 666-671.	27.8	225
16	Assessing the Photovoltaic Quality of Vacuumâ€Thermal Evaporated Organic Semiconductor Blends. Advanced Materials, 2021, , 2107584.	21.0	5
17	A liquid-crystalline non-fullerene acceptor enabling high-performance organic solar cells. Journal of Materials Chemistry A, 2021, 9, 26917-26928.	10.3	5
18	Filamentary High-Resolution Electrical Probes for Nanoengineering. Nano Letters, 2020, 20, 1067-1073.	9.1	2

#	Article	IF	CITATIONS
19	Molecular doped organic semiconductor crystals for optoelectronic device applications. Journal of Materials Chemistry C, 2020, 8, 14996-15008.	5.5	25
20	Molecular Quadrupole Moments Promote Groundâ€State Charge Generation in Doped Organic Semiconductors. Advanced Functional Materials, 2020, 30, 2004600.	14.9	15
21	Ultrafast Charge Dynamics in Dilute-Donor versus Highly Intermixed TAPC:C ₆₀ Organic Solar Cell Blends. Journal of Physical Chemistry Letters, 2020, 11, 5610-5617.	4.6	15
22	$\langle i \rangle$ In Situ $\langle i \rangle$ Observations of the Growth Mode of Vacuum-Deposited $\hat{l}\pm$ -Sexithiophene. Journal of Physical Chemistry C, 2020, 124, 11863-11869.	3.1	9
23	Efficiency enhancement of small molecule organic solar cells using hexapropyltruxene as an interface layer. Journal of Materials Chemistry C, 2020, 8, 4909-4918.	5.5	5
24	Azetidinium as cation in lead mixed halide perovskite nanocrystals of optoelectronic quality. AIP Advances, 2020, 10, 025001.	1.3	0
25	Tuning the ambipolar behaviour of organic field effect transistors via band engineering. AIP Advances, 2019, 9, .	1.3	20
26	Controlling energy levels and Fermi level en route to fully tailored energetics in organic semiconductors. Nature Communications, 2019, 10, 5538.	12.8	38
27	Solubilization of Carbon Nanotubes with Ethylene-Vinyl Acetate for Solution-Processed Conductive Films and Charge Extraction Layers in Perovskite Solar Cells. ACS Applied Materials & Diterfaces, 2019, 11, 1185-1191.	8.0	31
28	Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1717-1732.	2.8	4
29	Femtosecond Dynamics of Photoexcited C ₆₀ Films. Journal of Physical Chemistry Letters, 2018, 9, 1885-1892.	4.6	22
30	Carbon Nanotubes for Quantum Dot Photovoltaics with Enhanced Light Management and Charge Transport. ACS Photonics, 2018, 5, 4854-4863.	6.6	4
31	Hole Transport in Low-Donor-Content Organic Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 5496-5501.	4.6	33
32	Key Tradeoffs Limiting the Performance of Organic Photovoltaics. Advanced Energy Materials, 2018, 8, 1703551.	19.5	71
33	Organic Semiconductors â~†., 2018, , .		1
34	Modification of the fluorinated tin oxide/electron-transporting material interface by a strong reductant and its effect on perovskite solar cell efficiency. Molecular Systems Design and Engineering, 2018, 3, 741-747.	3.4	9
35	Exciton Diffusion Length and Charge Extraction Yield in Organic Bilayer Solar Cells. Advanced Materials, 2017, 29, 1604424.	21.0	36
36	Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nature Energy, 2017, 2, .	39.5	494

#	Article	IF	CITATIONS
37	Dicyanovinylene-Substituted Oligothiophenes for Organic Solar Cells. Advances in Polymer Science, 2017, , 51-75.	0.8	6
38	MINERVA: A facility to study Microstructure and INterface Evolution in Realtime under VAcuum. Review of Scientific Instruments, 2017, 88, 103901.	1.3	11
39	In-situ observation of stacking fault evolution in vacuum-deposited C60. Applied Physics Letters, 2017, 111, 233305.	3.3	4
40	Managing BHJ microstructural evolution for long-term photoconversion efficiency (Conference) Tj ETQq0 0 0 rgE	3T /Overloo	:k 10 Tf 50 6
41	Cross-Linkable Fullerene Derivatives for Solution-Processed n–i–p Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 648-653.	17.4	67
42	EU COST Action MP1307 $\hat{a} \in ``Unravelling the degradation mechanisms of emerging solar cell technologies. , 2016, , .$		0
43	Plenary session 1: Engineering leadership & En		0
44	Structured Organic–Inorganic Perovskite toward a Distributed Feedback Laser. Advanced Materials, 2016, 28, 923-929.	21.0	257
45	Reply to 'Tandem organic solar cells revisited'. Nature Photonics, 2016, 10, 355-355.	31.4	4
46	Measurement of Small Molecular Dopant F4TCNQ and C ₆₀ F ₃₆ Diffusion in Organic Bilayer Architectures. ACS Applied Materials & Diffusion in Interfaces, 2015, 7, 28420-28428.	8.0	82
47	Mixed interlayers at the interface between PEDOT:PSS and conjugated polymers provide charge transport control. Journal of Materials Chemistry C, 2015, 3, 2664-2676.	5.5	26
48	Characterization of tandem organic solar cells. Nature Photonics, 2015, 9, 478-479.	31.4	52
49	Enhanced Amplified Spontaneous Emission in Perovskites Using a Flexible Cholesteric Liquid Crystal Reflector. Nano Letters, 2015, 15, 4935-4941.	9.1	117
50	A charge carrier transport model for donor-acceptor blend layers. Journal of Applied Physics, 2015, 117, .	2.5	11
51	Determining doping efficiency and mobility from conductivity and Seebeck data of n-doped C ₆₀ layers. Physica Status Solidi (B): Basic Research, 2015, 252, 1877-1883.	1.5	12
52	Experimental and theoretical study of phase separation in ZnPc:C60 blends. Organic Electronics, 2015, 27, 183-191.	2.6	5
53	Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy and Environmental Science, 2015, 8, 602-609.	30.8	417
54	Doped-carbazolocarbazoles as hole transporting materials in small molecule solar cells with different architectures. Organic Electronics, 2015, 17, 28-32.	2.6	6

#	Article	IF	Citations
55	Characterization of tandem organic solar cells comprising subcells of identical absorber material. Progress in Photovoltaics: Research and Applications, 2015, 23, 1353-1356.	8.1	8
56	Molecular doping for control of gate bias stress in organic thin film transistors. Applied Physics Letters, 2014, 104, 013507.	3.3	40
57	Improved organic p-i-n type solar cells with n-doped fluorinated hexaazatrinaphthylene derivatives HATNA-F6 and HATNA-F12 as transparent electron transport material. Journal of Applied Physics, 2014, 115, 054515.	2.5	23
58	Built-in voltage of organic bulk heterojuction p-i-n solar cells measured by electroabsorption spectroscopy. AIP Advances, 2014, 4, .	1.3	11
59	Coevaporated calciumâ€silver metal alloys as contact for highly transparent organic solar cells. Energy Science and Engineering, 2014, 2, 77-85.	4.0	4
60	Increased Openâ€Circuit Voltage of Organic Solar Cells by Reduced Donorâ€Acceptor Interface Area. Advanced Materials, 2014, 26, 3839-3843.	21.0	181
61	Highly efficient p-dopants in amorphous hosts. Organic Electronics, 2014, 15, 365-371.	2.6	35
62	Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nature Materials, 2014, 13, 63-68.	27.5	667
63	Direct Electrical Evidence of Plasmonic Near-Field Enhancement in Small Molecule Organic Solar Cells. Journal of Physical Chemistry C, 2014, 118, 15128-15135.	3.1	21
64	Exploiting diffusion currents at Ohmic contacts for trap characterization in organic semiconductors. Organic Electronics, 2014, 15, 2428-2432.	2.6	11
65	Electroabsorption studies of organic p-i-n solar cells: Increase of the built-in voltage by higher doping concentration in the hole transport layer. Organic Electronics, 2014, 15, 563-568.	2.6	21
66	Correlation between Temperature Activation of Chargeâ€Carrier Generation Efficiency and Hole Mobility in Smallâ€Molecule Donor Materials. ChemPhysChem, 2014, 15, 1049-1055.	2.1	4
67	Electroabsorption studies of organic p-i-n solar cells: evaluating the built-in voltage. Materials Research Society Symposia Proceedings, 2014, 1639, 1.	0.1	3
68	Selfâ€passivation of molecular nâ€type doping during air exposure using a highly efficient airâ€instable dopant. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2188-2198.	1.8	16
69	Interlaboratory outdoor stability studies of flexible roll-to-roll coated organic photovoltaic modules: Stability over 10,000 h. Solar Energy Materials and Solar Cells, 2013, 116, 187-196.	6.2	107
70	Electric potential mapping by thickness variation: A new method for model-free mobility determination in organic semiconductor thin films. Organic Electronics, 2013, 14, 3460-3471.	2.6	22
71	Doping of organic semiconductors. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 9-43.	1.8	500
72	A top-down analysis: Determining photovoltaics R&D investments from patent analysis and R&D headcount. Energy Policy, 2013, 62, 1570-1580.	8.8	25

#	Article	IF	CITATIONS
73	Investigating local (photo-)current and structure of ZnPc:C60 bulk-heterojunctions. Organic Electronics, 2013, 14, 2777-2788.	2.6	10
74	Investigation of Driving Forces for Charge Extraction in Organic Solar Cells: Transient Photocurrent Measurements on Solar Cells Showing Sâ€Shaped Current–Voltage Characteristics. Advanced Energy Materials, 2013, 3, 873-880.	19.5	103
75	Trap states in ZnPc:C60 small-molecule organic solar cells. Physical Review B, 2013, 87, .	3.2	43
76	Dominating recombination mechanisms in organic solar cells based on ZnPc and C60. Applied Physics Letters, 2013, 102, 163901.	3.3	55
77	Diindenoperylene derivatives: A model to investigate the path from molecular structure via morphology to solar cell performance. Organic Electronics, 2013, 14, 1704-1714.	2.6	12
78	Two Similar Near-Infrared (IR) Absorbing Benzannulated Aza-BODIPY Dyes as Near-IR Sensitizers for Ternary Solar Cells. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5609-5616.	8.0	70
79	Molecular ordering and charge transport in a dicyanovinyl-substituted quaterthiophene thin film. RSC Advances, 2013, 3, 12117.	3.6	20
80	Photoconductivity as loss mechanism in organic solar cells. Physica Status Solidi - Rapid Research Letters, 2013, 7, 401-405.	2.4	16
81	Openâ€Circuit Voltage and Effective Gap of Organic Solar Cells. Advanced Functional Materials, 2013, 23, 5814-5821.	14.9	80
82	Correlation of Absorption Profile and Fill Factor in Organic Solar Cells: The Role of Mobility Imbalance. Advanced Energy Materials, 2013, 3, 631-638.	19.5	50
83	Evaluation and Control of the Orientation of Small Molecules for Strongly Absorbing Organic Thin Films. Journal of Physical Chemistry C, 2013, 117, 11600-11609.	3.1	50
84	Temperature dependent behavior of flat and bulk heterojunction organic solar cells. Materials Research Society Symposia Proceedings, 2013, 1493, 269-273.	0.1	3
85	Correlation of open-circuit voltage and energy levels in zinc-phthalocyanine: C <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>60</mml:mn></mml:msub></mml:math> bulk heterojunction solar cells with varied mixing ratio. Physical Review B, 2013, 88	3.2	71
86	Fermi level shift and doping efficiency in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -doped small molecule organic semiconductors: A photoelectron spectroscopy and theoretical study. Physical Review B, 2012, 86, .	3.2	152
87	<i>In-situ</i> conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C60. Applied Physics Letters, 2012, 100, .	3.3	112
88	Temperature Activation of the Photoinduced Charge Carrier Generation Efficiency in Quaterthiophene:C ₆₀ Mixed Films. Journal of Physical Chemistry C, 2012, 116, 25097-25105.	3.1	9
89	Morphology and molecular orientation of ethyl-substituted dicyanovinyl-sexithiophene films for photovoltaic applications. Thin Solid Films, 2012, 525, 97-105.	1.8	20
90	2-(2-Methoxyphenyl)-1,3-dimethyl-1 <i>H</i> -benzoimidazol-3-ium Iodide as a New Air-Stable n-Type Dopant for Vacuum-Processed Organic Semiconductor Thin Films. Journal of the American Chemical Society, 2012, 134, 3999-4002.	13.7	145

#	Article	IF	Citations
91	Phase separation analysis of bulk heterojunctions in small-molecule organic solar cells using zinc-phthalocyanine and C60. Physical Review B, 2012, 85, .	3.2	53
92	A comparison of two air-stable molecular n-dopants for C60. Organic Electronics, 2012, 13, 3319-3325.	2.6	28
93	Measurements of Efficiency Losses in Blend and Bilayer-Type Zinc Phthalocyanine/C ₆₀ High-Vacuum-Processed Organic Solar Cells. Journal of Physical Chemistry C, 2012, 116, 16384-16390.	3.1	35
94	Photoelectron spectroscopy investigations of recombination contacts for tandem organic solar cells. Applied Physics Letters, 2012, 100, .	3.3	14
95	Comparative Study of Microscopic Charge Dynamics in Crystalline Acceptor-Substituted Oligothiophenes. Journal of the American Chemical Society, 2012, 134, 6052-6056.	13.7	78
96	Correlation of π-Conjugated Oligomer Structure with Film Morphology and Organic Solar Cell Performance. Journal of the American Chemical Society, 2012, 134, 11064-11067.	13.7	260
97	Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: A drift-diffusion simulation study. Physical Review B, 2012, 85, .	3.2	174
98	Impedance model of trap states for characterization of organic semiconductor devices. Journal of Applied Physics, 2012, 111, .	2.5	52
99	The effect of barrier performance on the lifetime of small-molecule organic solar cells. Solar Energy Materials and Solar Cells, 2012, 97, 102-108.	6.2	66
100	Organic solar cells based on a novel infrared absorbing aza-bodipy dye. Solar Energy Materials and Solar Cells, 2012, 99, 176-181.	6.2	54
101	Effect of film thickness, type of buffer layer, and substrate temperature on the morphology of dicyanovinyl-substituted sexithiophene films. Thin Solid Films, 2012, 520, 2479-2487.	1.8	14
102	Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility. Organic Electronics, 2012, 13, 58-65.	2.6	105
103	Probing the effect of substrate heating during deposition of DCV4T:C60 blend layers for organic solar cells. Organic Electronics, 2012, 13, 623-631.	2.6	22
104	Fluorinated Zinc Phthalocyanine as Donor for Efficient Vacuumâ€Deposited Organic Solar Cells. Advanced Functional Materials, 2012, 22, 405-414.	14.9	70
105	Interrelation between Crystal Packing and Smallâ€Molecule Organic Solar Cell Performance. Advanced Materials, 2012, 24, 675-680.	21.0	129
106	Homoleptic Co(ii), Ni(ii), Cu(ii), Zn(ii) and Hg(ii) complexes of bis-(phenyl)-diisoindol-aza-methene. Dalton Transactions, 2011, 40, 3476.	3.3	37
107	Molecules for organic electronics studied one by one. Physical Chemistry Chemical Physics, 2011, 13, 14421.	2.8	6
108	Organic Semiconductors., 2011,, 448-507.		9

#	Article	IF	Citations
109	Investigation of C60F36 as low-volatility $\langle i \rangle p \langle i \rangle$ -dopant in organic optoelectronic devices. Journal of Applied Physics, 2011, 109, .	2.5	55
110	Improved efficiency and lifetime in small molecule organic solar cells with optimized conductive polymer electrodes. Applied Physics Letters, $2011, 99, \ldots$	3.3	39
111	Tetrapropyl-tetraphenyl-diindenoperylene derivative as a green absorber for high-voltage stable organic solar cells. Physical Review B, 2011, 83, .	3.2	14
112	Side Chain Variations on a Series of Dicyanovinyl-Terthiophenes: A Photoinduced Absorption Study. Journal of Physical Chemistry A, 2011, 115, 8437-8446.	2.5	29
113	Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells. Applied Physics Letters, 2011, 98, .	3.3	203
114	Improved photocurrent by using n-doped 2,3,8,9,14,15-hexachloro-5,6,11,12,17,18-hexaazatrinaphthylene as optical spacer layer in p-i-n type organic solar cells. Journal of Applied Physics, 2011, 110, .	2.5	18
115	Effect of concentration gradients in ZnPc:C60 bulk heterojunction organic solar cells. Solar Energy Materials and Solar Cells, 2011, , .	6.2	5
116	Increase of charge carrier lifetime in dicyanovinyl–quinquethiophene: fullerene blends upon deposition on heated substrates. Organic Electronics, 2011, 12, 2258-2267.	2.6	10
117	Dicyanovinyl sexithiophene as donor material in organic planar heterojunction solar cells: Morphological, optical, and electrical properties. Organic Electronics, 2011, 12, 2243-2252.	2.6	6
118	An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules. Solar Energy Materials and Solar Cells, 2011, 95, 1398-1416.	6.2	132
119	Consensus stability testing protocols for organic photovoltaic materials and devices. Solar Energy Materials and Solar Cells, 2011, 95, 1253-1267.	6.2	812
120	Synthesis of thiophene-substituted aza-BODIPYs and their optical and electrochemical properties. Tetrahedron, 2011, 67, 7148-7155.	1.9	83
121	Determining the C60 molecular arrangement in thin films by means of X-ray diffraction. Journal of Applied Crystallography, 2011, 44, 983-990.	4.5	28
122	Dicyanovinyl–Substituted Oligothiophenes: Structureâ€Property Relationships and Application in Vacuumâ€Processed Small Molecule Organic Solar Cells. Advanced Functional Materials, 2011, 21, 897-910.	14.9	246
123	Influence of Holeâ€Transport Layers and Donor Materials on Openâ€Circuit Voltage and Shape of <i>lâ€" V</i> Curves of Organic Solar Cells. Advanced Functional Materials, 2011, 21, 2140-2149.	14.9	263
124	Efficient Organic Tandem Solar Cells based on Small Molecules. Advanced Functional Materials, 2011, 21, 3019-3028.	14.9	216
125	Synthesis and Characterization of Nearâ€Infrared Absorbing Benzannulated Azaâ€BODIPY Dyes. Chemistry - A European Journal, 2011, 17, 2939-2947.	3.3	151
126	The influence of substrate heating on morphology and layer growth in C60:ZnPc bulk heterojunction solar cells. Organic Electronics, 2011, 12, 435-441.	2.6	61

#	Article	IF	Citations
127	Tetrabutyl-tetraphenyl-diindenoperylene derivatives as alternative green donor in bulk heterojunction organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 630-635.	6.2	7
128	Total charge amount as indicator for the degradation of small molecule organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1278-1283.	6.2	15
129	The role of energy level matching in organic solar cells—Hexaazatriphenylene hexacarbonitrile as transparent electron transport material. Solar Energy Materials and Solar Cells, 2011, 95, 927-932.	6.2	40
130	Water and oxygen induced degradation of small molecule organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1268-1277.	6.2	126
131	Zinc phthalocyanine â€" Influence of substrate temperature, film thickness, and kind of substrate on the morphology. Thin Solid Films, 2011, 519, 3939-3945.	1.8	84
132	Near-infrared absorbing semitransparent organic solar cells. Applied Physics Letters, 2011, 99, .	3.3	48
133	Quantitative estimation of electronic quality of zinc phthalocyanine thin films. Physical Review B, 2011, 84, .	3.2	10
134	Highly efficient semitransparent tandem organic solar cells with complementary absorber materials. Applied Physics Letters, 2011, 99, 043301.	3.3	60
135	X-ray investigation of the morphology of DCV6T-Bu4films for organic solar cells. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s97-s98.	0.3	1
136	Organic solar cells with very high fill factor and voltage using tetrapropylâ€tetraphenylâ€diindenoperylene as green donor. Physica Status Solidi - Rapid Research Letters, 2010, 4, 329-331.	2.4	10
137	On the communication of scientific data: The Full-Metadata Format. Computer Physics Communications, 2010, 181, 651-662.	7.5	13
138	Sonnige Aussichten mit organischen Solarzellen. Forschung, 2010, 35, 22-27.	0.0	0
139	Conductivity, charge carrier mobility and ageing of ZnPc/C60 solar cells. Optical Materials, 2010, 32, 1676-1680.	3.6	21
140	Improved photon harvesting by employing C 70 in bulk heterojunction solar cells. , 2010, , .		2
141	Efficient and long-term stable organic vacuum deposited tandem solar cells. Proceedings of SPIE, 2010,	0.8	6
142	Increase in internal quantum efficiency in small molecular oligothiophene: C60 mixed heterojunction solar cells by substrate heating. Applied Physics Letters, 2010, 97, 073503.	3.3	57
143	Highly doped layers as efficient electron–hole recombination contacts for tandem organic solar cells. Journal of Applied Physics, 2010, 108, 033108.	2.5	66
144	Controlled current matching in small molecule organic tandem solar cells using doped spacer layers. Journal of Applied Physics, 2010, 107, .	2.5	92

#	Article	IF	Citations
145	Correlation between morphology and performance of low bandgap oligothiophene:C60 mixed heterojunctions in organic solar cells. Journal of Applied Physics, 2010, 107, .	2.5	55
146	Selective absorption enhancement in organic solar cells using light incoupling layers. Journal of Applied Physics, 2010, 107, 053117.	2.5	33
147	Light Incoupling & Dptical Optimisation of Organic Solar Cells. , 2010, , .		0
148	Comparison of different conditions for accelerated ageing of small molecule organic solar cells. , 2010, , .		8
149	Detection of trap charge in small molecular organic bulk heterojunction solar cells. Physical Review B, 2010, 82, .	3.2	25
150	Numerical drift-diffusion modeling of organic solar cells in comparison with experimental data series. , $2010, , .$		1
151	Charge Carrier Mobility and Ageing of ZnPc/C60 Solar Cells. Molecular Crystals and Liquid Crystals, 2010, 522, 61/[361]-74/[374].	0.9	0
152	Optimization of organic tandem solar cells based on small molecules. , 2010, , .		3
153	Organic thin-film layer investigation with pair-distribution function technique. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s73-s73.	0.3	0
154	Optimizing the morphology of metal multilayer films for indium tin oxide (ITO)-free inverted organic solar cells. Journal of Applied Physics, 2009, 105 , .	2.5	72
155	Antenna effects and improved efficiency in multiple heterojunction photovoltaic cells based on pentacene, zinc phthalocyanine, and C60. Journal of Applied Physics, 2009, 106, .	2.5	42
156	Efficient semitransparent small-molecule organic solar cells. Applied Physics Letters, 2009, 95, .	3.3	37
157	Organic thin film photovoltaic cells based on planar and mixed heterojunctions between fullerene and a low bandgap oligothiophene. Journal of Applied Physics, 2009, 106, .	2.5	40
158	Characterization of effective charge carrier mobility in ZnPc/C60 solar cells after ageing. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2864-2866.	0.8	3
159	Surface Engineering Using Kumada Catalyst-Transfer Polycondensation (KCTP): Preparation and Structuring of Poly(3-hexylthiophene)-Based Graft Copolymer Brushes. Journal of the American Chemical Society, 2009, 131, 153-161.	13.7	102
160	Thick C60:ZnPc bulk heterojunction solar cells with improved performance by film deposition on heated substrates. Applied Physics Letters, 2009, 94, .	3.3	100
161	Transparent conductive layers for organic solar cells: simulation and experiment. Proceedings of SPIE, 2009, , .	0.8	7
162	Improved bulk heterojunction organic solar cells employing C70 fullerenes. Applied Physics Letters, 2009, 94, 223307.	3.3	98

#	Article	IF	Citations
163	High throughput testing platform for organic Solar Cells. Progress in Photovoltaics: Research and Applications, 2008, 16, 561-576.	8.1	34
164	Light trapping in organic solar cells. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2862-2874.	1.8	74
165	Small-molecule solar cells—status and perspectives. Nanotechnology, 2008, 19, 424001.	2.6	269
166	Efficient p-i-n type organic solar cells incorporating 1,4,5,8-naphthalenetetracarboxylic dianhydride as transparent electron transport material. Journal of Applied Physics, 2008, 104, 034506.	2.5	52
167	Pentacene homojunctions: Electron and hole transport properties and related photovoltaic responses. Physical Review B, 2008, 77, .	3.2	71
168	Origin of open circuit voltage in planar and bulk heterojunction organic thin-film photovoltaics depending on doped transport layers. Journal of Applied Physics, 2008, 104, 043107.	2.5	116
169	Comment on "Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics―[Appl. Phys. Lett. 90, 163511 (2007)]. Applied Physics Letters, 2008, 92, 076101.	3.3	9
170	Transparent electrode materials for solar cells. Proceedings of SPIE, 2008, , .	0.8	18
171	Characterisation of different hole transport materials as used in organic p-i-n solar cells. Proceedings of SPIE, 2008, , .	0.8	12
172	Recent progress in organic solar cells based on small molecules. Proceedings of SPIE, 2008, , .	0.8	2
173	Dicyanovinyl-quinquethiophenes with varying alkyl chain lengths: Investigation of their performance in organic devices. Journal of Applied Physics, 2008, 104, 074511.	2.5	40
174	Analyzing poly(3-hexyl-thiophene):1-(3-methoxy-carbonyl)propyl-1-phenyl-(6,6)C61 bulk-heterojunction solar cells by UV-visible spectroscopy and optical simulations. Journal of Applied Physics, 2007, 102, 054502.	2.5	23
175	Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy. Solar Energy Materials and Solar Cells, 2007, 91, 390-393.	6.2	229
176	The influence of doping on the performance of organic bulk heterojunction solar cells., 2006, 6192, 324.		0
177	Datamining and analysis of the key parameters in organic solar cells. , 2006, , .		5
178	Optical near field phenomena in planar and structured organic solar cells. , 2006, , .		6
179	Electroabsorption studies of organic bulk-heterojunction solar cells. Thin Solid Films, 2005, 493, 170-174.	1.8	21
180	Organic solar cells using inverted layer sequence. Thin Solid Films, 2005, 491, 298-300.	1.8	177

#	Article	IF	CITATIONS
181	Functional substrates for flexible organic photovoltaic cells. , 2005, 5938, 593802.		1
182	Thermally Evaporated Donor Molecules for Low-Voltage Loss Organic Solar Cells. , 0, , .		0