
Richard D Cannon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4980197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial Analysis of Obturators During Maxillofacial Prosthodontic Treatment Over an 8-Year Period. Cleft Palate-Craniofacial Journal, 2023, 60, 1426-1441.	0.9	1
2	The effect of ligation methods on biofilm formation in patients undergoing multiâ€bracketed fixed orthodontic therapy – A systematic review. Orthodontics and Craniofacial Research, 2022, 25, 14-30.	2.8	6
3	The diagnostic accuracy of saliva testing for SARSâ€CoVâ€2: AÂsystematic review and metaâ€analysis. Oral Diseases, 2022, 28, 2347-2361.	3.0	24
4	A Logicâ€Based Diagnostic and Therapeutic Hydrogel with Multistimuli Responsiveness to Orchestrate Diabetic Bone Regeneration. Advanced Materials, 2022, 34, e2108430.	21.0	84
5	Oral Fungal Infections: Past, Present, and Future. Frontiers in Oral Health, 2022, 3, 838639.	3.0	11
6	CD39/CD73 Dysregulation of Adenosine Metabolism Increases Decidual Natural Killer Cell Cytotoxicity: Implications in Unexplained Recurrent Spontaneous Abortion. Frontiers in Immunology, 2022, 13, 813218.	4.8	4
7	<i>Candida albicans</i> Bgl2p, Ecm33p, and Als1p proteins are involved in adhesion to saliva-coated hydroxyapatite. Journal of Oral Microbiology, 2021, 13, 1879497.	2.7	6
8	Engineering a Cysteine-Deficient Functional Candida albicans Cdr1 Molecule Reveals a Conserved Region at the Cytosolic Apex of ABCG Transporters Important for Correct Folding and Trafficking of Cdr1. MSphere, 2021, 6, .	2.9	6
9	Small-Scale Plasma Membrane Preparation for the Analysis of Candida albicans Cdr1-mGFPHis. Journal of Visualized Experiments, 2021, , .	0.3	5
10	PDR Transporter ABC1 Is Involved in the Innate Azole Resistance of the Human Fungal Pathogen Fusarium keratoplasticum. Frontiers in Microbiology, 2021, 12, 673206.	3.5	7
11	Complex patterns of circulating fatty acid levels in gestational diabetes mellitus subclasses across pregnancy. Clinical Nutrition, 2021, 40, 4140-4148.	5.0	14
12	Differential behaviour and gene expression in 3D cultures of femoral―and calvarialâ€derived human osteoblasts under a cyclic compressive mechanical load. European Journal of Oral Sciences, 2021, , .	1.5	0
13	Inhibitor Resistant Mutants Give Important Insights into Candida albicans ABC Transporter Cdr1 Substrate Specificity and Help Elucidate Efflux Pump Inhibition. Antimicrobial Agents and Chemotherapy, 2021, , AAC0174821.	3.2	6
14	The Role of Biofilms and Material Surface Characteristics in Microbial Adhesion to Maxillary Obturator Materials: A Literature Review. Cleft Palate-Craniofacial Journal, 2020, 57, 487-498.	0.9	8
15	Halitosis: prevalence, risk factors, sources, measurement and treatment – a review of the literature. Australian Dental Journal, 2020, 65, 4-11.	1.5	45
16	Dental research in New Zealand, past, present, and future. Journal of the Royal Society of New Zealand, 2020, 50, 1-3.	1.9	2
17	A 23 bp cyp51A Promoter Deletion Associated With Voriconazole Resistance in Clinical and Environmental Isolates of Neocosmospora keratoplastica. Frontiers in Microbiology, 2020, 11, 272.	3.5	11
18	Nano-hydroxyapatite mineralized silk fibroin porous scaffold for tooth extraction site preservation. Dental Materials, 2019, 35, 1397-1407.	3.5	30

#	Article	IF	CITATIONS
19	Genetic Polymorphisms in <i>FGFR2</i> Underlie Skeletal Malocclusion. Journal of Dental Research, 2019, 98, 1340-1347.	5.2	22
20	A metabolomic study of the effect of Candida albicans glutamate dehydrogenase deletion on growth and morphogenesis. Npj Biofilms and Microbiomes, 2019, 5, 13.	6.4	39
21	Efficacy of removing Candida albicans from orthodontic acrylic bases: an in vitro study. BMC Oral Health, 2019, 19, 71.	2.3	19
22	Yeast Species in the Oral Cavities of Older People: A Comparison between People Living in Their Own Homes and Those in Rest Homes. Journal of Fungi (Basel, Switzerland), 2019, 5, 30.	3.5	15
23	Oral probiotics reduce halitosis in patients wearing orthodontic braces: a randomized, triple-blind, placebo-controlled trial. Journal of Breath Research, 2019, 13, 036010.	3.0	40
24	FK506 Resistance of <i>Saccharomyces cerevisiae</i> Pdr5 and <i>Candida albicans</i> Cdr1 Involves Mutations in the Transmembrane Domains and Extracellular Loops. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	20
25	Postnatal expression of chondrogenic and osteogenic regulatory factor mRNA in the rat condylar cartilage. Archives of Oral Biology, 2018, 93, 126-132.	1.8	Ο
26	Role of Ectopic Gene Conversion in the Evolution of a Candida krusei Pleiotropic Drug Resistance Transporter Family. Genetics, 2017, 205, 1619-1639.	2.9	12
27	Atomic force microscopy analysis of enamel nanotopography after interproximal reduction. American Journal of Orthodontics and Dentofacial Orthopedics, 2017, 151, 750-757.	1.7	16
28	Adhesion of Yeast and Bacteria to Oral Surfaces. Methods in Molecular Biology, 2017, 1537, 165-190.	0.9	4
29	Interproximal reduction in orthodontics: why, where, how much to remove?. Australasian Orthodontic Journal, 2017, 33, 150-157.	0.3	2
30	Structure–Function Analyses of Multidrug Transporters. , 2017, , 379-406.		3
31	Denaturing gradient gel electrophoresis profiles of bacteria from the saliva of twenty four different individuals form clusters that showed no relationship to the yeasts present. Archives of Oral Biology, 2017, 82, 6-10.	1.8	3
32	Effect of non-fluoride agents on the prevention of dental caries in primary dentition: A systematic review. PLoS ONE, 2017, 12, e0182221.	2.5	29
33	Multilocus sequence typing (MLST) analysis ofCandida albicansisolates colonizing acrylic dentures before and after denture replacement. Medical Mycology, 2016, 55, myw128.	0.7	16
34	Identification and characterization of <i>Candida utilis</i> multidrug efflux transporter <i>Cu</i> Cdr1p. FEMS Yeast Research, 2016, 16, fow042.	2.3	15
35	Targeting efflux pumps to overcome antifungal drug resistance. Future Medicinal Chemistry, 2016, 8, 1485-1501.	2.3	89
36	Beauvericin counteracted multi-drug resistant Candida albicans by blocking ABC transporters. Synthetic and Systems Biotechnology, 2016, 1, 158-168.	3.7	31

#	Article	IF	CITATIONS
37	Simultaneous wireless assessment of intra-oral pH and temperature. Journal of Dentistry, 2016, 51, 49-55.	4.1	11
38	Identification and functional characterization ofPenicillium marneffeipleiotropic drug resistance transportersABC1andABC2. Medical Mycology, 2016, 54, 478-491.	0.7	11
39	Secretory component mediates <i>Candida albicans</i> binding to epithelial cells. Oral Diseases, 2016, 22, 69-74.	3.0	12
40	Last hope for the doomed? Thoughts on the importance of a parasexual cycle for the yeast Candida albicans. Current Genetics, 2016, 62, 81-85.	1.7	7
41	Newly identified motifs in Candida albicans Cdr1 protein nucleotide binding domains are pleiotropic drug resistance subfamily-specific and functionally asymmetric. Scientific Reports, 2016, 6, 27132.	3.3	6
42	Learning the <scp>ABC</scp> of oral fungal drug resistance. Molecular Oral Microbiology, 2015, 30, 425-437.	2.7	15
43	Effect of Air-Polishing on Titanium Surfaces, Biofilm Removal, and Biocompatibility: A Pilot Study. BioMed Research International, 2015, 2015, 1-8.	1.9	14
44	<i>In vitro</i> expression of <i>Candida albicans</i> alcohol dehydrogenase genes involved in acetaldehyde metabolism. Molecular Oral Microbiology, 2015, 30, 27-38.	2.7	12
45	Selective Advantages of a Parasexual Cycle for the Yeast <i>Candida albicans</i> . Genetics, 2015, 200, 1117-1132.	2.9	23
46	Inhibitors of the Candida albicans Major Facilitator Superfamily Transporter Mdr1p Responsible for Fluconazole Resistance. PLoS ONE, 2015, 10, e0126350.	2.5	51
47	Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3865-3870.	7.1	231
48	Efficacy of air/water syringe tip sterilization. Australian Dental Journal, 2014, 59, 87-92.	1.5	1
49	Adherence of <i>Candida albicans</i> to silicone is promoted by the human salivary protein <scp>SPLUNC</scp> 2/ <scp>PSP</scp> / <scp>BPIFA</scp> 2. Molecular Oral Microbiology, 2014, 29, 90-98.	2.7	15
50	Esthetic comparison of white-spot lesion treatment modalities using spectrometry and fluorescence. Angle Orthodontist, 2014, 84, 343-349.	2.4	46
51	Detection of <i><scp>C</scp>andida albicans ADH1</i> and <i>ADH2</i> m <scp>RNA</scp> s in human archival oral biopsy samples. Journal of Oral Pathology and Medicine, 2014, 43, 704-710.	2.7	11
52	Drug Resistance Is Conferred on the Model Yeast <i>Saccharomyces cerevisiae</i> by Expression of Full-Length Melanoma-Associated Human ATP-Binding Cassette Transporter ABCB5. Molecular Pharmaceutics, 2014, 11, 3452-3462.	4.6	14
53	Small, synthetic, GC-rich mRNA stem-loop modules 5′ proximal to the AUG start-codon predictably tune gene expression in yeast. Microbial Cell Factories, 2013, 12, 74.	4.0	20
54	Use of denaturing gradient gel electrophoresis for the identification of mixed oral yeasts in human saliva. Journal of Medical Microbiology, 2013, 62, 319-330.	1.8	16

#	Article	IF	CITATIONS
55	Heterologous expression of <i>Candida albicans</i> Pma1p in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2013, 13, 302-311.	2.3	7
56	Insight into Pleiotropic Drug Resistance ATP-binding Cassette Pump Drug Transport through Mutagenesis of Cdr1p Transmembrane Domains*. Journal of Biological Chemistry, 2013, 288, 24480-24493.	3.4	42
57	Metabolic Response of Candida albicans to Phenylethyl Alcohol under Hyphae-Inducing Conditions. PLoS ONE, 2013, 8, e71364.	2.5	21
58	The Monoamine Oxidase A Inhibitor Clorgyline Is a Broad-Spectrum Inhibitor of Fungal ABC and MFS Transporter Efflux Pump Activities Which Reverses the Azole Resistance of Candida albicans and Candida glabrata Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2012, 56, 1508-1515.	3.2	85
59	N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis. Medical Mycology, 2012, 50, 252-258.	0.7	11
60	Yeast Colonization of Voice Prostheses: Pilot Study Investigating Effect of a Bovine Milk Product Containing Anti— <i>Candida Albicans</i> Immunoglobulin A Antibodies on Yeast Colonization and Valve Leakage. Annals of Otology, Rhinology and Laryngology, 2012, 121, 61-66.	1.1	7
61	Reconstitution of high-level micafungin resistance detected in a clinical isolate of Candida glabrata identifies functional homozygosity in glucan synthase gene expression. Journal of Antimicrobial Chemotherapy, 2012, 67, 1666-1676.	3.0	15
62	The metabolic response of <i>Candida albicans</i> to farnesol under hyphae-inducing conditions. FEMS Yeast Research, 2012, 12, 879-889.	2.3	28
63	Metabolome analysis during the morphological transition of Candida albicans. Metabolomics, 2012, 8, 1204-1217.	3.0	24
64	A d-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model. FEMS Microbiology Letters, 2012, 328, 130-137.	1.8	31
65	Specific interactions between the <i>Candida albicans</i> ABC transporter Cdr1p ectodomain and a <scp>d</scp> â€octapeptide derivative inhibitor. Molecular Microbiology, 2012, 85, 747-767.	2.5	41
66	The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genetics and Biology, 2011, 48, 747-763.	2.1	141
67	Chimeras of Candida albicans Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function. Molecular Microbiology, 2011, 82, 416-433.	2.5	22
68	Antifungal drug resistance of oral fungi. Odontology / the Society of the Nippon Dental University, 2010, 98, 15-25.	1.9	131
69	Revisiting the association between candidal infection and carcinoma, particularly oral squamous cell carcinoma. Journal of Oral Microbiology, 2010, 2, 5780.	2.7	114
70	Adhesion of Yeast and Bacteria to Oral Surfaces. Methods in Molecular Biology, 2010, 666, 103-124.	0.9	8
71	Fungal PDR transporters: Phylogeny, topology, motifs and function. Fungal Genetics and Biology, 2010, 47, 127-142.	2.1	141
72	Use of a Yeast-Based Membrane Protein Expression Technology to Overexpress Drug Resistance Efflux Pumps. Methods in Molecular Biology, 2010, 666, 219-250.	0.9	4

#	Article	IF	CITATIONS
73	Impact of Genetic Background on Allele Selection in a Highly Mutable Candida albicans Gene, PNG2. PLoS ONE, 2010, 5, e9614.	2.5	9
74	Abc1p Is a Multidrug Efflux Transporter That Tips the Balance in Favor of Innate Azole Resistance in <i>Candida krusei</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 354-369.	3.2	93
75	Efflux-Mediated Antifungal Drug Resistance. Clinical Microbiology Reviews, 2009, 22, 291-321.	13.6	483
76	An <i>inâ€vitro</i> device for the assessment of biofilm mediated voice prosthesis damage: how we do it. Clinical Otolaryngology, 2009, 34, 481-484.	1.2	2
77	Distribution of mutations distinguishing the most prevalent disease-causing Candida albicans genotype from other genotypesâ~†. Infection, Genetics and Evolution, 2009, 9, 493-500.	2.3	11
78	ldentification of Nile red as a fluorescent substrate of the Candida albicans ATP-binding cassette transporters Cdr1p and Cdr2p and the major facilitator superfamily transporter Mdr1p. Analytical Biochemistry, 2009, 394, 87-91.	2.4	103
79	ABC Transporter Cdr1p Contributes More than Cdr2p Does to Fluconazole Efflux in Fluconazole-Resistant <i>Candida albicans</i> Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2008, 52, 3851-3862.	3.2	144
80	Antifungal Saponins from <i>Paris polyphylla</i> Smith. Planta Medica, 2008, 74, 1397-1402.	1.3	60
81	Production from dairy cows of semi-industrial quantities of milk-protein concentrate (MPC) containing efficacious anti-Candida albicansIgA antibodies. Journal of Dairy Research, 2007, 74, 269-275.	1.4	17
82	Characterization of Three Classes of Membrane Proteins Involved in Fungal Azole Resistance by Functional Hyperexpression in Saccharomyces cerevisiae. Eukaryotic Cell, 2007, 6, 1150-1165.	3.4	173
83	Candida albicans drug resistance – another way to cope with stress. Microbiology (United Kingdom), 2007, 153, 3211-3217.	1.8	183
84	Candida albicans binds to saliva proteins selectively adsorbed to silicone. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2006, 102, 488-494.	1.4	42
85	Amino Acid Residues Affecting Drug Pump Function in Candida albicans-C. albicans Drug Pump Function Medical Mycology Journal, 2006, 47, 275-281.	0.7	3
86	Temperature-related expression of the vacuolar aspartic proteinase (APR1) gene and β-N-acetylglucosaminidase (HEX1) gene during Candida albicans morphogenesis. FEMS Microbiology Letters, 2006, 148, 247-254.	1.8	6
87	Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Molecular Microbiology, 2006, 62, 170-186.	2.5	61
88	Overexpression of Candida albicans CDR1 , CDR2 , or MDR1 Does Not Produce Significant Changes in Echinocandin Susceptibility. Antimicrobial Agents and Chemotherapy, 2006, 50, 1148-1155.	3.2	123
89	Surface-Active Fungicidal d -Peptide Inhibitors of the Plasma Membrane Proton Pump That Block Azole Resistance. Antimicrobial Agents and Chemotherapy, 2005, 49, 57-70.	3.2	62
90	Characterization of twoCandida albicanssurface mannoprotein adhesins that bind immobilized saliva components. Medical Mycology, 2005, 43, 209-217.	0.7	25

#	Article	IF	CITATIONS
91	Phosphorylation of Candida glabrata ATP-binding Cassette Transporter Cdr1p Regulates Drug Efflux Activity and ATPase Stability. Journal of Biological Chemistry, 2005, 280, 94-103.	3.4	35
92	Characterization of the Saccharomyces cerevisiae sec6-41 mutation and tools to create S. cerevisiae strains containing the sec6-4 allele. Gene, 2005, 361, 57-66.	2.2	14
93	Functional analysis of fungal drug efflux transporters by heterologous expression in Saccharomyces cerevisiae. Japanese Journal of Infectious Diseases, 2005, 58, 1-7.	1.2	34
94	A futile act? Thoughts on the reproductive biology of Candida albicans. The Mycologist, 2004, 18, 158-163.	0.4	5
95	Regulated overexpression of CDR1 in Candida albicans confers multidrug resistance. Journal of Antimicrobial Chemotherapy, 2004, 54, 999-1006.	3.0	61
96	Detection of Candida albicans mRNA in Archival Histopathology Samples by Reverse Transcription-PCR. Journal of Clinical Microbiology, 2004, 42, 2275-2278.	3.9	9
97	Sixty Alleles of the ALS7 Open Reading Frame in Candida albicans: ALS7 Is a Hypermutable Contingency Locus. Genome Research, 2003, 13, 2005-2017.	5.5	68
98	Saliva Promotes Candida albicans Adherence to Human Epithelial Cells. Journal of Dental Research, 2002, 81, 28-32.	5.2	12
99	Candida glabrata ATP-binding Cassette Transporters Cdr1p and Pdh1p Expressed in aSaccharomyces cerevisiae Strain Deficient in Membrane Transporters Show Phosphorylation-dependent Pumping Properties. Journal of Biological Chemistry, 2002, 277, 46809-46821.	3.4	58
100	Saliva Promotes Candida albicans Adherence to Human Epithelial Cells. Journal of Dental Research, 2002, 81, 28-32.	5.2	34
101	Identification of two proteins induced by exposure of the pathogenic fungus Candida glabrata to fluconazole. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 782, 245-252.	2.3	34
102	Genomic Pathways to Antifungal Discovery. Current Drug Targets Infectious Disorders, 2002, 2, 309-329.	2.1	10
103	Colonization is a Crucial Factor in Oral Candidiasis. Journal of Dental Education, 2001, 65, 785-787.	1.2	34
104	Functional Expression of Candida albicans Drug Efflux Pump Cdr1p in a Saccharomyces cerevisiae Strain Deficient in Membrane Transporters. Antimicrobial Agents and Chemotherapy, 2001, 45, 3366-3374.	3.2	174
105	Distinguishing Candida Species by β- N -Acetylhexosaminidase Activity. Journal of Clinical Microbiology, 2001, 39, 2089-2097.	3.9	7
106	Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiology (United Kingdom), 2000, 146, 41-48.	1.8	84
107	Candida albicans pathogenicity: A proteomic perspective. Electrophoresis, 1999, 20, 2299-2308.	2.4	45
108	Oral Colonization By Candida Albicans. Critical Reviews in Oral Biology and Medicine, 1999, 10, 359-383.	4.4	242

#	Article	IF	CITATIONS
109	Evidence for a general-purpose genotype in Candida albicans , highly prevalent in multiple geographical regions, patient types and types of infection. Microbiology (United Kingdom), 1999, 145, 2405-2413.	1.8	73
110	Specific Chromosome Alterations in Fluconazole-Resistant Mutants of <i>Candida albicans</i> . Journal of Bacteriology, 1999, 181, 4041-4049.	2.2	129
111	Candida albicans HEX1 gene, a reporter of gene expression in Saccharomyces cerevisiae. Archives of Microbiology, 1998, 170, 113-119.	2.2	2
112	Drug Pumping Mechanisms in Canadida albicans Medical Mycology Journal, 1998, 39, 73-78.	0.7	18
113	Molecular cloning of a Rho family,CDC42Cagene fromCandida albicansand its mRNA expression changes during morphogenesis. Medical Mycology, 1997, 35, 173-179.	0.7	25
114	Temperature-related expression of the vacuolar aspartic proteinase (APR1) gene and β-N-acetylglucosaminidase (HEX1) gene during Candida albicans morphogenesis. FEMS Microbiology Letters, 1997, 148, 247-254.	1.8	9
115	Identification of salivary basic proline-rich proteins as receptors for Candida albicans adhesion. Microbiology (United Kingdom), 1997, 143, 341-348.	1.8	40
116	Molecular cloning of a gene encoding translation initiation factor (TIF) fromCandida albicans. Medical Mycology, 1996, 34, 393-400.	0.7	13
117	Interactions ofCandida albicans with bacteria and salivary molecules in oral biofilms. Journal of Industrial Microbiology, 1995, 15, 208-213.	0.9	63
118	Oral Candida: Clearance, Colonization, or Candidiasis?. Journal of Dental Research, 1995, 74, 1152-1161.	5.2	289
119	Molecular biological and biochemical aspects of fungal dimorphism. Medical Mycology, 1994, 32, 53-64.	0.7	14
120	Interactions of Actinomyces naeslundii strains T14V and ATCC 12104 with saliva, collagen and fibrinogen. Archives of Oral Biology, 1993, 38, 533-535.	1.8	10
121	Mechanisms of aggregation accompanying morphogenesis in <i>Candida albicans</i> . Oral Microbiology and Immunology, 1992, 7, 32-37.	2.8	17
122	Cloning and expression of Candida albicans ADE2 and proteinase genes on a replicative plasmid in C. albicans and in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1992, 235, 453-457.	2.4	73
123	Effect of calcium ion uptake onCandida albicansmorphology. FEMS Microbiology Letters, 1991, 77, 187-194.	1.8	45
124	Isolation and nucleotide sequence of an autonomously replicating sequence (ARS) element functional in Candida albicans and Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1990, 221, 210-218.	2.4	71
125	Correlation between the sterol composition of membranes and morphology inCandida albicans. Medical Mycology, 1988, 26, 57-65.	0.7	18
126	Sugar in your diet: kino te pai! an evaluation of oral health science outreach and community impact. International Journal of Health Promotion and Education, 0, , 1-13.	0.9	0

#	Article	IF	CITATIONS
127	Candida albicans pathogenicity: A proteomic perspective. , 0, , 28-37.		0