
Alessandro Aiuti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4980178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 2020, 370, .	12.6	1,983
2	A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). Journal of Experimental Medicine, 1996, 184, 1101-1109.	8.5	1,383
3	The Chemokine SDF-1 Is a Chemoattractant for Human CD34+ Hematopoietic Progenitor Cells and Provides a New Mechanism to Explain the Mobilization of CD34+ Progenitors to Peripheral Blood. Journal of Experimental Medicine, 1997, 185, 111-120.	8.5	1,291
4	Correction of ADA-SCID by Stem Cell Gene Therapy Combined with Nonmyeloablative Conditioning. Science, 2002, 296, 2410-2413.	12.6	1,081
5	Lentiviral Hematopoietic Stem Cell Gene Therapy Benefits Metachromatic Leukodystrophy. Science, 2013, 341, 1233158.	12.6	998
6	Gene Therapy for Immunodeficiency Due to Adenosine Deaminase Deficiency. New England Journal of Medicine, 2009, 360, 447-458.	27.0	944
7	Lentiviral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-Aldrich Syndrome. Science, 2013, 341, 1233151.	12.6	900
8	Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet, The, 2016, 388, 476-487.	13.7	393
9	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	11.9	357
10	A map of human circular RNAs in clinically relevant tissues. Journal of Molecular Medicine, 2017, 95, 1179-1189.	3.9	286
11	Coronavirus disease 2019 in patients with inborn errors of immunity: An international study. Journal of Allergy and Clinical Immunology, 2021, 147, 520-531.	2.9	278
12	X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Science Immunology, 2021, 6, .	11.9	267
13	Primary immunodeficiency diseases: Genomic approaches delineate heterogeneous Mendelian disorders. Journal of Allergy and Clinical Immunology, 2017, 139, 232-245.	2.9	261
14	Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood, 2007, 110, 1770-1778.	1.4	248
15	Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: An international multicenter retrospective study. Journal of Allergy and Clinical Immunology, 2018, 141, 1036-1049.e5.	2.9	233
16	Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. Journal of Clinical Investigation, 2007, 117, 2233-2240.	8.2	231
17	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	27.8	216
18	Gene therapy for ADA‧CID, the first marketing approval of an <i>exÂvivo</i> gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Molecular Medicine, 2017, 9, 737-740.	6.9	210

#	Article	IF	CITATIONS
19	Recent advances in understanding the pathophysiology of Wiskott-Aldrich syndrome. Blood, 2009, 113, 6288-6295.	1.4	207
20	How I treat ADA deficiency. Blood, 2009, 114, 3524-3532.	1.4	206
21	Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nature Medicine, 2002, 8, 423-425.	30.7	205
22	Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia. Nature Medicine, 2019, 25, 234-241.	30.7	188
23	InÂVivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases. Cell Stem Cell, 2016, 19, 107-119.	11.1	187
24	Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clinical Immunology, 2013, 146, 248-261.	3.2	186
25	A Clobal Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell, 2020, 181, 1194-1199.	28.9	185
26	Wiskott-Aldrich Syndrome Protein Regulates Lipid Raft Dynamics during Immunological Synapse Formation. Immunity, 2002, 17, 157-166.	14.3	175
27	Comprehensive genomic access to vector integration in clinical gene therapy. Nature Medicine, 2009, 15, 1431-1436.	30.7	173
28	Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood, 2016, 128, 45-54.	1.4	173
29	Expression of CXCR4, the receptor for stromal cell-derived factor-1 on fetal and adult human lymphohematopoietic progenitors. European Journal of Immunology, 1999, 29, 1823-1831.	2.9	172
30	Safety of retroviral gene marking with a truncated NGF receptor. Nature Medicine, 2003, 9, 367-369.	30.7	169
31	SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells. Blood, 2005, 105, 4383-4389.	1.4	167
32	WASP regulates suppressor activity of human and murine CD4+CD25+FOXP3+ natural regulatory T cells. Journal of Experimental Medicine, 2007, 204, 369-380.	8.5	167
33	Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. Lancet Haematology,the, 2019, 6, e239-e253.	4.6	166
34	In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Science Translational Medicine, 2015, 7, 273ra13.	12.4	160
35	Advances in stem cell research and therapeutic development. Nature Cell Biology, 2019, 21, 801-811.	10.3	158
36	Outcome of hematopoietic stem cell transplantation for adenosine deaminase–deficient severe combined immunodeficiency. Blood, 2012, 120, 3615-3624.	1.4	151

#	Article	IF	CITATIONS
37	Gene therapy using haematopoietic stem and progenitor cells. Nature Reviews Genetics, 2021, 22, 216-234.	16.3	151
38	Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δ Syndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase δ Syndrome Registry. Frontiers in Immunology, 2018, 9, 543.	4.8	137
39	A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. Journal of Experimental Medicine, 2019, 216, 2778-2799.	8.5	132
40	Efficient ExÂVivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy. Stem Cell Reports, 2017, 8, 977-990.	4.8	124
41	Clinical Features and Follow-Up in Patients with 22q11.2 Deletion Syndrome. Journal of Pediatrics, 2014, 164, 1475-1480.e2.	1.8	119
42	Human CD34+ Cells Express CXCR4 and Its Ligand Stromal Cell–Derived Factor-1. Implications for Infection by T-Cell Tropic Human Immunodeficiency Virus. Blood, 1999, 94, 62-73.	1.4	117
43	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	7.1	110
44	Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: long-term results from a non-randomised, open-label, phase 1/2 trial and expanded access. Lancet, The, 2022, 399, 372-383.	13.7	109
45	Retroviral Integrations in Gene Therapy Trials. Molecular Therapy, 2012, 20, 709-716.	8.2	108
46	Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood, 2012, 119, 1428-1439.	1.4	107
47	Lentiviral Vector-Mediated Gene Transfer in T Cells from Wiskott–Aldrich Syndrome Patients Leads to Functional Correction. Molecular Therapy, 2004, 10, 903-915.	8.2	106
48	Consensus approach for the management of severe combined immune deficiency caused by adenosine deaminase deficiency. Journal of Allergy and Clinical Immunology, 2019, 143, 852-863.	2.9	104
49	Defective Th1 Cytokine Gene Transcription in CD4+ and CD8+ T Cells from Wiskott-Aldrich Syndrome Patients. Journal of Immunology, 2006, 177, 7451-7461.	0.8	103
50	Lentiviral vectors targeting WASp expression to hematopoietic cells, efficiently transduce and correct cells from WAS patients. Gene Therapy, 2007, 14, 415-428.	4.5	102
51	Autoimmune Dysregulation and Purine Metabolism in Adenosine Deaminase Deficiency. Frontiers in Immunology, 2012, 3, 265.	4.8	102
52	Tracking genetically engineered lymphocytes long-term reveals the dynamics of T cell immunological memory. Science Translational Medicine, 2015, 7, 317ra198.	12.4	102
53	SARS-CoV-2–related MIS-C: A key to the viral and genetic causes of Kawasaki disease?. Journal of Experimental Medicine, 2021, 218, .	8.5	100
54	T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency. Blood, 2018, 132, 2362-2374.	1.4	99

#	Article	IF	CITATIONS
55	Integration profile of retroviral vector in gene therapy treated patients is cellâ€specific according to gene expression and chromatin conformation of target cell. EMBO Molecular Medicine, 2011, 3, 89-101.	6.9	95
56	Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans. Nature Medicine, 2018, 24, 1683-1690.	30.7	90
57	Twenty-Five Years of Gene Therapy for ADA-SCID: From <i>Bubble Babies</i> to an Approved Drug. Human Gene Therapy, 2017, 28, 972-981.	2.7	87
58	A combined immunodeficiency with severe infections, inflammation, and allergy caused by ARPC1B deficiency. Journal of Allergy and Clinical Immunology, 2019, 143, 2296-2299.	2.9	87
59	Ten years of gene therapy for primary immune deficiencies. Hematology American Society of Hematology Education Program, 2009, 2009, 682-689.	2.5	86
60	Management options for adenosine deaminase deficiency; proceedings of the EBMT satellite workshop (Hamburg, March 2006). Clinical Immunology, 2007, 123, 139-147.	3.2	84
61	Skewed T-cell receptor repertoire, decreased thymic output, and predominance of terminally differentiated T cells in ataxia telangiectasia. Blood, 2002, 100, 4082-4089.	1.4	82
62	Efficacy of Gene Therapy for Wiskott-Aldrich Syndrome Using a WAS Promoter/cDNA-Containing Lentiviral Vector and Nonlethal Irradiation. Human Gene Therapy, 2006, 17, 303-313.	2.7	82
63	ADA-deficient SCID is associated with a specific microenvironment and bone phenotype characterized by RANKL/OPG imbalance and osteoblast insufficiency. Blood, 2009, 114, 3216-3226.	1.4	82
64	Gene therapy for primary immunodeficiencies: part 1. Current Opinion in Immunology, 2012, 24, 580-584.	5.5	82
65	Clinical Applications of Gene Therapy for Primary Immunodeficiencies. Human Gene Therapy, 2015, 26, 210-219.	2.7	78
66	Evidence for Long-term Efficacy and Safety of Gene Therapy for Wiskott–Aldrich Syndrome in Preclinical Models. Molecular Therapy, 2009, 17, 1073-1082.	8.2	77
67	Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)–deficient mice and corrects their immune and metabolic defects. Blood, 2006, 108, 2979-2988.	1.4	76
68	Preclinical Safety and Efficacy of Human CD34+ Cells Transduced With Lentiviral Vector for the Treatment of Wiskott-Aldrich Syndrome. Molecular Therapy, 2013, 21, 175-184.	8.2	72
69	Wiskott–Aldrich Syndrome protein deficiency perturbs the homeostasis of B-cell compartment in humans. Journal of Autoimmunity, 2014, 50, 42-50.	6.5	72
70	A prospective study on the natural history of patients with profound combined immunodeficiency: An interim analysis. Journal of Allergy and Clinical Immunology, 2017, 139, 1302-1310.e4.	2.9	71
71	AQP8 transports NOX2-generated H2O2 across the plasma membrane to promote signaling in B cells. Journal of Leukocyte Biology, 2016, 100, 1071-1079.	3.3	69
72	Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. Journal of Inherited Metabolic Disease, 2017, 40, 543-554.	3.6	67

#	Article	IF	CITATIONS
73	Autologous Stem-Cell-Based Gene Therapy for Inherited Disorders: State of the Art and Perspectives. Frontiers in Pediatrics, 2019, 7, 443.	1.9	66
74	Integration of retroviral vectors induces minor changes in the transcriptional activity of T cells from ADA-SCID patients treated with gene therapy. Blood, 2009, 114, 3546-3556.	1.4	65
75	Altered intracellular and extracellular signaling leads to impaired T-cell functions in ADA-SCID patients. Blood, 2008, 111, 4209-4219.	1.4	64
76	Developmental expression of the T-box transcription factor T-bet/Tbx21 during mouse embryogenesis. Mechanisms of Development, 2002, 116, 157-160.	1.7	62
77	Gene therapy for primary immunodeficiencies: Part 2. Current Opinion in Immunology, 2012, 24, 585-591.	5.5	61
78	A systematic review and meta-analysis of gene therapy with hematopoietic stem and progenitor cells for monogenic disorders. Nature Communications, 2022, 13, 1315.	12.8	61
79	Assessment of thymic output in common variable immunodeficiency patients by evaluation of T cell receptor excision circles. Clinical and Experimental Immunology, 2002, 129, 346-353.	2.6	59
80	Dual-regulated Lentiviral Vector for Gene Therapy of X-linked Chronic Granulomatosis. Molecular Therapy, 2014, 22, 1472-1483.	8.2	59
81	Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. Journal of Experimental Medicine, 2022, 219, .	8.5	59
82	Transcriptional Targeting of Retroviral Vectors to the Erythroblastic Progeny of Transduced Hematopoietic Stem Cells. Blood, 1999, 93, 3276-3285.	1.4	58
83	Biased T-cell receptor repertoires in patients with chromosome 22q11.2 deletion syndrome (DiGeorge) Tj ETQq1	1 0.78431 2.6	4 rgBT /Ovei
84	Update on gene therapy for adenosine deaminase-deficient severe combined immunodeficiency. Current Opinion in Allergy and Clinical Immunology, 2010, 10, 551-556.	2.3	56
85	Clinical outcome, incidence, and SARS-CoV-2 infection-fatality rates in Italian patients with inborn errors of immunity. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 2904-2906.e2.	3.8	56
86	Defective B cell tolerance in adenosine deaminase deficiency is corrected by gene therapy. Journal of Clinical Investigation, 2012, 122, 2141-2152.	8.2	55
87	The Wiskott-Aldrich syndrome protein is required for iNKT cell maturation and function. Journal of Experimental Medicine, 2009, 206, 735-742.	8.5	53
88	Bone Marrow Clonogenic Capability, Cytokine Production, and Thymic Output in Patients with Common Variable Immunodeficiency. Journal of Immunology, 2005, 174, 5074-5081.	0.8	52
89	Gene therapy for adenosine deaminase deficiency. Current Opinion in Allergy and Clinical Immunology, 2003, 3, 461-466.	2.3	51
90	Cell-Surface Marking of CD34 ⁺ -Restricted Phenotypes of Human Hematopoietic Progenitor Cells by Retrovirus-Mediated Gene Transfer. Human Gene Therapy, 1997, 8, 1611-1623.	2.7	50

#	Article	IF	CITATIONS
91	Gene Therapy for Adenosine Deaminase Deficiency: A Comprehensive Evaluation of Short- and Medium-Term Safety. Molecular Therapy, 2018, 26, 917-931.	8.2	50
92	Lentiviral gene therapy corrects platelet phenotype and function in patients with Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2019, 144, 825-838.	2.9	50
93	Wiskott-Aldrich syndrome protein–mediated actin dynamics control type-I interferon production in plasmacytoid dendritic cells. Journal of Experimental Medicine, 2013, 210, 355-374.	8.5	49
94	Defective B-cell proliferation and maintenance of long-term memory in patients with chronic granulomatous disease. Journal of Allergy and Clinical Immunology, 2015, 135, 753-761.e2.	2.9	49
95	Insertion Sites in Engrafted Cells Cluster Within a Limited Repertoire of Genomic Areas After Gammaretroviral Vector Gene Therapy. Molecular Therapy, 2011, 19, 2031-2039.	8.2	48
96	T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation. Blood, 2012, 120, 1820-1830.	1.4	47
97	Update on Clinical ExÂVivo Hematopoietic Stem Cell Gene Therapy for Inherited Monogenic Diseases. Molecular Therapy, 2021, 29, 489-504.	8.2	46
98	Bone marrow stromal cells from \hat{l}^2 -thalassemia patients have impaired hematopoietic supportive capacity. Journal of Clinical Investigation, 2019, 129, 1566-1580.	8.2	46
99	Immunotherapy of acute leukemia by chimeric antigen receptor-modified lymphocytes using an improved <i>Sleeping Beauty</i> transposon platform. Oncotarget, 2016, 7, 51581-51597.	1.8	43
100	Lentiviral-mediated gene therapy restores B cell tolerance in Wiskott-Aldrich syndrome patients. Journal of Clinical Investigation, 2015, 125, 3941-3951.	8.2	43
101	Recovery of Hematopoietic Activity in Bone Marrow from Human Immunodeficiency Virus Type 1-Infected Patients during Highly Active Antiretroviral Therapy. AIDS Research and Human Retroviruses, 2000, 16, 1471-1479.	1.1	42
102	Targeted NGS Platforms for Genetic Screening and Gene Discovery in Primary Immunodeficiencies. Frontiers in Immunology, 2019, 10, 316.	4.8	42
103	ALPS-Like Phenotype Caused by ADA2 Deficiency Rescued by Allogeneic Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 2019, 9, 2767.	4.8	42
104	B-cell reconstitution after lentiviral vector–mediated gene therapy in patients with Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2015, 136, 692-702.e2.	2.9	41
105	Clinical, Immunological, and Molecular Features of Typical and Atypical Severe Combined Immunodeficiency: Report of the Italian Primary Immunodeficiency Network. Frontiers in Immunology, 2019, 10, 1908.	4.8	41
106	New insights into the pathogenesis of adenosine deaminase-severe combined immunodeficiency and progress in gene therapy. Current Opinion in Allergy and Clinical Immunology, 2009, 9, 496-502.	2.3	40
107	The Role of Conditioning in Hematopoietic Stem-Cell Gene Therapy. Human Gene Therapy, 2016, 27, 741-748.	2.7	40
108	Harnessing Type I IFN Immunity Against SARS-CoV-2 with Early Administration of IFN-β. Journal of Clinical Immunology, 2021, 41, 1425-1442.	3.8	39

#	Article	IF	CITATIONS
109	Large Deletion of MAGT1 Gene in a Patient with Classic Kaposi Sarcoma, CD4 Lymphopenia, and EBV Infection. Journal of Clinical Immunology, 2017, 37, 32-35.	3.8	38
110	Gene therapy for mucopolysaccharidoses: in vivo and ex vivo approaches. Italian Journal of Pediatrics, 2018, 44, 130.	2.6	38
111	Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients. Scientific Reports, 2017, 7, 40136.	3.3	38
112	Unpredictability of Intravenous Busulfan Pharmacokinetics in Children Undergoing Hematopoietic Stem Cell Transplantation for Advanced Beta Thalassemia: Limited Toxicity with a Dose-Adjustment Policy. Biology of Blood and Marrow Transplantation, 2010, 16, 622-628.	2.0	36
113	Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Science Immunology, 2023, 8, .	11.9	35
114	Capillary Electrophoresis in Diagnosis and Monitoring of Adenosine Deaminase Deficiency. Clinical Chemistry, 2003, 49, 1830-1838.	3.2	34
115	The Quality of Life of Children and Adolescents with X-Linked Agammaglobulinemia. Journal of Clinical Immunology, 2009, 29, 501-507.	3.8	34
116	Lentiviral-mediated gene therapy leads to improvement of B-cell functionality in a murine model of Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2011, 127, 1376-1384.e5.	2.9	34
117	Gene therapy in rare diseases: the benefits and challenges of developing a patient-centric registry for Strimvelis in ADA-SCID. Orphanet Journal of Rare Diseases, 2018, 13, 49.	2.7	34
118	In vivo dynamics of human hematopoietic stem cells: novel concepts and future directions. Blood Advances, 2019, 3, 1916-1924.	5.2	34
119	Immunodysregulation of HIV disease at bone marrow level. Autoimmunity Reviews, 2005, 4, 486-490.	5.8	33
120	Hematopoietic stem cell transplantation for Wiskott-Aldrich syndrome: an EBMT Inborn ErrorsÂWorking Party analysis. Blood, 2022, 139, 2066-2079.	1.4	33
121	Hematopoietic support and cytokine expression of murine-stable hepatocyte cell lines (MMH). Hepatology, 1998, 28, 1645-1654.	7.3	32
122	Burkitt's Lymphoma in a Patient with Adenosine Deaminase Deficiency-Severe Combined Immunodeficiency Treated with Polyethylene Glycol-Adenosine Deaminase. Journal of Pediatrics, 2007, 151, 93-95.	1.8	32
123	Hematopoietic stem cell gene therapy for adenosine deaminase deficient-SCID. Immunologic Research, 2009, 44, 150-159.	2.9	32
124	Severe Toxoplasma gondii infection in a member of a NFKB2-deficient family with T and B cell dysfunction. Clinical Immunology, 2017, 183, 273-277.	3.2	32
125	Revertant T lymphocytes in a patient with Wiskott-Aldrich syndrome: Analysis of function and distribution in lymphoid organs. Journal of Allergy and Clinical Immunology, 2010, 125, 439-448.e8.	2.9	31
126	The case of an APDS patient: Defects in maturation and function and decreased in vitro anti-mycobacterial activity in the myeloid compartment. Clinical Immunology, 2017, 178, 20-28.	3.2	31

#	Article	IF	CITATIONS
127	Gene therapy for Wiskott-Aldrich syndrome: History, new vectors, future directions. Journal of Allergy and Clinical Immunology, 2020, 146, 262-265.	2.9	31
128	The Committee for Advanced Therapies' of the European Medicines Agency Reflection Paper on Management of Clinical Risks Deriving from Insertional Mutagenesis. Human Gene Therapy Clinical Development, 2013, 24, 47-54.	3.1	30
129	B-cell development and functions and therapeutic options in adenosine deaminase–deficient patients. Journal of Allergy and Clinical Immunology, 2014, 133, 799-806.e10.	2.9	30
130	Autoimmunity and regulatory T cells in 22q11.2 deletion syndrome patients. Pediatric Allergy and Immunology, 2015, 26, 591-594.	2.6	29
131	Autonomous role of Wiskott-Aldrich syndrome platelet deficiency in inducing autoimmunity and inflammation. Journal of Allergy and Clinical Immunology, 2018, 142, 1272-1284.	2.9	28
132	Innate-Like Effector Differentiation of Human Invariant NKT Cells Driven by IL-7. Journal of Immunology, 2008, 180, 4415-4424.	0.8	27
133	Metachromatic leukodystrophy: A singleâ€center longitudinal study of 45 patients. Journal of Inherited Metabolic Disease, 2021, 44, 1151-1164.	3.6	27
134	Long-Term Outcome of Adenosine Deaminase-Deficient Patients—a Single-Center Experience. Journal of Clinical Immunology, 2017, 37, 582-591.	3.8	26
135	Retrieval of vector integration sites from cell-free DNA. Nature Medicine, 2021, 27, 1458-1470.	30.7	26
136	Control of human coagulation by recombinant serine proteases. Blood clotting is activated by recombinant factor XII deleted of five regulatory domains. FEBS Journal, 1992, 208, 23-30.	0.2	25
137	Induction of CD4+ T cell depletion in mice doubly transgenic for HIV gp120 and human CD4. European Journal of Immunology, 1997, 27, 1319-1324.	2.9	25
138	<i><scp>JAK</scp>3</i> mutations in Italian patients affected by <scp>SCID</scp> : New molecular aspects of a longâ€known gene. Molecular Genetics & Genomic Medicine, 2018, 6, 713-721.	1.2	25
139	First Occurrence of Plasmablastic Lymphoma in Adenosine Deaminase-Deficient Severe Combined Immunodeficiency Disease Patient and Review of the Literature. Frontiers in Immunology, 2018, 9, 113.	4.8	25
140	Progress in gene therapy for primary immunodeficiencies using lentiviral vectors. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 527-534.	2.3	24
141	Pioglitazone as a novel therapeutic approach in chronic granulomatous disease. Journal of Allergy and Clinical Immunology, 2016, 137, 1913-1915.e2.	2.9	23
142	Improvement of interleukin 2 production, clonogenic capability and restoration of stromal cell function in human immunodeficiency virus-type-1 patients after highly active antiretroviral therapy. British Journal of Haematology, 2002, 118, 864-874.	2.5	21
143	Etiology, clinical outcome, and laboratory features in children with neutropenia: Analysis of 104 cases. Pediatric Allergy and Immunology, 2014, 25, 283-289.	2.6	21
144	Neutrophils drive type I interferon production and autoantibodies in patients with Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2018, 142, 1605-1617.e4.	2.9	21

#	Article	IF	CITATIONS
145	From Your Nose to Your Toes: A Review of Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic‒Associated Pernio. Journal of Investigative Dermatology, 2021, 141, 2791-2796.	0.7	21
146	Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. Journal of Experimental Medicine, 2022, 219, .	8.5	21
147	Expanded circulating hematopoietic stem/progenitor cells as novel cell source for the treatment of TCIRG1 osteopetrosis. Haematologica, 2020, 106, 74-86.	3.5	20
148	Lentiviral vectors for the treatment of primary immunodeficiencies. Journal of Inherited Metabolic Disease, 2014, 37, 525-533.	3.6	18
149	Multiparametric Whole Blood Dissection: A oneâ€shot comprehensive picture of the human hematopoietic system. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 952-965.	1.5	18
150	Lentiviral correction of enzymatic activity restrains macrophage inflammation in adenosine deaminase 2 deficiency. Blood Advances, 2021, 5, 3174-3187.	5.2	18
151	Gene Therapy for Wiskott-Aldrich Syndrome. Current Gene Therapy, 2014, 14, 413-421.	2.0	18
152	Lack of evidence for a superantigen in lymphocytes from HIV-discordant monozygotic twins. Aids, 1994, 8, 443-450.	2.2	17
153	Interleukin 7 production by bone marrow-derived stromal cells in HIV-1-infected patients during highly active antiretroviral therapy. Aids, 2002, 16, 2231-2232.	2.2	17
154	Combined immunodeficiency due to JAK3 mutation in a child presenting with skin granuloma. Journal of Allergy and Clinical Immunology, 2016, 137, 948-951.e5.	2.9	17
155	Biological and functional characterization of bone marrow-derived mesenchymal stromal cells from patients affected by primary immunodeficiency. Scientific Reports, 2017, 7, 8153.	3.3	17
156	Targeting a Pre-existing Anti-transgene T Cell Response for Effective Gene Therapy of MPS-I in the Mouse Model of the Disease. Molecular Therapy, 2019, 27, 1215-1227.	8.2	17
157	Leukocyte and Dried Blood Spot Arylsulfatase A Assay by Tandem Mass Spectrometry. Analytical Chemistry, 2020, 92, 6341-6348.	6.5	17
158	Hematopoietic Tumors in a Mouse Model of X-linked Chronic Granulomatous Disease after Lentiviral Vector-Mediated Gene Therapy. Molecular Therapy, 2021, 29, 86-102.	8.2	17
159	Emapalumab treatment in an ADA-SCID patient with refractory hemophagocytic lymphohistiocytosis- related graft failure and disseminated bacillus Calmette-Guérin infection. Haematologica, 2021, 106, 641-646.	3.5	17
160	Oncogene-induced senescence in hematopoietic progenitors features myeloid restricted hematopoiesis, chronic inflammation and histiocytosis. Nature Communications, 2021, 12, 4559.	12.8	17
161	Serratia marcescens Osteomyelitis in a Newborn With Chronic Granulomatous Disease. Pediatric Infectious Disease Journal, 2013, 32, 926.	2.0	17
162	Advances in gene therapy for ADA-deficient SCID. Current Opinion in Molecular Therapeutics, 2002, 4, 515-22.	2.8	17

#	Article	IF	CITATIONS
163	Role of reduced intensity conditioning in T-cell and B-cell immune reconstitution after HLA-identical bone marrow transplantation in ADA-SCID. Haematologica, 2010, 95, 1778-1782.	3.5	16
164	Gene Therapy for Adenosine Deaminase Deficiency. Immunology and Allergy Clinics of North America, 2010, 30, 249-260.	1.9	16
165	Successful Treatment With Ledipasvir/Sofosbuvir in an Infant With Severe Combined Immunodeficiency Caused by Adenosine Deaminase Deficiency With HCV Allowed Gene Therapy with Strimvelis. Hepatology, 2018, 68, 2434-2437.	7.3	16
166	Human CD26 expression in transgenic mice affects murine T-cell populations and modifies their subset distribution. Human Immunology, 2002, 63, 719-730.	2.4	15
167	Longitudinal Evaluation of Immune Reconstitution and B-cell Function After Hematopoietic Cell Transplantation for Primary Immunodeficiency. Journal of Clinical Immunology, 2015, 35, 373-383.	3.8	15
168	A novel genomic inversion in Wiskott-Aldrich–associated autoinflammation. Journal of Allergy and Clinical Immunology, 2016, 138, 619-622.e7.	2.9	15
169	Impaired X-CGD T cell compartment is gp91phox-NADPH oxidase independent. Clinical Immunology, 2018, 193, 52-59.	3.2	15
170	Optimisation of retroviral supernatant production conditions for the genetic modification of human CD34+ cells. Journal of Gene Medicine, 2001, 3, 219-227.	2.8	14
171	Decreased apoptosis of bone marrow progenitor cells in HIV-1-infected patients during highly active antiretroviral therapy. Aids, 2004, 18, 1335-1337.	2.2	14
172	Gene therapy for adenosine-deaminase-deficient severe combined immunodeficiency. Best Practice and Research in Clinical Haematology, 2004, 17, 505-516.	1.7	14
173	Lentiviral Vector Gene Therapy Protects XCGD Mice From Acute Staphylococcus aureus Pneumonia and Inflammatory Response. Molecular Therapy, 2016, 24, 1873-1880.	8.2	14
174	Safer conditioning for blood stem cell transplants. Nature Biotechnology, 2016, 34, 721-723.	17.5	14
175	NFKB2 regulates human Tfh and Tfr pool formation and germinal center potential. Clinical Immunology, 2020, 210, 108309.	3.2	14
176	Membrane expression of HLA-Cw4 free chains in activated T cells of transgenic mice. Immunogenetics, 1995, 42, 368-75.	2.4	13
177	IL-3 or IL-7 Increases ex Vivo Gene Transfer Efficiency in ADA-SCID BM CD34+ Cells while Maintaining in Vivo Lymphoid Potential. Molecular Therapy, 2004, 10, 1096-1108.	8.2	13
178	Mobilized Blood CD34+Cells Transduced and Selected with a Clinically Applicable Protocol Reconstitute Lymphopoiesis in SCID-Hu Mice. Human Gene Therapy, 2004, 15, 305-311.	2.7	13
179	HIV Type 1 Protease Inhibitors Enhance Bone Marrow Progenitor Cell Activity in Normal Subjects and in HIV Type 1-Infected Patients. AIDS Research and Human Retroviruses, 2005, 21, 51-57.	1.1	13
180	In vivo T-cell dynamics during immune reconstitution after hematopoietic stem cell gene therapy in adenosine deaminase severe combined immune deficiency. Journal of Allergy and Clinical Immunology, 2011, 127, 1368-1375.e8.	2.9	13

#	Article	IF	CITATIONS
181	Purine metabolism, immune reconstitution, and abdominal adipose tumor after gene therapy for adenosine deaminase deficiency. Journal of Allergy and Clinical Immunology, 2011, 127, 1417-1419.e3.	2.9	13
182	Good Laboratory Practice Preclinical Safety Studies for GSK2696273 (MLV Vector-Based <i>Ex Vivo</i>) Tj ETQq Human Gene Therapy Clinical Development, 2017, 28, 17-27.	0 0 0 rgBT 3.1	/Overlock 10 12
183	Consensus of the Italian Primary Immunodeficiency Network on transition management from pediatric to adult care in patients affected with childhood-onset inborn errors of immunity. Journal of Allergy and Clinical Immunology, 2020, 146, 967-983.	2.9	12
184	Bone marrow–derived CD34 â^' fraction: A rich source of mesenchymal stromal cells for clinical application. Cytotherapy, 2016, 18, 1560-1563.	0.7	11
185	Health-Related Quality of Life and Emotional Difficulties in Chronic Granulomatous Disease: Data on Adult and Pediatric Patients from Italian Network for Primary Immunodeficiency (IPINet). Journal of Clinical Immunology, 2020, 40, 289-298.	3.8	11
186	Immunosuppressive therapy in childhoodâ€onset arrhythmogenic inflammatory cardiomyopathy. PACE - Pacing and Clinical Electrophysiology, 2021, 44, 552-556.	1.2	11
187	Use of Defibrotide to help prevent post-transplant endothelial injury in a genetically predisposed infant with metachromatic leukodystrophy undergoing hematopoietic stem cell gene therapy. Bone Marrow Transplantation, 2018, 53, 913-917.	2.4	10
188	Hematopoietic stem cell gene therapy for the cure of blood diseases: primary immunodeficiencies. Rendiconti Lincei, 2018, 29, 755-764.	2.2	10
189	Recovery of haematopoietic abnormalities in HIV-1 infected patients treated with HAART. Aids, 1999, 13, 2486.	2.2	10
190	Third cranial nerve palsy in an 88-year-old man after SARS-CoV-2 mRNA vaccination: change of injection site and type of vaccine resulted in an uneventful second dose with humoral immune response. BMJ Case Reports, 2022, 15, e246485.	0.5	10
191	Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I. Scientific Reports, 2017, 7, 9473.	3.3	9
192	Bone marrow harvesting from paediatric patients undergoing haematopoietic stem cell gene therapy. Bone Marrow Transplantation, 2019, 54, 1995-2003.	2.4	9
193	Follicular helper T cell signature of replicative exhaustion, apoptosis, and senescence in common variable immunodeficiency. European Journal of Immunology, 2022, 52, 1171-1189.	2.9	9
194	Human CD4 produced in lymphoid cells of transgenic mice binds HIV gp120 and modifies the subsets of mouse T-cell populations. Immunogenetics, 1993, 38, 455-9.	2.4	8
195	A Novel Human Packaging Cell Line with Hematopoietic Supportive Capacity Increases Gene Transfer into Early Hematopoietic Progenitors. Human Gene Therapy, 2001, 12, 1979-1988.	2.7	8
196	Mild SARS-CoV-2 Infection After Gene Therapy in a Child With Wiskott-Aldrich Syndrome: A Case Report. Frontiers in Immunology, 2020, 11, 603428.	4.8	8
197	New perspectives in gene therapy for inherited disorders. Pediatric Allergy and Immunology, 2020, 31, 5-7.	2.6	8
198	Peripheral blood stem and progenitor cell collection in pediatric candidates for exÂvivo gene therapy: a 10-year series. Molecular Therapy - Methods and Clinical Development, 2021, 22, 76-83.	4.1	8

#	Article	IF	CITATIONS
199	The EHA Research Roadmap: Hematopoietic Stem Cell Gene Therapy. HemaSphere, 2022, 6, e671.	2.7	8
200	Molecular purging of multiple myeloma cells by ex-vivo culture and retroviral transduction of mobilized-blood CD34+ cells. Journal of Translational Medicine, 2007, 5, 35.	4.4	7
201	Chronic Granulomatous Disease Presenting With Salmonella Brain Abscesses. Pediatric Infectious Disease Journal, 2014, 33, 525-528.	2.0	7
202	Urogenital Abnormalities in Adenosine Deaminase Deficiency. Journal of Clinical Immunology, 2020, 40, 610-618.	3.8	7
203	A Case of Two Adult Brothers with Wiskott-Aldrich Syndrome, One Treated with Gene Therapy and One with HLA-Identical Hematopoietic Stem Cell Transplantation. Journal of Clinical Immunology, 2022, 42, 421-425.	3.8	7
204	HIV-1 envelope-dependent restriction of CXCR4-using viruses in child but not adult untransformed CD4+ T-lymphocyte lines. Blood, 2012, 119, 2013-2023.	1.4	6
205	Penalized inference of the hematopoietic cell differentiation network via high-dimensional clonal tracking. Applied Network Science, 2019, 4, .	1.5	6
206	Toward Reference Intervals of ARSA Activity in the Cerebrospinal Fluid: Implication for the Clinical Practice of Metachromatic Leukodystrophy. journal of applied laboratory medicine, The, 2021, 6, 354-366.	1.3	6
207	Successful Treatment With Percutaneous Transhepatic Alcoholization of a Liver Abscess in a Child With Chronic Granulomatous Disease. Pediatric Infectious Disease Journal, 2011, 30, 819-820.	2.0	5
208	Extensive Metabolic Correction of Hurler Disease By Hematopoietic Stem Cell-Based Gene Therapy: Preliminary Results from a Phase I/II Trial. Blood, 2019, 134, 607-607.	1.4	5
209	ExÂVivo and InÂVivo Gene Therapy for Mucopolysaccharidoses: State of the Art. Hematology/Oncology Clinics of North America, 2022, 36, 865-878.	2.2	5
210	Clinical improvement and normalized Th1 cytokine profile in early and long-term interferon-α treatment in a suspected case of hyper-IgE syndrome. Pediatric Allergy and Immunology, 2008, 19, 564-568.	2.6	4
211	<scp>Wiskott–Aldrich</scp> syndrome: Oral findings and microbiota in children and review of the literature. Clinical and Experimental Dental Research, 2022, 8, 28-36.	1.9	4
212	High-performance liquid chromatographic purification and capillary electrophoresis quantification of the chemokine stromal cell-derived factor-1. Biomedical Applications, 1999, 729, 369-374.	1.7	3
213	Wiskott-Aldrich Syndrome: A Retrospective Study on 575 Patients Analyzing the Impact of Splenectomy, Stem Cell Transplantation, or No Definitive Treatment on Frequency of Disease-Related Complications and Physician-Perceived Quality of Life. Blood, 2016, 128, 366-366.	1.4	2
214	Potentialities of gene therapy in pediatric endocrinology. Hormone Research in Paediatrics, 2021, , .	1.8	2
215	Early-onset monocyte–B–natural killer–dendritic cells' deficiency successfully treated with hematopoietic stem cell transplantation. Journal of Allergy and Clinical Immunology, 2011, 128, 897-900.e1.	2.9	1

216 Gene Therapy for Primary Immunodeficiencies. , 2018, , 413-431.

#	Article	IF	CITATIONS
217	Evidence of treatment benefits in patients with MPSI-Hurler in long-term follow up using a new MRI scoring system. Journal of Pediatrics, 2021, , .	1.8	1
218	Erratum to "Lentiviral Vector-Mediated Gene Transfer in T Cells from Wiskott–Aldrich Syndrome Patients Leads to Functional Correction― Molecular Therapy, 2005, 11, 492.	8.2	0
219	Current understanding of the Wiskott–Aldrich syndrome and prospects for gene therapy. Expert Review of Clinical Immunology, 2007, 3, 205-215.	3.0	0
220	Gene Therapy for Primary Immunodeficiencies. , 2010, , 213-231.		0
221	Efficacy of Gene Therapy for Wiskott-Aldrich Syndrome Using a WAS Promoter/cDNA-Containing Lentiviral Vector and Nonlethal Irradiation. Human Gene Therapy, 2006, .	2.7	0
222	The Wiskott-Aldrich syndrome protein is required for iNKT cell maturation and function. Journal of Cell Biology, 2009, 185, i1-i1.	5.2	0
223	Wiskott-Aldrich syndrome protein–mediated actin dynamics control type-I interferon production in plasmacytoid dendritic cells. Journal of Cell Biology, 2013, 200, i6-i6.	5.2	0
224	Incremental Innovation of Ex Vivo Hematopoietic Stem Cell Engineering to Expand Clinical Gene Therapy Applications. Blood, 2016, 128, 4707-4707.	1.4	0
225	Biological Properties of HSC: Scientific Basis for HSCT. , 2019, , 49-56.		0
226	Lentiviral-Mediated Gene Therapy for the Treatment of Adenosine Deaminase 2 Deficiency. Blood, 2021, 138, 2937-2937.	1.4	0
227	Hematopoietic Stem Cells Are Endowed with Erythroid Signature in Beta-Thalassemia. Blood, 2020, 136, 31-31.	1.4	О