Klaus Aktories

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4979596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature, 1997, 387, 725-729.	27.8	534
2	The Enterotoxin from Clostridium difficile (ToxA) Monoglucosylates the Rho Proteins. Journal of Biological Chemistry, 1995, 270, 13932-13936.	3.4	450
3	Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. Journal of Cell Biology, 2003, 160, 375-385.	5.2	411
4	Ephrin-A5 Induces Collapse of Growth Cones by Activating Rho and Rho Kinase. Journal of Cell Biology, 2000, 149, 263-270.	5.2	368
5	<i>Clostridium difficile</i> binary toxin CDT. Gut Microbes, 2014, 5, 15-27.	9.8	360
6	Binary Bacterial Toxins: Biochemistry, Biology, and Applications of Common Clostridium and Bacillus Proteins. Microbiology and Molecular Biology Reviews, 2004, 68, 373-402.	6.6	353
7	Bacterial protein toxins that modify host regulatory GTPases. Nature Reviews Microbiology, 2011, 9, 487-498.	28.6	287
8	GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Molecular Microbiology, 2002, 36, 737-748.	2.5	284
9	Clostridium difficile Toxin CDT Induces Formation of Microtubule-Based Protrusions and Increases Adherence of Bacteria. PLoS Pathogens, 2009, 5, e1000626.	4.7	283
10	The N-terminal Domain of Pseudomonas aeruginosaExoenzyme S Is a GTPase-activating Protein for Rho GTPases. Journal of Biological Chemistry, 1999, 274, 36369-36372.	3.4	265
11	The rho gene product expressed in E. Coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochemical and Biophysical Research Communications, 1989, 158, 209-213.	2.1	260
12	<i>Clostridium difficile</i> Toxin Biology. Annual Review of Microbiology, 2017, 71, 281-307.	7.3	253
13	Clostridium botulinumtype C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Letters, 1987, 212, 109-113.	2.8	243
14	Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends in Microbiology, 2008, 16, 222-229.	7.7	240
15	Bacterial cytotoxins: targeting eukaryotic switches. Nature Reviews Microbiology, 2005, 3, 397-410.	28.6	214
16	A Common Motif of Eukaryotic Glycosyltransferases Is Essential for the Enzyme Activity of Large Clostridial Cytotoxins. Journal of Biological Chemistry, 1998, 273, 19566-19572.	3.4	213
17	<i>Photorhabdus luminescens</i> Toxins ADP-Ribosylate Actin and RhoA to Force Actin Clustering. Science, 2010, 327, 1139-1142.	12.6	211
18	Glucosylation and ADP Ribosylation of Rho Proteins: Effects on Nucleotide Binding, GTPase Activity, and Effector Couplingâ€. Biochemistry, 1998, 37, 5296-5304.	2.5	201

#	Article	IF	CITATIONS
19	Novel bacterial ADP-ribosylating toxins: structure and function. Nature Reviews Microbiology, 2014, 12, 599-611.	28.6	186
20	Clostridium perfringensiota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Letters, 1987, 225, 48-52.	2.8	181
21	Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin <i>Clostridium difficile</i> transferase (CDT). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16422-16427.	7.1	175
22	Auto-catalytic Cleavage of Clostridium difficile Toxins A and B Depends on Cysteine Protease Activity. Journal of Biological Chemistry, 2007, 282, 25314-25321.	3.4	172
23	Rho proteins: Targets for bacterial toxins. Trends in Microbiology, 1997, 5, 282-288.	7.7	168
24	Inactivation of Ras by Clostridium sordellii Lethal Toxin-catalyzed Glucosylation. Journal of Biological Chemistry, 1996, 271, 10149-10153.	3.4	167
25	Rac1 and Cdc42 but Not RhoA or Rho Kinase Activities Are Required for Neurite Outgrowth Induced by the Netrin-1 Receptor DCC (Deleted in Colorectal Cancer) in N1E-115 Neuroblastoma Cells. Journal of Biological Chemistry, 2002, 277, 15207-15214.	3.4	167
26	Pseudomonas aeruginosa ExoT Is a Rho GTPase-Activating Protein. Infection and Immunity, 2000, 68, 6066-6068.	2.2	166
27	Cellular Uptake of Clostridium botulinum C2 Toxin Requires Oligomerization and Acidification. Journal of Biological Chemistry, 2000, 275, 18704-18711.	3.4	161
28	Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Glycobiology, 2007, 17, 15R-22R.	2.5	159
29	Botulinum ADP-ribosyltransferase C3. Purification of the enzyme and characterization of the ADP-ribosylation reaction in platelet membranes. FEBS Journal, 1988, 172, 445-450.	0.2	156
30	Localization of the Glucosyltransferase Activity of Clostridium difficile Toxin B to the N-terminal Part of the Holotoxin. Journal of Biological Chemistry, 1997, 272, 11074-11078.	3.4	150
31	The Rho-deamidating Cytotoxic Necrotizing Factor 1 fromEscherichia coli Possesses Transglutaminase Activity. Journal of Biological Chemistry, 1998, 273, 13669-13674.	3.4	150
32	Bacterial Toxins That Modify The Actin Cytoskeleton. Annual Review of Cell and Developmental Biology, 2002, 18, 315-344.	9.4	149
33	Mechanism of Tc toxin action revealed in molecular detail. Nature, 2014, 508, 61-65.	27.8	149
34	An Inhibitory Role of Rho in the Vasopressin-mediated Translocation of Aquaporin-2 into Cell Membranes of Renal Principal Cells. Journal of Biological Chemistry, 2001, 276, 20451-20457.	3.4	147
35	Structural Basis for the Function of Clostridium difficile Toxin B. Journal of Molecular Biology, 2005, 351, 973-981.	4.2	144
36	The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Molecular Microbiology, 1999, 32, 393-401.	2.5	142

#	Article	IF	CITATIONS
37	Low pH-induced Formation of Ion Channels by Clostridium difficile Toxin B in Target Cells. Journal of Biological Chemistry, 2001, 276, 10670-10676.	3.4	141
38	The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nature Microbiology, 2016, 1, 16108.	13.3	140
39	Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16953-16958.	7.1	139
40	Rho-modifying C3-like ADP-ribosyltransferases. , 2004, 152, 1-22.		138
41	Actin as target for modification by bacterial protein toxins. FEBS Journal, 2011, 278, 4526-4543.	4.7	138
42	Clostridial Glucosylating Toxins Enter Cells via Clathrin-Mediated Endocytosis. PLoS ONE, 2010, 5, e10673.	2.5	138
43	Lgt: a Family of Cytotoxic Glucosyltransferases Produced by <i>Legionella pneumophila</i> . Journal of Bacteriology, 2008, 190, 3026-3035.	2.2	130
44	A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature, 2013, 495, 520-523.	27.8	130
45	Clostridium novyi α-Toxin-catalyzed Incorporation of GlcNAc into Rho Subfamily Proteins. Journal of Biological Chemistry, 1996, 271, 25173-25177.	3.4	128
46	Role of Rho and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. Journal of Physiology, 1999, 516, 67-74.	2.9	128
47	ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. FEBS Journal, 1988, 171, 225-229.	0.2	126
48	Characterization of the Enzymatic Component of the ADP-Ribosyltransferase Toxin CDTa from Clostridium difficile. Infection and Immunity, 2001, 69, 6004-6011.	2.2	124
49	The Host Cell Chaperone Hsp90 Is Essential for Translocation of the Binary Clostridium botulinum C2 Toxin into the Cytosol. Journal of Biological Chemistry, 2003, 278, 32266-32274.	3.4	123
50	Cellular Uptake of Clostridium difficile Toxin B. Journal of Biological Chemistry, 2003, 278, 44535-44541.	3.4	121
51	Structure and Action of the Binary C2 Toxin from Clostridium botulinum. Journal of Molecular Biology, 2006, 364, 705-715.	4.2	116
52	Human α-Defensins Inhibit Clostridium difficile Toxin B. Gastroenterology, 2008, 134, 2049-2058.	1.3	115
53	Binding of Clostridium botulinum C2 Toxin to Asparagine-linked Complex and Hybrid Carbohydrates. Journal of Biological Chemistry, 2000, 275, 2328-2334.	3.4	111
54	<i>Pasteurella multocida</i> toxin activation of heterotrimeric G proteins by deamidation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7179-7184.	7.1	105

#	Article	IF	CITATIONS
55	Inhibition of FcεRI-mediated Activation of Rat Basophilic Leukemia Cells by Clostridium difficile Toxin B (Monoglucosyltransferase). Journal of Biological Chemistry, 1996, 271, 7324-7329.	3.4	103
56	C3 exoenzymes, novel insights into structure and action of Rho-ADP-ribosylating toxins. Naunyn-Schmiedeberg's Archives of Pharmacology, 2007, 374, 347-360.	3.0	100
57	Hijacking of Rho GTPases during bacterial infection. Experimental Cell Research, 2013, 319, 2329-2336.	2.6	98
58	Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 Exoenzyme in the Rho-Guanine Nucleotide Dissociation Inhibitor-1 Complex. Journal of Biological Chemistry, 2003, 278, 28523-28527.	3.4	97
59	Structural determinants for membrane insertion, pore formation and translocation of <i>Clostridium difficile</i> toxin B. Molecular Microbiology, 2011, 79, 1643-1654.	2.5	96
60	Characterization of the Catalytic Site of the ADP-Ribosyltransferase Clostridium botulinum C2 Toxin by Site-directed Mutagenesis. Journal of Biological Chemistry, 1998, 273, 29506-29511.	3.4	93
61	Bacterial protein toxins targeting Rho GTPases. FEMS Microbiology Letters, 2000, 188, 1-6.	1.8	92
62	Large clostridial cytotoxins: cellular biology of Rho/Ras-glucosylating toxins. Biochimica Et Biophysica Acta - General Subjects, 2004, 1673, 66-74.	2.4	92
63	Actin Involvement in Exocytosis from PC12 Cells: Studies on the Influence of Botulinum C2 Toxin on Stimulated Noradrenaline Release. Journal of Neurochemistry, 1989, 52, 370-376.	3.9	90
64	Membrane Translocation of Binary Actin-ADP-Ribosylating Toxins from Clostridium difficile and Clostridium perfringens Is Facilitated by Cyclophilin A and Hsp90. Infection and Immunity, 2011, 79, 3913-3921.	2.2	90
65	Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress. Pflugers Archiv European Journal of Physiology, 2001, 442, 675-687.	2.8	89
66	Monoglucosylation of RhoA at Threonine 37 Blocks Cytosol-Membrane Cycling. Journal of Biological Chemistry, 1999, 274, 29050-29056.	3.4	88
67	Cellular Uptake of the Clostridium perfringens Binary Iota-Toxin. Infection and Immunity, 2001, 69, 2980-2987.	2.2	86
68	The Yersinia pseudotuberculosis Cytotoxic Necrotizing Factor (CNFY) Selectively Activates RhoA. Journal of Biological Chemistry, 2004, 279, 16026-16032.	3.4	86
69	Evidence for Differential Roles of the Rho Subfamily of GTP-Binding Proteins in Glucose- and Calcium-Induced Insulin Secretion from Pancreatic β Cells. Biochemical Pharmacology, 1997, 54, 1097-1108.	4.4	85
70	A Novel C3-like ADP-ribosyltransferase fromStaphylococcus aureus Modifying RhoE and Rnd3. Journal of Biological Chemistry, 2001, 276, 9537-9542.	3.4	83
71	Proteasomal Degradation of Cytotoxic Necrotizing Factor 1-Activated Rac. Infection and Immunity, 2002, 70, 4053-4058.	2.2	83
72	LRP1 is a receptor for <i>Clostridium perfringens</i> TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6431-6436.	7.1	82

#	Article	IF	CITATIONS
73	Clostridium difficile Glucosyltransferase Toxin B-essential Amino Acids for Substrate Binding. Journal of Biological Chemistry, 2007, 282, 35222-35231.	3.4	80
74	Activation of Rho GTPases by <i>Escherichia coli</i> Cytotoxic Necrotizing Factor 1 Increases Intestinal Permeability in Caco-2 Cells. Infection and Immunity, 1998, 66, 5125-5131.	2.2	79
75	<i>Clostridium difficile</i> toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2313-2318.	7.1	78
76	Cholesterol-dependent Pore Formation of Clostridium difficile Toxin A. Journal of Biological Chemistry, 2006, 281, 10808-10815.	3.4	77
77	An Essential Role for Rac/Cdc42 GTPases in Cerebellar Granule Neuron Survival. Journal of Biological Chemistry, 2001, 276, 39123-39131.	3.4	75
78	Interaction ofClostridium botulinumC2â€ŧoxin with lipid bilayer membranes and vero cells: inhibition of channel function by chloroquine and related compoundsin vitroand intoxificationin vivo. FASEB Journal, 2001, 15, 1658-1660.	0.5	72
79	The Binary Clostridium botulinum C2 Toxin as a Protein Delivery System. Journal of Biological Chemistry, 2002, 277, 5074-5081.	3.4	72
80	Cell-free synthesis and characterization of a novel cytotoxic pierisin-like protein from the cabbage butterfly Pieris rapae. Toxicon, 2011, 57, 199-207.	1.6	72
81	Insecticidal Toxin Complex Proteins from Xenorhabdus nematophilus. Journal of Biological Chemistry, 2011, 286, 22742-22749.	3.4	71
82	Agents That Inhibit Rho, Rac, and Cdc42 Do Not Block Formation of Actin Pedestals in HeLa Cells Infected with Enteropathogenic <i>Escherichia coli</i> . Infection and Immunity, 1998, 66, 1755-1758.	2.2	71
83	ADP-ribosylation of platelet actin by botulinum C2 toxin. FEBS Journal, 1986, 161, 155-162.	0.2	70
84	Actin Filaments Facilitate Insulin Activation of the Src and Collagen Homologous/Mitogen-activated Protein Kinase Pathway Leading to DNA Synthesis and c-fos Expression. Journal of Biological Chemistry, 1998, 273, 28322-28331.	3.4	70
85	Recognition of RhoA by Clostridium botulinum C3 Exoenzyme. Journal of Biological Chemistry, 2000, 275, 16478-16483.	3.4	70
86	ADP-ribosylation of actin isoforms by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. FEBS Journal, 1990, 194, 237-241.	0.2	69
87	The Rho-ADP-ribosylating C3 exoenzyme from Clostridium botulinum and related C3-like transferases. Toxicon, 2001, 39, 1647-1660.	1.6	69
88	The Host Cell Chaperone Hsp90 Is Necessary for Cytotoxic Action of the Binary lota-Like Toxins. Infection and Immunity, 2004, 72, 3066-3068.	2.2	69
89	Pasteurella multocida Toxin-induced Activation of RhoA Is Mediated via Two Families of Gα Proteins, Gαq and Gα12/13. Journal of Biological Chemistry, 2005, 280, 36701-36707.	3.4	68
90	Difference in Protein Substrate Specificity between Hemorrhagic Toxin and Lethal Toxin fromClostridium sordellii. Biochemical and Biophysical Research Communications, 1996, 229, 370-374.	2.1	66

#	Article	IF	CITATIONS
91	Domain organization of Legionella effector SetA. Cellular Microbiology, 2012, 14, 852-868.	2.1	66
92	The C Terminus of Component C2II of Clostridium botulinum C2 Toxin Is Essential for Receptor Binding. Infection and Immunity, 2000, 68, 4566-4573.	2.2	65
93	Identification of the C-terminal Part of BordetellaDermonecrotic Toxin as a Transglutaminase for Rho GTPases. Journal of Biological Chemistry, 1999, 274, 31875-31881.	3.4	64
94	Microbial toxins and the glycosylation of Rho family GTPases. Current Opinion in Structural Biology, 2000, 10, 528-535.	5.7	64
95	Clostridium botulinum C2 Toxin. Journal of Biological Chemistry, 2003, 278, 37360-37367.	3.4	63
96	Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site. Biochemistry, 1995, 34, 334-340.	2.5	62
97	Identification of the Region of Rho Involved in Substrate Recognition by Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1). Journal of Biological Chemistry, 1999, 274, 28999-29004.	3.4	62
98	Phenylalanine-427 of anthrax protective antigen functions in both pore formation and protein translocation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4346-4351.	7.1	62
99	Role of CypA and Hsp90 in membrane translocation mediated by anthrax protective antigen. Cellular Microbiology, 2011, 13, 359-373.	2.1	62
100	Involvement of a Conserved Tryptophan Residue in the UDP-Glucose Binding of Large Clostridial Cytotoxin Glycosyltransferases. Journal of Biological Chemistry, 2000, 275, 13228-13234.	3.4	61
101	RhoA exerts a permissive effect on volume-regulated anion channels in vascular endothelial cells. American Journal of Physiology - Cell Physiology, 2002, 283, C115-C125.	4.6	61
102	Conformational Changes and Reaction of Clostridial Glycosylating Toxins. Journal of Molecular Biology, 2008, 377, 1346-1356.	4.2	61
103	FK506â€binding protein 51 interacts with <i>Clostridium botulinum</i> C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells. Cellular Microbiology, 2012, 14, 1193-1205.	2.1	61
104	A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins. Nature Structural and Molecular Biology, 2013, 20, 1273-1280.	8.2	61
105	Binary Clostridium difficile toxin (CDT) - A virulence factor disturbing the cytoskeleton. Anaerobe, 2018, 53, 21-29.	2.1	60
106	Cellular Uptake ofClostridium botulinumC2 Toxin:Â Membrane Translocation of a Fusion Toxin Requires Unfolding of Its Dihydrofolate Reductase Domainâ€. Biochemistry, 2003, 42, 15284-15291.	2.5	59
107	Biological Activity of a C-Terminal Fragment ofPasteurella multocida Toxin. Infection and Immunity, 2001, 69, 3628-3634.	2.2	58
108	The complete receptor-binding domain of Clostridium difficile toxin A is required for endocytosis. Biochemical and Biophysical Research Communications, 2003, 300, 706-711.	2.1	57

#	Article	IF	CITATIONS
109	ADP-ribosylation of actin causes increase in the rate of ATP exchange and inhibition of ATP hydrolysis. FEBS Journal, 1989, 179, 229-232.	0.2	56
110	Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments. FEBS Letters, 1989, 246, 181-184.	2.8	56
111	Regulation of Somatodendritic GABA _A Receptor Channels in Rat Hippocampal Neurons: Evidence for a Role of the Small GTPase Rac1. Journal of Neuroscience, 2000, 20, 6743-6751.	3.6	56
112	Autocatalytic Processing of Clostridium difficile Toxin B. Journal of Biological Chemistry, 2009, 284, 3389-3395.	3.4	56
113	Clostridial Rho-Inhibiting Protein Toxins. , 2005, 291, 113-145.		56
114	Auto-ADP-ribosylation of Pseudomonas aeruginosa ExoS. Journal of Biological Chemistry, 2002, 277, 12082-12088.	3.4	55
115	Salmonella enterica SpvB ADP-Ribosylates Actin at Position Arginine-177Characterization of the Catalytic Domain within the SpvB Protein and a Comparison to Binary Clostridial Actin-ADP-Ribosylating Toxins. Biochemistry, 2006, 45, 1271-1277.	2.5	55
116	Selection of Nanobodies that Block the Enzymatic and Cytotoxic Activities of the Binary Clostridium Difficile Toxin CDT. Scientific Reports, 2015, 5, 7850.	3.3	55
117	Neosynthesis and Activation of Rho by Escherichia coli Cytotoxic Necrotizing Factor (CNF1) Reverse Cytopathic Effects of ADP-ribosylated Rho. Journal of Biological Chemistry, 1999, 274, 27407-27414.	3.4	54
118	The Cytotoxic Necrotizing Factors from Yersinia pseudotuberculosis and from Escherichia coli Bind to Different Cellular Receptors but Take the Same Route to the Cytosol. Infection and Immunity, 2007, 75, 3344-3353.	2.2	54
119	Molecular Characteristics of Clostridium perfringens TpeL Toxin and Consequences of Mono-O-GlcNAcylation of Ras in Living Cells. Journal of Biological Chemistry, 2012, 287, 24929-24940.	3.4	54
120	Chimeric Clostridial Cytotoxins: Identification of the N-Terminal Region Involved in Protein Substrate Recognition. Infection and Immunity, 1998, 66, 1076-1081.	2.2	54
121	Channel Formation by the Binding Component ofClostridium botulinumC2 Toxin:Â Glutamate 307 of C2II Affects Channel Propertiesin Vitroand pH-Dependent C2I Translocationin Vivoâ€. Biochemistry, 2003, 42, 5368-5377.	2.5	52
122	Cholesterol- and Sphingolipid-rich Microdomains Are Essential for Microtubule-based Membrane Protrusions Induced by Clostridium difficile Transferase (CDT). Journal of Biological Chemistry, 2011, 286, 29356-29365.	3.4	52
123	Identification of the Cellular Receptor of Clostridium spiroforme Toxin. Infection and Immunity, 2012, 80, 1418-1423.	2.2	52
124	Bidirectional attack on the actin cytoskeleton. Bacterial protein toxins causing polymerization or depolymerization of actin. Toxicon, 2012, 60, 572-581.	1.6	51
125	Fast neurotransmitter release regulated by the endocytic scaffold intersectin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8266-8271.	7.1	51
126	Rho GTPases and Phosphoinositide 3-Kinase Organize Formation of Branched Dendrites. Journal of Biological Chemistry, 2004, 279, 585-596.	3.4	50

#	Article	IF	CITATIONS
127	Bacterial glycosyltransferase toxins. Cellular Microbiology, 2015, 17, 1752-1765.	2.1	49
128	Different types of ADP-ribose protein bonds formed by botulinum C2 toxin, botulinum ADP-ribosyltransferase C3 and pertussis toxin. Biochemical and Biophysical Research Communications, 1988, 156, 361-367.	2.1	48
129	Recombinant Yersinia YopT Leads to Uncoupling of RhoA-Effector Interaction. Infection and Immunity, 2001, 69, 7535-7543.	2.2	48
130	Processing of Clostridium difficile toxins. Journal of Medical Microbiology, 2008, 57, 690-696.	1.8	47
131	Bacterial toxin and effector glycosyltransferases. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 134-143.	2.4	45
132	Bacillus sphaericusmosquitocidal toxin (MTX) and pierisin: the enigmatic offspring from the family of ADPâ€ribosyltransferases. Molecular Microbiology, 2006, 62, 621-630.	2.5	44
133	The chaperone Hsp90 and PPIases of the cyclophilin and FKBP families facilitate membrane translocation of <i>Photorhabdus luminescens</i> â€ADP-ribosyltransferases. Cellular Microbiology, 2014, 16, 490-503.	2.1	43
134	Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells. Scientific Reports, 2017, 7, 2724.	3.3	43
135	Isotype-specific Degradation of Rac Activated by the Cytotoxic Necrotizing Factor 1. Journal of Biological Chemistry, 2004, 279, 35840-35848.	3.4	42
136	Cleavage of Escherichia coli Cytotoxic Necrotizing Factor 1 Is Required for Full Biologic Activity. Infection and Immunity, 2009, 77, 1835-1841.	2.2	42
137	Cyclophilin-Facilitated Membrane Translocation as Pharmacological Target to Prevent Intoxication of Mammalian Cells by Binary Clostridial Actin ADP-Ribosylated Toxins. Journal of Molecular Biology, 2015, 427, 1224-1238.	4.2	42
138	A role for Rho in receptor- and G protein-stimulated phospholipase C Reduction in phosphatidylinositol 4,5-bisphosphate by Clostridium difficile toxin B. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 354, 87-94.	3.0	41
139	Rho-SpecificBacillus cereusADP-Ribosyltransferase C3cer Cloning and Characterization. Biochemistry, 2003, 42, 9694-9702.	2.5	41
140	Clostridium difficile Binary Toxin CDT Induces Clustering of the Lipolysis-Stimulated Lipoprotein Receptor into Lipid Rafts. MBio, 2013, 4, e00244-13.	4.1	41
141	Septins guide microtubule protrusions induced by actin-depolymerizing toxins like <i>Clostridium difficile</i> transferase (CDT). Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7870-7875.	7.1	41
142	Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins. Advances in Experimental Medicine and Biology, 2018, 1050, 77-96.	1.6	41
143	Rac and Phosphatidylinositol 3-Kinase Regulate the Protein Kinase B in FcεRI Signaling in RBL 2H3 Mast Cells. Journal of Immunology, 2001, 166, 1627-1634.	0.8	40
144	Pasteurella multocida toxin is a potent activator of anti-apoptotic signalling pathways. Cellular Microbiology, 2010, 12, 1174-1185.	2.1	40

#	Article	IF	CITATIONS
145	Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR). Journal of Biological Chemistry, 2015, 290, 14031-14044.	3.4	40
146	The uptake machinery of clostridial actin ADP-ribosylating toxins - a cell delivery system for fusion proteins and polypeptide drugs. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 501-512.	3.0	39
147	Activation of Gαi and Subsequent Uncoupling of Receptor-Gαi Signaling by Pasteurella multocida Toxin. Journal of Biological Chemistry, 2008, 283, 23288-23294.	3.4	39
148	Mechanism of C2-toxin Inhibition by Fluphenazine and Related Compounds: Investigation of their Binding Kinetics to the C2II-channel using the Current Noise Analysis. Journal of Molecular Biology, 2003, 333, 527-540.	4.2	38
149	Crystal structure of the C3bot–RalA complex reveals a novel type of action of a bacterial exoenzyme. EMBO Journal, 2005, 24, 3670-3680.	7.8	38
150	Clostridium botulinum C2 Toxin. Journal of Biological Chemistry, 2008, 283, 3904-3914.	3.4	37
151	Substrate specificity of <i>Pasteurella multocida</i> toxin for α subunits of heterotrimeric G proteins. FASEB Journal, 2013, 27, 832-842.	0.5	37
152	The Escherichia coli effector EspJ blocks Src kinase activity via amidation and ADP ribosylation. Nature Communications, 2014, 5, 5887.	12.8	37
153	Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos. Nature Communications, 2015, 6, 7807.	12.8	37
154	Structureâ	2.5	36
155	Action of Pasteurella multocida Toxin Depends on the Helical Domain of Gαq. Journal of Biological Chemistry, 2004, 279, 34150-34155.	3.4	36
156	Modulation of Host Cell Gene Expression through Activation of STAT Transcription Factors by Pasteurella multocida Toxin. Journal of Biological Chemistry, 2007, 282, 3050-3057.	3.4	36
157	Lu/BCAM Adhesion Glycoprotein Is a Receptor for Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1). PLoS Pathogens, 2014, 10, e1003884.	4.7	36
158	The Hsp90 machinery facilitates the transport of diphtheria toxin into human cells. Scientific Reports, 2017, 7, 613.	3.3	36
159	Active Site Mutation of the C3-like ADP-Ribosyltransferase fromClostridium limosumAnalysis of Glutamic Acid 174â€,⊥. Biochemistry, 1996, 35, 282-289.	2.5	35
160	Analysis of the catalytic site of the actin ADP-ribosylatingClostridium perfringensiota toxin. FEBS Letters, 1996, 380, 291-295.	2.8	35
161	Characterization of the Catalytic Domain of Clostridium novyi Alpha-Toxin. Infection and Immunity, 2000, 68, 6378-6383.	2.2	35
162	New insights into the mode of action of the actin ADP-ribosylating virulence factors Salmonella enterica SpvB and Clostridium botulinum C2 toxin. European Journal of Cell Biology, 2011, 90, 944-950.	3.6	35

#	Article	IF	CITATIONS
163	Change of the Donor Substrate Specificity of Clostridium difficile Toxin B by Site-directed Mutagenesis. Journal of Biological Chemistry, 2005, 280, 37833-37838.	3.4	34
164	Glucosylation of Ras byClostridium sordelliiLethal Toxin:Â Consequences for Effector Loop Conformations Observed by NMR Spectroscopyâ€. Biochemistry, 2003, 42, 11951-11959.	2.5	33
165	Inhibition of Calcium Release-activated Calcium Current by Rac/Cdc42-inactivating Clostridial Cytotoxins in RBL Cells. Journal of Biological Chemistry, 2000, 275, 18732-18738.	3.4	32
166	New Method To Generate Enzymatically Deficient Clostridium difficile Toxin B as an Antigen for Immunization. Infection and Immunity, 2000, 68, 1094-1101.	2.2	32
167	Amino Acid Residues Involved in Membrane Insertion and Pore Formation of <i>Clostridium botulinum</i> C2 Toxin. Biochemistry, 2008, 47, 8406-8413.	2.5	32
168	Activation of phospholipase D1 by ADP-ribosylated RhoA. Biochemical and Biophysical Research Communications, 2003, 302, 127-132.	2.1	31
169	Insulin and insulin-like growth factor-1 promote mast cell survival via activation of the phosphatidylinositol-3-kinase pathway. Experimental Hematology, 2006, 34, 1532-1541.	0.4	31
170	Region of Elongation Factor 1A1 Involved in Substrate Recognition by Legionella pneumophila Glucosyltransferase Lgt1. Journal of Biological Chemistry, 2009, 284, 20167-20174.	3.4	31
171	Inhibition of the contraction of the isolated longitudinal muscle of the guinea-pig ileum by botulinum C2 toxin: Evidence for a role of G/F-actin transition in smooth muscle contraction. Naunyn-Schmiedeberg's Archives of Pharmacology, 1989, 340, 345-51.	3.0	30
172	Inositol Hexakisphosphate-dependent Processing of Clostridium sordellii Lethal Toxin and Clostridium novyi α-Toxin. Journal of Biological Chemistry, 2011, 286, 14779-14786.	3.4	29
173	Rundown of somatodendritic N -methyl-D -aspartate (NMDA) receptor channels in rat hippocampal neurones: evidence for a role of the small GTPase RhoA. British Journal of Pharmacology, 1999, 127, 1060-1063.	5.4	28
174	Elongation Factor 1A Is the Target of Growth Inhibition in Yeast Caused by Legionella pneumophila Glucosyltransferase Lgt1. Journal of Biological Chemistry, 2012, 287, 26029-26037.	3.4	28
175	Interaction of the Rho-ADP-ribosylating C3 Exoenzyme with RalA. Journal of Biological Chemistry, 2002, 277, 14771-14776.	3.4	27
176	Exchange of Glutamine-217 to Glutamate ofClostridiumlimosumExoenzyme C3 Turns the Asparagine-Specific ADP-Ribosyltransferase into an Arginine-Modifying Enzymeâ€. Biochemistry, 2006, 45, 1017-1025.	2.5	26
177	Pasteurella multocida toxin activates Gβγ dimers of heterotrimeric G proteins. Cellular Signalling, 2009, 21, 551-558.	3.6	26
178	Signal Transducer and Activator of Transcription-5 Mediates Neuronal Apoptosis Induced by Inhibition of Rac GTPase Activity. Journal of Biological Chemistry, 2012, 287, 16835-16848.	3.4	26
179	Pasteurella Multocida Toxin Prevents Osteoblast Differentiation by Transactivation of the MAP-Kinase Cascade via the Gαq/11 - p63RhoGEF - RhoA Axis. PLoS Pathogens, 2013, 9, e1003385.	4.7	26
180	Salmonella Typhimurium effector SseI inhibits chemotaxis and increases host cell survival by deamidation of heterotrimeric Gi proteins. PLoS Pathogens, 2018, 14, e1007248.	4.7	26

#	Article	IF	CITATIONS
181	Morphological alteration ofXenopusoocytes induced by valine-14 p21rhodepend on isoprenylation and are inhibited byClostridium botulinumC3 ADP-ribosyltranferase. FEBS Letters, 1990, 275, 168-172.	2.8	25
182	Rho-modifying bacterial protein toxins. Pathogens and Disease, 2015, 73, ftv091.	2.0	25
183	Aminoacyl-tRNA-Charged Eukaryotic Elongation Factor 1A Is the Bona Fide Substrate for Legionella pneumophila Effector Glucosyltransferases. PLoS ONE, 2011, 6, e29525.	2.5	25
184	Targeting of the actin cytoskeleton by insecticidal toxins from Photorhabdus luminescens. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 383, 227-235.	3.0	24
185	Human peptide αâ€defensinâ€1 interferes with <i>Clostridioides difficile</i> toxins TcdA, TcdB, and CDT. FASEB Journal, 2020, 34, 6244-6261.	0.5	24
186	A Cell-permeable Fusion Toxin as a Tool to Study the Consequences of Actin-ADP-ribosylation Caused by the Salmonella enterica Virulence Factor SpvB in Intact Cells. Journal of Biological Chemistry, 2007, 282, 10272-10282.	3.4	23
187	Structural Basis of the Action of Glucosyltransferase Lgt1 from Legionella pneumophila. Journal of Molecular Biology, 2010, 396, 321-331.	4.2	23
188	Neuronal Apoptosis Induced by Selective Inhibition of Rac GTPase versus Global Suppression of Rho Family GTPases Is Mediated by Alterations in Distinct Mitogen-activated Protein Kinase Signaling Cascades. Journal of Biological Chemistry, 2015, 290, 9363-9376.	3.4	23
189	Specific role of RhoC in tumor invasion and metastasis. Oncotarget, 2017, 8, 87364-87378.	1.8	23
190	Loss of LSR affects epithelial barrier integrity and tumor xenograft growth of CaCo-2 cells. Oncotarget, 2017, 8, 37009-37022.	1.8	23
191	Septin remodeling is essential for the formation of cell membrane protrusions (microtentacles) in detached tumor cells. Oncotarget, 2017, 8, 76686-76698.	1.8	23
192	Bacterial Cytotoxins Target Rho GTPases. Die Naturwissenschaften, 1998, 85, 253-261.	1.6	22
193	The C Terminus of YopT Is Crucial for Activity and the N Terminus Is Crucial for Substrate Binding. Infection and Immunity, 2003, 71, 4623-4632.	2.2	22
194	Localization of the C3-Like ADP-Ribosyltransferase from Staphylococcus aureus during Bacterial Invasion of Mammalian Cells. Infection and Immunity, 2006, 74, 3673-3677.	2.2	22
195	Inhibition of the glucosyltransferase activity of clostridial Rho/Rasâ€glucosylating toxins by castanospermine. FEBS Letters, 2008, 582, 2277-2282.	2.8	22
196	Functional Characterization of an Extended Binding Component of the Actin-ADP-Ribosylating C2 Toxin Detected in <i>Clostridium botulinum</i> Strain (C) 2300. Infection and Immunity, 2010, 78, 1468-1474.	2.2	22
197	Molecular Biology of Pasteurella multocida Toxin. Current Topics in Microbiology and Immunology, 2012, 361, 73-92.	1.1	22
198	Clostridium botulinum C2 toxin – New insights into the cellular up-take of the actin-ADP-ribosylating toxin. International Journal of Medical Microbiology, 2004, 293, 557-564.	3.6	21

#	Article	IF	CITATIONS
199	Action of Pasteurella multocida toxin on Gαq is persistent and independent of interaction with G-protein-coupled receptors. Cellular Signalling, 2007, 19, 2174-2182.	3.6	21
200	Pasteurella multocida Toxin Activates Various Heterotrimeric G Proteins by Deamidation. Toxins, 2010, 2, 205-214.	3.4	21
201	TcdA1 of Photorhabdus luminescens: Electrophysiological Analysis of Pore Formation and Effector Binding. Biophysical Journal, 2013, 105, 376-384.	0.5	21
202	Actin ADP-ribosylation at Threonine148 by <i>Photorhabdus luminescens</i> toxin TccC3 induces aggregation of intracellular F-actin. Cellular Microbiology, 2017, 19, e12636.	2.1	21
203	Lysine and Polyamines Are Substrates for Transglutamination of Rho by the Bordetella Dermonecrotic Toxin. Infection and Immunity, 2001, 69, 7663-7670.	2.2	20
204	Exchange of a Single Amino Acid Switches the Substrate Properties of RhoA and RhoD toward Glucosylating and Transglutaminating Toxins. Journal of Biological Chemistry, 2006, 281, 19527-19535.	3.4	20
205	Effector Clycosyltransferases in Legionella. Frontiers in Microbiology, 2011, 2, 76.	3.5	19
206	De-ADP-ribosylation actin by Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin. FEBS Journal, 1990, 192, 723-727.	0.2	17
207	Regulation by Rho family GTPases of IL–1 receptor induced signaling: C3-like chimeric toxin and Clostridium difficile toxin B inhibit signaling pathways involved in IL-2 gene expression. European Journal of Immunology, 2001, 31, 1610-1619.	2.9	17
208	Change in Substrate Specificity of Cytotoxic Necrotizing Factor Unmasks Proteasome-independent Down-regulation of Constitutively Active RhoA. Journal of Biological Chemistry, 2007, 282, 10826-10832.	3.4	17
209	Novel receptors for bacterial protein toxins. Current Opinion in Microbiology, 2015, 23, 55-61.	5.1	17
210	The chaperonin TRiC/CCT is essential for the action of bacterial glycosylating protein toxins like <i>Clostridium difficile</i> toxins A and B. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9580-9585.	7.1	17
211	Cryo-EM structure of the fully-loaded asymmetric anthrax lethal toxin in its heptameric pre-pore state. PLoS Pathogens, 2020, 16, e1008530.	4.7	17
212	Gelsolin-actin complex is target for ADP-ribosylation by Clostridium botulinum C2 toxin in intact human neutrophils. European Journal of Pharmacology, 1993, 246, 293-297.	2.6	16
213	Complex regulation of human neutrophil activation by actin filaments: dihydrocytochalasin B and botulinum C2 toxin uncover the existence of multiple cation entry pathways. Journal of Leukocyte Biology, 1997, 61, 703-711.	3.3	16
214	Interaction of ADP-ribosylated actin with actin binding proteins. FEBS Letters, 2001, 508, 131-135.	2.8	16
215	Activation of RhoA,B,C by Yersinia Cytotoxic Necrotizing Factor (CNFy) Induces Apoptosis in LNCaP Prostate Cancer Cells. Toxins, 2013, 5, 2241-2257.	3.4	16
216	Roles of Asp179 and Glu270 in ADP-Ribosylation of Actin by Clostridium perfringens lota Toxin. PLoS ONE, 2015, 10, e0145708.	2.5	16

#	Article	IF	CITATIONS
217	Cytotoxicity of <i>Clostridium difficile</i> toxins A and B requires an active and functional SREBPâ€2 pathway. FASEB Journal, 2019, 33, 4883-4892.	0.5	16
218	<i>Clostridium botulinum</i> C2 Toxin Delays Entry into Mitosis and Activation of p34 ^{ <i>cdc2</i>} Kinase and cdc25-C Phosphatase in HeLa cells. Infection and Immunity, 1999, 67, 5083-5090.	2.2	16
219	C3stau, a new member of the family of C3-like ADP-ribosyltransferases. Trends in Microbiology, 2002, 10, 5-7.	7.7	15
220	A new turn in Rho GTPase activation by Escherichia coli cytotoxic necrotizing factors. Trends in Microbiology, 2003, 11, 152-155.	7.7	15
221	Cytotoxic Glucosyltransferases of Legionella pneumophila. Current Topics in Microbiology and Immunology, 2013, 376, 211-226.	1.1	15
222	Photorhabdus luminescens Toxins TccC3 and TccC5: Insecticidal ADP-Ribosyltransferases that Modify Threonine and Glutamine. Current Topics in Microbiology and Immunology, 2014, 384, 53-67.	1.1	15
223	The Legionella effector LtpM is a new type of phosphoinositide-activated glucosyltransferase. Journal of Biological Chemistry, 2019, 294, 2862-5740.	3.4	15
224	Toxin-induced RhoA Activity Mediates CCL1-triggered Signal Transducers and Activators of Transcription Protein Signaling. Journal of Biological Chemistry, 2012, 287, 11183-11194.	3.4	14
225	Pasteurella multocida Toxin as a Transporter of Non-Cell-Permeating Proteins. Infection and Immunity, 2013, 81, 2459-2467.	2.2	14
226	Tailored Cyclodextrin Pore Blocker Protects Mammalian Cells from Clostridium difficile Binary Toxin CDT. Toxins, 2014, 6, 2097-2114.	3.4	14
227	New class of microbial toxins ADP-ribosylates actin. Trends in Pharmacological Sciences, 1987, 8, 158-160.	8.7	13
228	Inhibition of insulin-stimulated glucose transport in 3T3-L1 cells by Clostridium difficile toxin B, Clostridium sordellii lethal toxin, and Clostridium botulinum C2 toxin. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 357, 385-392.	3.0	13
229	Crystal structure of the <i>Clostridium limosum</i> C3 exoenzyme. FEBS Letters, 2008, 582, 1032-1036.	2.8	13
230	Noncanonical G-Protein-Dependent Modulation of Osteoclast Differentiation and Bone Resorption Mediated by Pasteurella multocida Toxin. MBio, 2014, 5, e02190.	4.1	13
231	Protein glutaminylation is a yeast-specific posttranslational modification of elongation factor 1A. Journal of Biological Chemistry, 2017, 292, 16014-16023.	3.4	13
232	Human α-Defensin-5 Efficiently Neutralizes Clostridioides difficile Toxins TcdA, TcdB, and CDT. Frontiers in Pharmacology, 2020, 11, 1204.	3.5	13
233	Actin-Gelsolin Interaction. Advances in Experimental Medicine and Biology, 1994, 358, 97-104.	1.6	13
234	Microinjection of ADP-ribosylated actin inhibits actin synthesis in hepatocyte-hepatoma hybrid cells. Biochemical Journal, 1996, 319, 843-849.	3.7	12

#	Article	IF	CITATIONS
235	The actin-ADP-ribosylating Clostridium botulinum C2 toxin. Anaerobe, 2004, 10, 101-105.	2.1	12
236	Involvement of Osteocytes in the Action of Pasteurella multocida Toxin. Toxins, 2018, 10, 328.	3.4	12
237	Differential Involvement of the Actin Cytoskeleton in Differentiation and Mitogenesis of Thyroid Cells: Inactivation of Rho Proteins Contributes to Cyclic Adenosine Monophosphate-Dependent Gene Expression but Prevents Mitogenesis. Endocrinology, 2005, 146, 5485-5495.	2.8	11
238	Strain-alleviation model of ADP-ribosylation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4163-4164.	7.1	11
239	The actin and Rho-modifying toxins PTC3 and PTC5 of <i>Photorhabdus luminescens</i> : enzyme characterization and induction of MAL/SRF-dependent transcription. Cellular Microbiology, 2015, 17, 579-594.	2.1	11
240	Insecticidal Toxin Complexes from Photorhabdus luminescens. Current Topics in Microbiology and Immunology, 2016, 402, 3-23.	1.1	10
241	Characterization of the glucosyltransferase activity of Legionella pneumophila effector SetA. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 69-79.	3.0	10
242	<i>Clostridioides difficile</i> Binary Toxin Is Recognized by the Toll-Like Receptor 2/6 Heterodimer to Induce a Nuclear Factor-κB Response. Journal of Infectious Diseases, 2022, 225, 1296-1300.	4.0	10
243	From cosubstrate similarity to inhibitor diversity—inhibitors of ADP-ribosyltransferases from kinase inhibitor screening. Molecular BioSystems, 2011, 7, 799-808.	2.9	9
244	Targeting oncogenic Ras by the <i>Clostridium perfringens</i> toxin TpeL. Oncotarget, 2018, 9, 16489-16500.	1.8	9
245	Revisiting an old antibiotic: bacitracin neutralizes binary bacterial toxins and protects cells from intoxication. FASEB Journal, 2019, 33, 5755-5771.	0.5	9
246	Inverse control of Rab proteins by <i>Yersinia</i> ADP-ribosyltransferase and glycosyltransferase related to clostridial glucosylating toxins. Science Advances, 2020, 6, eaaz2094.	10.3	9
247	Engineering <i>Photorhabdus luminescens</i> toxin complex (PTC) into a recombinant injection nanomachine. Life Science Alliance, 2019, 2, e201900485.	2.8	9
248	Modification of plant <scp>R</scp> ac/ <scp>R</scp> op <scp>GTP</scp> ase signalling using bacterial toxin transgenes. Plant Journal, 2013, 73, 314-324.	5.7	8
249	A cysteine protease–like domain enhances the cytotoxic effects of the Photorhabdus asymbiotica toxin PaTox. Journal of Biological Chemistry, 2019, 294, 1035-1044.	3.4	8
250	Effects of Large Clostridial Cytotoxins on Activation of RBL 2H3-hm1 Mast Cells Indicate Common and Different Roles of Rac in FcεRI and M1-Receptor Signaling. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 1243-1250.	2.5	7
251	EhRho1, a RhoA-Like GTPase of Entamoeba histolytica, Is Modified by Clostridial Glucosylating Cytotoxins. Applied and Environmental Microbiology, 2006, 72, 7842-7848.	3.1	7
252	A systemic <i>Pasteurella multocida</i> toxin aggravates cardiac hypertrophy and fibrosis in mice. Cellular Microbiology, 2015, 17, 1320-1331.	2.1	7

#	Article	IF	CITATIONS
253	EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens lota Toxin and Clostridium botulinum C2 Toxin. Toxins, 2016, 8, 101.	3.4	7
254	Activation of Gq signaling by Pasteurella multocida toxin inhibits the osteoblastogenic-like actions of Activin A in C2C12 myoblasts, a cell model of fibrodysplasia ossificans progressiva. Bone, 2019, 127, 592-601.	2.9	7
255	Involvement of Nâ€glycans in binding of <i>Photorhabdus luminescens</i> Tc toxin. Cellular Microbiology, 2021, 23, e13326.	2.1	7
256	Rho GTPase-activating toxins: Cytotoxic necrotizing factors and dermonecrotic toxin. Methods in Enzymology, 2000, 325, 125-136.	1.0	6
257	Formation of Nanotube-Like Protrusions, Regulation of Septin Organization and Re-guidance of Vesicle Traffic by Depolymerization of the Actin Cytoskeleton Induced by Binary Bacterial Protein Toxins. Current Topics in Microbiology and Immunology, 2016, 399, 35-51.	1.1	6
258	ADP-Ribosylation and Cross-Linking of Actin by Bacterial Protein Toxins. Handbook of Experimental Pharmacology, 2016, 235, 179-206.	1.8	6
259	<i>Photorhabdus luminescens</i> Tc toxin is inhibited by the protease inhibitor MG132 and activated by protease cleavage resulting in increased binding to target cells. Cellular Microbiology, 2019, 21, e12978.	2.1	6
260	ADP-Ribosylating and Glucosylating Toxins as Tools to Study Secretion in RBL Cells. Advances in Experimental Medicine and Biology, 1997, 419, 349-353.	1.6	6
261	Diverse effects of RacV12 on cell transformation by Raf: partial inhibition of morphological transformation versus deregulation of cell cycle control. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1589, 151-159.	4.1	5
262	Purification and Activity of the Rho ADPâ€Ribosylating Binary C2/C3 Toxin. Methods in Enzymology, 2006, 406, 117-127.	1.0	5
263	Rho-modifying bacterial protein toxins from Photorhabdus species. Toxicon, 2016, 116, 17-22.	1.6	5
264	cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology—tribute to Karl H. Jakobs. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 887-911.	3.0	5
265	Bacterial Protein Toxins Acting on Small GTPases. , 2014, , 65-97.		5
266	Self-Cutting To Kill: New Insights into the Processing ofClostridium difficileToxins. ACS Chemical Biology, 2007, 2, 228-230.	3.4	4
267	Intracellular plasma membrane guidance of <i>Photorhabdus asymbiotica</i> toxin is crucial for cell toxicity. FASEB Journal, 2015, 29, 2789-2802.	0.5	3
268	Receptor-Binding and Uptake of Binary Actin-ADP-Ribosylating Toxins. Current Topics in Microbiology and Immunology, 2016, 406, 119-133.	1.1	3
269	Auranofin Inhibits the Enzyme Activity of Pasteurella multocida Toxin PMT in Human Cells and Protects Cells from Intoxication. Toxins, 2017, 9, 32.	3.4	3
270	Semaphorins or Frizzled –it is the receptor that direct the action of clostridial glucosylating toxins. Signal Transduction and Targeted Therapy, 2020, 5, 206.	17.1	2

#	Article	IF	CITATIONS
271	Identification of the Catalytic Site of Clostridial ADP-Ribosyltransferases. Advances in Experimental Medicine and Biology, 1997, 419, 53-60.	1.6	2
272	ADP-Ribosylation of Actin by Botulinum C2 Toxin. , 1987, , 149-153.		2
273	The Compound U18666A Inhibits the Intoxication of Cells by Clostridioides difficile Toxins TcdA and TcdB. Frontiers in Microbiology, 2021, 12, 784856.	3.5	2
274	Another surprise in receptor binding of C.Âdifficile toxins. Innovation(China), 2022, 3, 100261.	9.1	2
275	Rho-activating toxins and growth regulation. , 2005, , 33-52.		1
276	Large clostridial cytotoxins modifying small GTpases. , 2015, , 426-440.		1
277	Toxins as tools. , 2015, , 1045-1071.		1
278	Defined stereoisomers of 2′′-amino NAD+ and their activity against human sirtuins and a bacterial (ADP-ribosyl) transferase. Bioorganic and Medicinal Chemistry, 2022, , 116875.	3.0	1
279	Large clostridial cytotoxins: cellular biology of Rho/Ras-glucosylating toxins. Biochimica Et Biophysica Acta - General Subjects, 2004, 1673, 66-66.	2.4	Ο
280	Cytotoxic Necrotizing Factors: Rho-Activating Toxins from <i>Escherichia coli</i> . EcoSal Plus, 2004, 1, .	5.4	0
281	The priority program Signal Pathways to the Cytoskeleton and Bacterial Pathogenesis (SPP1150). European Journal of Cell Biology, 2011, 90, 879.	3.6	0
282	Structural determinants for membrane insertion, pore formation and translocation of <i>Clostridium difficile</i> toxin B. Molecular Microbiology, 2012, 84, 1189-1190.	2.5	0
283	Bacterial Toxins. , 2020, , 1-5.		Ο
284	Bacterial Toxins. , 2021, , 308-312.		0
285	Title is missing!. , 2020, 16, e1008530.		0
286	Title is missing!. , 2020, 16, e1008530.		0
287	Title is missing!. , 2020, 16, e1008530.		0
288	Title is missing!. , 2020, 16, e1008530.		0