Zhiyong Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4979577/publications.pdf

Version: 2024-02-01

5896 8396 23,309 226 81 147 citations h-index g-index papers 232 232 232 26044 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Self-powered and wearable biosensors for healthcare. Materials Today Energy, 2022, 23, 100900.	4.7	39
2	A biomimetic approach to evaluate mineralization of bioactive glass-loaded resin composites. Journal of Prosthodontic Research, 2022, 66, 572-581.	2.8	10
3	Substantial Improvement of Operating Stability by Strengthening Metalâ€Halogen Bonds in Halide Perovskites. Advanced Functional Materials, 2022, 32, .	14.9	16
4	Large-scale planar and spherical light-emitting diodes based on arrays of perovskite quantum wires. Nature Photonics, 2022, 16, 284-290.	31.4	56
5	Vertical Heterogeneous Integration of Metal Halide Perovskite Quantum-Wires/Nanowires for Flexible Narrowband Photodetectors. Nano Letters, 2022, 22, 3062-3070.	9.1	18
6	Schottky-Contacted WSe ₂ Hot-Electron Photodetectors with Fast Response and High Sensitivity. ACS Photonics, 2022, 9, 132-137.	6.6	13
7	Monolayer WS ₂ Lateral Homosuperlattices with Two-dimensional Periodic Localized Photoluminescence. ACS Nano, 2022, 16, 597-603.	14.6	7
8	Nextâ€generation machine vision systems incorporating twoâ€dimensional materials: Progress and perspectives. InformaÄnÃ-Materiály, 2022, 4, .	17.3	58
9	Strongly Quantum-Confined Perovskite Nanowire Arrays for Color-Tunable Blue-Light-Emitting Diodes. ACS Nano, 2022, 16, 8388-8398.	14.6	19
10	Image processing with a multi-level ultra-fast three dimensionally integrated perovskite nanowire array. Nanoscale Horizons, 2022, 7, 759-769.	8.0	5
11	Robust Leadâ€Free Perovskite Nanowire Arrayâ€Based Artificial Synapses Exemplifying Gestalt Principle of Closure via a Letter Recognition Scheme. Advanced Intelligent Systems, 2022, 4, .	6.1	5
12	Energy Regulation in White-Light-Emitting Diodes. ACS Energy Letters, 2022, 7, 2173-2188.	17.4	26
13	Programmable Nanoarchitectonics of Pore Array for Electronic-Nose-Based Early Disease Diagnose. IEEE Transactions on Electron Devices, 2022, 69, 4514-4520.	3.0	1
14	Halide-exchanged perovskite photodetectors for wearable visible-blind ultraviolet monitoring. Nano Energy, 2022, 100, 107516.	16.0	33
15	Microheater Integrated Nanotube Array Gas Sensor for Parts-Per-Trillion Level Gas Detection and Single Sensor-Based Gas Discrimination. ACS Nano, 2022, 16, 10968-10978.	14.6	29
16	A Wearable Nutrition Tracker. Advanced Materials, 2021, 33, e2006444.	21.0	70
17	High output achieved by sliding electrification of an electrospun nano-grating. Nanoscale, 2021, 13, 17417-17427.	5 . 6	12
18	Optically tunable ultra-fast resistive switching in lead-free methyl-ammonium bismuth iodide perovskite films. Nanoscale, 2021, 13, 6184-6191.	5.6	21

#	Article	IF	CITATIONS
19	Polarizationâ€Resolved Broadband MoS ₂ /Black Phosphorus/MoS ₂ Optoelectronic Memory with Ultralong Retention Time and Ultrahigh Switching Ratio. Advanced Functional Materials, 2021, 31, 2100781.	14.9	33
20	A Design of Horizontal Perovskite Nanowire LED for Better Light Extraction., 2021,,.		1
21	Opto-Electric resistive switching and synaptic emulation in lead-free perovskite film. , 2021, , .		0
22	Wireless Self-Powered High-Performance Integrated Nanostructured-Gas-Sensor Network for Future Smart Homes. ACS Nano, 2021, 15, 7659-7667.	14.6	90
23	Single electrode piezoelectric nanogenerator for intelligent passive daytime radiative cooling. Nano Energy, 2021, 82, 105695.	16.0	64
24	Moth eyeâ€inspired highly efficient, robust, and neutralâ€colored semitransparent perovskite solar cells for buildingâ€integrated photovoltaics. EcoMat, 2021, 3, e12117.	11.9	28
25	Down-Scalable and Ultra-fast Memristors with Ultra-high Density Three-Dimensional Arrays of Perovskite Quantum Wires. Nano Letters, 2021, 21, 5036-5044.	9.1	53
26	MoS ₂ Homojunctions Transistors Enabled by Dimension Tailoring Strategy. Advanced Electronic Materials, 2021, 7, 2100703.	5.1	5
27	Three-dimensional perovskite nanowire array–based ultrafast resistive RAM with ultralong data retention. Science Advances, 2021, 7, eabg3788.	10.3	29
28	Design of a Horizontally Aligned Perovskite Nanowire LED With Improved Light Extraction. IEEE Journal of the Electron Devices Society, 2021, 9, 1215-1221.	2.1	2
29	Substitutionally Doped MoSe ₂ for Highâ€Performance Electronics and Optoelectronics. Small, 2021, 17, e2102855.	10.0	24
30	Preface to the Special Issue on Flexible Energy Devices. Journal of Semiconductors, 2021, 42, 100101.	3.7	9
31	Recent progress of efficient flexible solar cells based on nanostructures. Journal of Semiconductors, 2021, 42, 101604.	3.7	7
32	Flexible Quasiâ€2D Perovskite/IGZO Phototransistors for Ultrasensitive and Broadband Photodetection. Advanced Materials, 2020, 32, e1907527.	21.0	88
33	Vapor phase fabrication of threeâ€dimensional arrayed Bil ₃ nanosheets for costâ€effective solar cells. InformaÄnÃ-Materiály, 2020, 2, 975-983.	17.3	20
34	Cost-Effective and Semi-Transparent PbS Quantum Dot Solar Cells Using Copper Electrodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 818-825.	8.0	23
35	A non-toxic triboelectric nanogenerator for baby care applications. Journal of Materials Chemistry A, 2020, 8, 22745-22753.	10.3	36
36	A nanostructured anti-biofilm surface widens the efficacy against spindle-shaped and chain-forming rod-like bacteria. Nanoscale, 2020, 12, 18864-18874.	5.6	21

#	Article	IF	CITATIONS
37	Scalable Allâ€Evaporation Fabrication of Efficient Lightâ€Emitting Diodes with Hybrid 2D–3D Perovskite Nanostructures. Advanced Functional Materials, 2020, 30, 2002913.	14.9	40
38	Anisotropic Triboelectric Nanogenerator Based on Ordered Electrospinning. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 46205-46211.	8.0	47
39	A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581, 278-282.	27.8	392
40	Recent Progress on Semi-transparent Perovskite Solar Cell for Building-integrated Photovoltaics. Chemical Research in Chinese Universities, 2020, 36, 366-376.	2.6	16
41	Light Outâ€Coupling Management in Perovskite LEDs—What Can We Learn from the Past?. Advanced Functional Materials, 2020, 30, 2002570.	14.9	52
42	Anisotropic nanogenerator for anticounterfeiting and information encrypted transmission. Nano Energy, 2020, 71, 104572.	16.0	27
43	Three-Dimensional Perovskite Nanophotonic Wire Array-Based Light-Emitting Diodes with Significantly Improved Efficiency and Stability. ACS Nano, 2020, 14, 1577-1585.	14.6	57
44	Wireless Single-Electrode Self-Powered Piezoelectric Sensor for Monitoring. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 8288-8295.	8.0	70
45	Recent Progress on Interface Engineering for Highâ€Performance, Stable Perovskites Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000118.	3.7	34
46	Wearable Sweat Band for Noninvasive Levodopa Monitoring. Nano Letters, 2019, 19, 6346-6351.	9.1	121
47	Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Science Bulletin, 2019, 64, 1348-1380.	9.0	101
48	Sliding non-contact inductive nanogenerator. Nano Energy, 2019, 63, 103878.	16.0	23
49	Facile and Efficient Atomic Hydrogenation Enabled Black TiO ₂ with Enhanced Photoâ€Electrochemical Activity via a Favorably Lowâ€Energyâ€Barrier Pathway. Advanced Energy Materials, 2019, 9, 1900725.	19.5	21
50	A Fully Integrated and Self-Powered Smartwatch for Continuous Sweat Glucose Monitoring. ACS Sensors, 2019, 4, 1925-1933.	7.8	184
51	Multifunctional Optoelectronic Device Based on an Asymmetric Active Layer Structure. Advanced Functional Materials, 2019, 29, 1807894.	14.9	30
52	A calibration-free self-powered sensor for vital sign monitoring and finger tap communication based on wearable triboelectric nanogenerator. Nano Energy, 2019, 58, 536-542.	16.0	121
53	Porous Enzymatic Membrane for Nanotextured Glucose Sweat Sensors with High Stability toward Reliable Noninvasive Health Monitoring. Advanced Functional Materials, 2019, 29, 1902521.	14.9	120
54	Room-Temperature Sputtered SnO2 as Robust Electron Transport Layer for Air-Stable and Efficient Perovskite Solar Cells on Rigid and Flexible Substrates. Scientific Reports, 2019, 9, 6963.	3.3	57

#	Article	IF	CITATIONS
55	Highly efficient and stable inverted perovskite solar cells using down-shifting quantum dots as a light management layer and moisture-assisted film growth. Journal of Materials Chemistry A, 2019, 7, 14753-14760.	10.3	67
56	Multifunctional Optoelectronic Devices: Multifunctional Optoelectronic Device Based on an Asymmetric Active Layer Structure (Adv. Funct. Mater. 17/2019). Advanced Functional Materials, 2019, 29, 1970114.	14.9	3
57	Efficient Mixedâ€Cation Mixedâ€Halide Perovskite Solar Cells by Allâ€Vacuum Sequential Deposition Using Metal Oxide Electron Transport Layer. Solar Rrl, 2019, 3, 1900050.	5.8	31
58	Large-scale, adhesive-free and omnidirectional 3D nanocone anti-reflection films for high performance photovoltaics. Journal of Semiconductors, 2019, 40, 042601.	3.7	8
59	Increasing Photoluminescence Quantum Yield by Nanophotonic Design of Quantum-Confined Halide Perovskite Nanowire Arrays. Nano Letters, 2019, 19, 2850-2857.	9.1	67
60	Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nature Communications, 2019, 10, 727.	12.8	179
61	Smart gas sensor arrays powered by artificial intelligence. Journal of Semiconductors, 2019, 40, 111601.	3.7	59
62	High performance charge-transfer induced homojunction photodetector based on ultrathin ZnO nanosheet. Applied Physics Letters, 2019, 114 , .	3.3	21
63	Printable Fabrication of a Fully Integrated and Selfâ€Powered Sensor System on Plastic Substrates. Advanced Materials, 2019, 31, e1804285.	21.0	148
64	Palladium Diselenide Long-Wavelength Infrared Photodetector with High Sensitivity and Stability. ACS Nano, 2019, 13, 2511-2519.	14.6	198
65	Low-cost, flexible, disinfectant-free and regular-array three-dimensional nanopyramid antibacterial films for clinical applications. Nanoscale, 2018, 10, 10436-10442.	5.6	24
66	Recent progress on printable power supply devices and systems with nanomaterials. Nano Research, 2018, 11, 3065-3087.	10.4	60
67	Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–vis–IR photodetectors. Nano Energy, 2018, 49, 200-208.	16.0	96
68	A self-powered flexible hybrid piezoelectric–pyroelectric nanogenerator based on non-woven nanofiber membranes. Journal of Materials Chemistry A, 2018, 6, 3500-3509.	10.3	161
69	Largeâ€Grain Tinâ€Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique. Advanced Materials, 2018, 30, 1705998.	21.0	116
70	Ferroelectric Localized Field–Enhanced ZnO Nanosheet Ultraviolet Photodetector with High Sensitivity and Low Dark Current. Small, 2018, 14, e1800492.	10.0	85
71	Nanotextured Spikes of α-Fe ₂ O ₃ /NiFe ₂ O ₄ Composite for Efficient Photoelectrochemical Oxidation of Water. Langmuir, 2018, 34, 3555-3564.	3.5	31
72	Surface recombination velocity of methylammonium lead bromide nanowires in anodic aluminium oxide templates. Molecular Systems Design and Engineering, 2018, 3, 723-728.	3.4	7

#	Article	IF	Citations
73	Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays. ACS Nano, 2018, 12, 6079-6088.	14.6	88
74	Significantly improved black phase stability of FAPbl ₃ nanowires <i>via</i> spatially confined vapor phase growth in nanoporous templates. Nanoscale, 2018, 10, 15164-15172.	5.6	61
75	Bionic Single-Electrode Electronic Skin Unit Based on Piezoelectric Nanogenerator. ACS Nano, 2018, 12, 8588-8596.	14.6	226
76	Efficient and Flexible Thin Film Amorphous Silicon Solar Cells on Nanotextured Polymer Substrate Using Sol–gel Based Nanoimprinting Method. Advanced Functional Materials, 2017, 27, 1604720.	14.9	53
77	High-quality organohalide lead perovskite films fabricated by layer-by-layer alternating vacuum deposition for high efficiency photovoltaics. Materials Chemistry Frontiers, 2017, 1, 1520-1525.	5.9	33
78	Fabrication of stable organometallic halide perovskite NWs based optoelectronic devices. Science Bulletin, 2017, 62, 645-647.	9.0	18
79	Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips. Journal of Microelectromechanical Systems, 2017, 26, 910-920.	2.5	7
80	Scalable Indium Phosphide Thin-Film Nanophotonics Platform for Photovoltaic and Photoelectrochemical Devices. ACS Nano, 2017, 11, 5113-5119.	14.6	30
81	Organic Halides and Nanocone Plastic Structures Enhance the Energy Conversion Efficiency and Self-Cleaning Ability of Colloidal Quantum Dot Photovoltaic Devices. Journal of Physical Chemistry C, 2017, 121, 9757-9765.	3.1	22
82	Solar Cells: Efficient and Flexible Thin Film Amorphous Silicon Solar Cells on Nanotextured Polymer Substrate Using Sol–gel Based Nanoimprinting Method (Adv. Funct. Mater. 13/2017). Advanced Functional Materials, 2017, 27, .	14.9	0
83	A non-catalytic vapor growth regime for organohalide perovskite nanowires using anodic aluminum oxide templates. Nanoscale, 2017, 9, 5828-5834.	5.6	53
84	ZnO Quantum Dot Decorated Zn ₂ SnO ₄ Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors. ACS Nano, 2017, 11, 4067-4076.	14.6	190
85	Lead-Free Perovskite Nanowire Array Photodetectors with Drastically Improved Stability in Nanoengineering Templates. Nano Letters, 2017, 17, 523-530.	9.1	232
86	Electric field enhanced 3D scalable low-voltage nano-spike electroporation system. Sensors and Actuators A: Physical, 2017, 255, 10-20.	4.1	13
87	Perovskite Nanowire Extrusion. Nano Letters, 2017, 17, 6557-6563.	9.1	42
88	Printable Fabrication of Nanocoralâ€Structured Electrodes for Highâ€Performance Flexible and Planar Supercapacitor with Artistic Design. Advanced Materials, 2017, 29, 1701736.	21.0	125
89	Accelerating ion diffusion with unique three-dimensionally interconnected nanopores for self-membrane high-performance pseudocapacitors. Nanoscale, 2017, 9, 18311-18317.	5.6	12
90	Breath Level Acetone Discrimination Through Temperature Modulation of a Hierarchical ZnO Gas Sensor., 2017, 1, 1-4.		12

#	Article	IF	CITATIONS
91	Spray Pyrolysis Deposition of ZnFe ₂ O ₄ /Fe ₂ O ₃ Composite Thin Films on Hierarchical 3-D Nanospikes for Efficient Photoelectrochemical Oxidation of Water. Journal of Physical Chemistry C, 2017, 121, 18360-18368.	3.1	48
92	Hybrid WSe ₂ –In ₂ O ₃ Phototransistor with Ultrahigh Detectivity by Efficient Suppression of Dark Currents. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34489-34496.	8.0	47
93	All Inorganic Cesium Lead Iodide Perovskite Nanowires with Stabilized Cubic Phase at Room Temperature and Nanowire Array-Based Photodetectors. Nano Letters, 2017, 17, 4951-4957.	9.1	210
94	A-Site Cation Effect on Growth Thermodynamics and Photoconductive Properties in Ultrapure Lead lodine Perovskite Monocrystalline Wires. ACS Applied Materials & Interfaces, 2017, 9, 25985-25994.	8.0	14
95	Perovskite/organic-semiconductor heterojunctions for ultrasensitive photodetection. Light: Science and Applications, 2017, 6, e17090-e17090.	16.6	73
96	Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing. Nanoscale Research Letters, 2017, 12, 336.	5.7	16
97	Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes. Nano Research, 2017, 10, 22-36.	10.4	66
98	Influence of hydration water on CH_3NH_3PbI_3 perovskite films prepared through one-step procedure. Optics Express, 2016, 24, A1431.	3.4	25
99	Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices. Small, 2016, 12, 2536-2548.	10.0	46
100	Fabrication of CuFe ₂ O ₄ \(\bar{1}\)\:\frac{1}{\text{e}}-Fe ₂ O ₃ Composite Thin Films on FTO Coated Glass and 3-D Nanospike Structures for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Splitting. ACS Applied Materials (1) Photoelectrochemical Water Splitting. ACS Applied Materials (2) Photoelectrochemical Water Splitting. ACS Applied Materials (3) Photoelectrochemical Water Splitting. ACS Applied Materials (4) Photoelectrochemical Water Splitting. ACS Applied (4) Photoelectroc	8.0	67
101	Broad-band three dimensional nanocave ZnO thin film photodetectors enhanced by Au surface plasmon resonance. Nanoscale, 2016, 8, 8924-8930.	5.6	43
102	Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion Efficiency. ACS Applied Materials & Enhanced Light 10929-10936.	8.0	57
103	FLEXIBLE SOLAR CELLS., 2016, , 365-409.		0
104	Fast Single-Cell Patterning for Study of Drug-Induced Phenotypic Alterations of HeLa Cells Using Time-of-Flight Secondary Ion Mass Spectrometry. Analytical Chemistry, 2016, 88, 12196-12203.	6.5	44
105	3D Arrays of 1024â€Pixel Image Sensors based on Lead Halide Perovskite Nanowires. Advanced Materials, 2016, 28, 9713-9721.	21.0	228
106	High Mobility MoS ₂ Transistor with Low Schottky Barrier Contact by Using Atomic Thick hâ€BN as a Tunneling Layer. Advanced Materials, 2016, 28, 8302-8308.	21.0	398
107	A hierarchical ZnO nanostructure gas sensor for human breath-level acetone detection. , 2016, , .		4
108	Integrated Flexible, Waterproof, Transparent, and Self-Powered Tactile Sensing Panel. ACS Nano, 2016, 10, 7696-7704.	14.6	83

#	Article	IF	Citations
109	Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors. Nanoscale, 2016, 8, 13280-13287.	5.6	23
110	Solar Energy: Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices (Small 19/2016). Small, 2016, 12, 2530-2530.	10.0	2
111	High Efficiency and Stable Perovskite Solar Cell Using ZnO/rGO QDs as an Electron Transfer Layer. Advanced Materials Interfaces, 2016, 3, 1500790.	3.7	143
112	Performance improvement of solution-processed CdS/CdTe solar cells with a thin compact TiO 2 buffer layer. Science Bulletin, 2016, 61, 86-91.	9.0	17
113	Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates. Nanoscale, 2016, 8, 4276-4283.	5.6	99
114	Rational Design of ZnO:H/ZnO Bilayer Structure for High-Performance Thin-Film Transistors. ACS Applied Materials & Diterfaces, 2016, 8, 7862-7868.	8.0	76
115	When Nanowires Meet Ultrahigh Ferroelectric Field–High-Performance Full-Depleted Nanowire Photodetectors. Nano Letters, 2016, 16, 2548-2555.	9.1	135
116	Transparent megahertz circuits from solution-processed composite thin films. Nanoscale, 2016, 8, 7978-7983.	5.6	3
117	A Humidity-Insensitive NO ₂ Gas Sensor With High Selectivity. IEEE Electron Device Letters, 2016, 37, 92-95.	3.9	20
118	Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells. Nanoscale, 2016, 8, 12892-12899.	5.6	98
119	High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility. Nano Energy, 2016, 22, 539-547.	16.0	66
120	Negative magnetoresistance in Dirac semimetal Cd3As2. Nature Communications, 2016, 7, 10301.	12.8	376
121	Designing nanobowl arrays of mesoporous TiO ₂ as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale, 2016, 8, 6393-6402.	5.6	89
122	Particleâ€"Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 634-642.	8.0	56
123	Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells. Chemical Communications, 2016, 52, 323-326.	4.1	40
124	Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Scientific Reports, 2015, 5, 14083.	3.3	200
125	Synthesis and Enhanced Electrochemical Catalytic Performance of Monolayer WS $<$ sub $>2(1$ â \in " $<$ i $>×<$ ii $>×$ (sub $>$ 8 $<$ sub $>2(i)×<1>×1>×1>×1>×1>×1>×1>×1>×$	21.0	214
126	Single-Crystal Atomic-Layered Molybdenum Disulfide Nanobelts with High Surface Activity. ACS Nano, 2015, 9, 6478-6483.	14.6	72

#	Article	IF	Citations
127	A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes. Nanoscale Research Letters, 2015, 10, 495.	5.7	34
128	Nanobowl optical concentrator for efficient light trapping and high-performance organic photovoltaics. Science Bulletin, 2015, 60, 109-115.	9.0	13
129	Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	35
130	Quasi Core/Shell Lead Sulfide/Graphene Quantum Dots for Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2015, 119, 18886-18895.	3.1	50
131	Highly flexible and transferable supercapacitors with ordered three-dimensional MnO ₂ /Au/MnO ₂ nanospike arrays. Journal of Materials Chemistry A, 2015, 3, 10199-10204.	10.3	53
132	Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells. Physical Chemistry Chemical Physics, 2015, 17, 24412-24419.	2.8	45
133	Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures. ACS Nano, 2015, 9, 10287-10295.	14.6	335
134	A fast-response/recovery ZnO hierarchical nanostructure based gas sensor with ultra-high room-temperature output response. Sensors and Actuators B: Chemical, 2015, 206, 764-771.	7.8	82
135	Performance optimization of flexible a-Si:H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer. Nano Energy, 2015, 11, 78-87.	16.0	31
136	Coupled optical and electrical modeling of thin-film amorphous silicon solar cells based on nanodent plasmonic substrates. Nano Energy, 2014, 8, 141-149.	16.0	24
137	Transparent, Highâ€Performance Thinâ€Film Transistors with an InGaZnO/Alignedâ€5nO ₂ â€Nanowire Composite and their Application in Photodetectors. Advanced Materials, 2014, 26, 7399-7404.	21.0	104
138	Lowâ€Cost, Flexible, and Selfâ€Cleaning 3D Nanocone Antiâ€Reflection Films for Highâ€Efficiency Photovoltaics. Advanced Materials, 2014, 26, 2805-2811.	21.0	170
139	Scalable Integration of Indium Zinc Oxide/Photosensitiveâ€Nanowire Composite Thinâ€Film Transistors for Transparent Multicolor Photodetectors Array. Advanced Materials, 2014, 26, 2919-2924.	21.0	62
140	Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors. Nanoscale, 2014, 6, 3626-3631.	5.6	57
141	Morphology Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina. ACS Applied Materials & Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina. ACS Applied Materials & Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina. ACS Applied Materials & Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina. ACS Applied Materials & Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina. ACS Applied Materials & Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina. ACS Applied Materials & Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina. ACS Applied Materials & Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina. ACS Applied Materials & Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina. ACS Applied Materials & Defects Guided Pore Initiation of Porous Anodic Alumina.	8.0	34
142	Semiconductor Nanocrystals as Luminescent Down-Shifting Layers To Enhance the Efficiency of Thin-Film CdTe/CdS and Crystalline Si Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16393-16400.	3.1	82
143	Flexible photovoltaic technologies. Journal of Materials Chemistry C, 2014, 2, 1233.	5.5	106
144	Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. Nanoscale, 2014, 6, 616-623.	5.6	131

#	Article	IF	Citations
145	Supercapacitors: Integrated Photo-supercapacitor Based on Bi-polar TiO2Nanotube Arrays with Selective One-Side Plasma-Assisted Hydrogenation (Adv. Funct. Mater. 13/2014). Advanced Functional Materials, 2014, 24, 1814-1814.	14.9	7
146	Large scale, flexible and three-dimensional quasi-ordered aluminum nanospikes for thin film photovoltaics with omnidirectional light trapping and optimized electrical design. Energy and Environmental Science, 2014, 7, 3611-3616.	30.8	43
147	A three-dimensional hexagonal fluorine-doped tin oxide nanocone array: a superior light harvesting electrode for high performance photoelectrochemical water splitting. Energy and Environmental Science, 2014, 7, 3651-3658.	30.8	103
148	High-Performance Hybrid Phenyl-C61-Butyric Acid Methyl Ester/Cd ₃ P ₂ Nanowire Ultraviolet–Visible–Near Infrared Photodetectors. ACS Nano, 2014, 8, 787-796.	14.6	82
149	Light Management with Nanostructures for Optoelectronic Devices. Journal of Physical Chemistry Letters, 2014, 5, 1479-1495.	4.6	147
150	Enhanced Charge Collection for Splitting of Water Enabled by an Engineered Three-Dimensional Nanospike Array. Journal of Physical Chemistry C, 2014, 118, 22465-22472.	3.1	16
151	Constructing optimized wire electrodes for fiber supercapacitors. Nano Energy, 2014, 10, 99-107.	16.0	59
152	Single InAs Nanowire Room-Temperature Near-Infrared Photodetectors. ACS Nano, 2014, 8, 3628-3635.	14.6	238
153	All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nature Communications, 2014, 5, 4007.	12.8	494
154	Optical Properties of Metal–Molybdenum Disulfide Hybrid Nanosheets and Their Application for Enhanced Photocatalytic Hydrogen Evolution. ACS Nano, 2014, 8, 6979-6985.	14.6	92
155	Integrated Photoâ€supercapacitor Based on Biâ€polar TiO ₂ Nanotube Arrays with Selective Oneâ€6ide Plasmaâ€Assisted Hydrogenation. Advanced Functional Materials, 2014, 24, 1840-1846.	14.9	163
156	Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures. Nano Letters, 2014, 14, 2123-2129.	9.1	307
157	Inverted Nanocone-Based Thin Film Photovoltaics with Omnidirectionally Enhanced Performance. ACS Nano, 2014, 8, 6484-6490.	14.6	80
158	Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics. Scientific Reports, 2014, 4, 4243.	3.3	71
159	Rational geometrical design of multi-diameter nanopillars for efficient light harvesting. Nano Energy, 2013, 2, 951-957.	16.0	57
160	Performance enhancement of thin-film amorphous silicon solar cells with low cost nanodent plasmonic substrates. Energy and Environmental Science, 2013, 6, 2965.	30.8	77
161	In situ doping control and electrical transport investigation of single and arrayed CdS nanopillars. Nanoscale, 2013, 5, 7213.	5.6	9
162	Self-Gating Effect Induced Large Performance Improvement of ZnO Nanocomb Gas Sensors. ACS Nano, 2013, 7, 9318-9324.	14.6	104

#	Article	IF	CITATIONS
163	Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology, 2013, 24, 335202.	2.6	116
164	Programmable nanoengineering templates for fabrication of three-dimensional nanophotonic structures. Nanoscale Research Letters, 2013, 8, 268.	5.7	26
165	Enhanced supercapacitance in anodic TiO ₂ nanotube films by hydrogen plasma treatment. Nanotechnology, 2013, 24, 455401.	2.6	127
166	Metal Oxide Nanowires: Fundamentals and Sensor Applications. , 2013, , 287-319.		2
167	High performance amorphous ZnMgO/carbon nanotube composite thin-film transistors with a tunable threshold voltage. Nanoscale, 2013, 5, 2830.	5.6	10
168	Efficient Light Absorption with Integrated Nanopillar/Nanowell Arrays for Three-Dimensional Thin-Film Photovoltaic Applications. ACS Nano, 2013, 7, 2725-2732.	14.6	106
169	Efficient photon management with nanostructures for photovoltaics. Nanoscale, 2013, 5, 6627.	5.6	75
170	Efficient Photon Capturing with Ordered Three-Dimensional Nanowell Arrays. Nano Letters, 2012, 12, 3682-3689.	9.1	168
171	Rational Design of Amorphous Indium Zinc Oxide/Carbon Nanotube Hybrid Film for Unique Performance Transistors. Nano Letters, 2012, 12, 3596-3601.	9.1	83
172	Fabrication of a low power CMOS-compatible ZnO nanocomb-based gas sensor. , 2012, , .		0
173	Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy, 2012, 1, 57-72.	16.0	270
174	Nanopillar photovoltaics: Materials, processes, and devices. Nano Energy, 2012, 1, 132-144.	16.0	142
175	Large-Scale Integration of Semiconductor Nanowires for High-Performance Flexible Electronics. ACS Nano, 2012, 6, 1888-1900.	14.6	202
176	Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale, 2012, 4, 2783.	5.6	211
177	Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chemical Society Reviews, 2012, 41, 4560.	38.1	282
178	Simulation study of open circuit voltage loss at Schottky top contact in ultra-shallow junction silicon solar cells. , 2011 , , .		1
179	Fabrication of one dimensional superfine polymer fibers by double-spinning. Journal of Materials Chemistry, 2011, 21, 13159.	6.7	51
180	Strong Light Absorption of Self-Organized 3-D Nanospike Arrays for Photovoltaic Applications. ACS Nano, 2011, 5, 9291-9298.	14.6	76

#	Article	IF	CITATIONS
181	Self-assembly of one-dimensional nanomaterials for cost-effective photovoltaics. International Journal of Nanoparticles, 2011, 4, 164.	0.3	11
182	Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Progress in Polymer Science, 2011, 36, 1415-1442.	24.7	763
183	Patterned p-Doping of InAs Nanowires by Gas-Phase Surface Diffusion of Zn. Nano Letters, 2010, 10, 509-513.	9.1	57
184	Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sensors and Actuators B: Chemical, 2010, 145, 232-238.	7.8	124
185	Design constraints and guidelines for CdS/CdTe nanopillar based photovoltaics. Applied Physics Letters, 2010, 96, .	3.3	78
186	Nanoscale Structural Engineering via Phase Segregation: Auâ^'Ge System. Nano Letters, 2010, 10, 393-397.	9.1	23
187	Shape-Controlled Synthesis of Single-Crystalline Nanopillar Arrays by Template-Assisted Vaporâ^'Liquidâ^'Solid Process. Journal of the American Chemical Society, 2010, 132, 13972-13974.	13.7	29
188	Parallel Array InAs Nanowire Transistors for Mechanically Bendable, Ultrahigh Frequency Electronics. ACS Nano, 2010, 4, 5855-5860.	14.6	105
189	Ordered Arrays of Dual-Diameter Nanopillars for Maximized Optical Absorption. Nano Letters, 2010, 10, 3823-3827.	9.1	269
190	Black Ge Based on Crystalline/Amorphous Core/Shell Nanoneedle Arrays. Nano Letters, 2010, 10, 520-523.	9.1	68
191	Heterogeneous integration of 1-D nanomaterials for electronic circuitry. , 2010, , .		0
192	Toward the Development of Printable Nanowire Electronics and Sensors. Advanced Materials, 2009, 21, 3730-3743.	21.0	363
193	Challenges and prospects of nanopillar-based solar cells. Nano Research, 2009, 2, 829.	10.4	223
194	Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Materials, 2009, 8, 648-653.	27. 5	997
195	Diameter-Dependent Electron Mobility of InAs Nanowires. Nano Letters, 2009, 9, 360-365.	9.1	353
196	Monolayer Resist for Patterned Contact Printing of Aligned Nanowire Arrays. Journal of the American Chemical Society, 2009, 131, 2102-2103.	13.7	70
197	Synthesis, contact printing, and device characterization of Ni-catalyzed, crystalline InAs nanowires. Nano Research, 2008, 1, 32-39.	10.4	70
198	Phosphine Oxide Monolayers on SiO ₂ Surfaces. Angewandte Chemie - International Edition, 2008, 47, 4440-4442.	13.8	37

#	Article	IF	Citations
199	Controlled nanoscale doping of semiconductors via molecular monolayers. Nature Materials, 2008, 7, 62-67.	27.5	311
200	Solar cells on curtains. Nature Materials, 2008, 7, 835-836.	27.5	37
201	Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing. Nano Letters, 2008, 8, 20-25.	9.1	542
202	Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11066-11070.	7.1	233
203	Formation and Characterization of NixInAs/InAs Nanowire Heterostructures by Solid Source Reaction. Nano Letters, 2008, 8, 4528-4533.	9.1	61
204	Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Applied Physics Letters, 2007, 91, .	3.3	117
205	High-performance ZnO nanowire field effect transistors. Applied Physics Letters, 2006, 89, 133113.	3.3	223
206	Chemical sensing with ZnO nanowire field-effect transistor. IEEE Nanotechnology Magazine, 2006, 5, 393-396.	2.0	80
207	Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays. Applied Physics Letters, 2006, 89, 213110.	3.3	114
208	Quasi-one-dimensional metal oxide materialsâ€"Synthesis, properties and applications. Materials Science and Engineering Reports, 2006, 52, 49-91.	31.8	526
209	Chemical sensing with ZnO nanowire FETs. , 2005, , .		1
210	Zinc Oxide Nanostructures: Synthesis and Properties. Journal of Nanoscience and Nanotechnology, 2005, 5, 1561-1573.	0.9	675
211	\hat{l}^2 -Ga2O3 nanowires: Synthesis, characterization, and p-channel field-effect transistor. Applied Physics Letters, 2005, 87, 222102.	3.3	118
212	Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors. Applied Physics Letters, 2005, 87, 013113.	3.3	114
213	Gate-refreshable nanowire chemical sensors. Applied Physics Letters, 2005, 86, 123510.	3.3	412
214	Electrical properties of ZnO nanowire field effect transistors characterized with scanning probes. Applied Physics Letters, 2005, 86, 032111.	3.3	129
215	Structures and Electrical Properties of Ag–Tetracyanoquinodimethane Organometallic Nanowires. IEEE Nanotechnology Magazine, 2005, 4, 238-241.	2.0	53
216	Low Temperature Growth of Boron Nitride Nanotubes on Substrates. Nano Letters, 2005, 5, 2528-2532.	9.1	176

#	Article	IF	CITATIONS
217	High transparency low resistance oxidized Ni/Au–ZnO contacts to p-GaN for high performance LED applications. Physica Status Solidi A, 2004, 201, 2827-2830.	1.7	2
218	Synthesis of Magnesium Borate (Mg2B2O5) Nanowires by Chemical Vapor Deposition Method. Chemistry of Materials, 2004, 16, 2512-2514.	6.7	92
219	Photoluminescence and polarized photodetection of single ZnO nanowires. Applied Physics Letters, 2004, 85, 6128-6130.	3.3	330
220	ZnO Nanowires Synthesized by Vapor Trapping CVD Method. Chemistry of Materials, 2004, 16, 5133-5137.	6.7	340
221	ZnO nanowire field-effect transistor and oxygen sensing property. Applied Physics Letters, 2004, 85, 5923-5925.	3.3	766
222	Preparation and electrical/optical bistable property of potassium tetracyanoquinodimethane thin films. Thin Solid Films, 2003, 436, 259-263.	1.8	36
223	Silver Nanodisks:  Synthesis, Characterization, and Self-Assembly. Journal of Physical Chemistry B, 2002, 106, 10777-10781.	2.6	340
224	Silver-tetracyanoquinodimethane (Ag-TCNQ) nanostructures and nanodevice. , 0, , .		7
225	Chemical Sensing with ZnO Nanowire. , 0, , .		3
226	Chemical sensing with ZnO nanowire. , 0, , .		3