List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/497940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Densification of Y2O3 by flash sintering under an AC electric field. Journal of the European Ceramic Society, 2022, 42, 567-575.	5.7	11
2	Influence of spark plasma sintering conditions on microstructure, carbon contamination, and transmittance of CaF2 ceramics. Journal of the European Ceramic Society, 2022, 42, 245-257.	5.7	18
3	Fabrication of Textured Porous Ti ₃ SiC ₂ by Slip Casting under High Magnetic Field and Microstructural Evolution through High Temperature Deformation. Materials Transactions, 2022, 63, 133-140.	1.2	3
4	Electrode overvoltage model for a flash state of yttria-stabilized zirconia: validity, limitation, and open new issue. Journal of the Ceramic Society of Japan, 2022, 130, 172-179.	1.1	1
5	Micro-Crack Healing in Cubic Zirconia (8Y-CSZ) Using Flash Event. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2022, 86, 23-29.	0.4	2
6	Effect of sintering conditions on optical and mechanical properties of MgAl2O4/Al2O3 laminated transparent composite fabricated by spark-plasma-sintering (SPS) processing. Journal of the European Ceramic Society, 2022, 42, 2487-2495.	5.7	14
7	Effect of electric current on high temperature flow behavior of 8Y-CSZ ceramics. Journal of the European Ceramic Society, 2022, 42, 2341-2348.	5.7	12
8	Anelasticity induced by AC flash processing of cubic zirconia. Acta Materialia, 2022, 227, 117704.	7.9	9
9	Effect of volume ratio on optical and mechanical properties of Y2O3-MgO composites fabricated by spark-plasma-sintering process. Journal of the European Ceramic Society, 2021, 41, 2096-2105.	5.7	19
10	Simulation of densification behavior of nano-powder in final sintering stage: Effect of pore-size distribution. Journal of the European Ceramic Society, 2021, 41, 625-634.	5.7	7
11	Ferroelastic and plastic behaviors in pseudo-single crystal micropillars of nontransformable tetragonal zirconia. Acta Materialia, 2021, 203, 116471.	7.9	9
12	Electric current dependence of plastic flow behavior with large tensile elongation in tetragonal zirconia polycrystal under a DC field. Scripta Materialia, 2021, 194, 113659.	5.2	24
13	Elastic isotropy originating from heterogeneous interlayer elastic deformation in a Ti3SiC2 MAX phase with a nanolayered crystal structure. Journal of the European Ceramic Society, 2021, 41, 2278-2289.	5.7	7
14	Strong Field-induced Nanodynamics in Ceramics. Materia Japan, 2021, 60, 19-24.	0.1	1
15	Effect of the Heating Rate on the Spark-Plasma-Sintering (SPS) of Transparent Y2O3 Ceramics: Microstructural Evolution, Mechanical and Optical Properties. Ceramics, 2021, 4, 56-69.	2.6	6
16	Segregationâ€controlled densification and grain growth in rare earthâ€doped Y ₂ O ₃ . Journal of the American Ceramic Society, 2021, 104, 4946-4959.	3.8	12
17	Fabrication of Textured Porous Ti ₃ SiC ₂ by Slip Casting under High Magnetic Field and Microstructural Evolution through High Temperature Deformation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2021, 85, 256-263.	0.4	3
18	Transmittance enhancement of spark plasma sintered CaF2 ceramics by preheating commercial powder. Journal of the European Ceramic Society, 2021, 41, 4609-4617.	5.7	12

#	Article	IF	CITATIONS
19	Microcrack healing in zirconia ceramics under a DC electric field/current. Journal of the European Ceramic Society, 2021, 41, 282-289.	5.7	14
20	Fabrication of MgAl2O4/Al2O3 laminated transparent composite by spark-plasma-sintering (SPS) processing. Scripta Materialia, 2021, 205, 114205.	5.2	11
21	Development of Laser Optical Materials by Pulsed Electric Current Sintering. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2021, 68, 476-481.	0.2	0
22	Effect of Powder Calcination Conditions on IR Transmission in Y ₂ O ₃ -MgO Nanocomposites Fabricated by Pulsed Electric Current Sintering Technique. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2021, 68, 500-506.	0.2	0
23	Nanoindentation-induced plasticity in cubic zirconia up to 500°C. Acta Materialia, 2020, 184, 59-68.	7.9	18
24	Doping effect on the flash sintering of Y2O3: Promotion of densification and optical translucency. Journal of the European Ceramic Society, 2020, 40, 6053-6060.	5.7	11
25	Experimental confirmation of the symmetric sintering behavior under compressive/tensile loading combined with electrical field. Scripta Materialia, 2020, 187, 137-141.	5.2	6
26	Evolution of microstructure, mechanical, and optical properties of Y2O3-MgO nanocomposites fabricated by high pressure spark plasma sintering. Journal of the European Ceramic Society, 2020, 40, 4547-4555.	5.7	25
27	Synthesis of highly-infrared transparent Y2O3–MgO nanocomposites by colloidal technique and SPS. Ceramics International, 2020, 46, 13669-13676.	4.8	20
28	Orientation Dependence of Plastic Deformation Behavior and Fracture Energy Absorption Mechanism around Vickers Indentation of Textured Ti ₃ SiC ₂ Sintered Body. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 607-614.	0.2	1
29	Fabrication of Transparent Polycrystalline Ceramics by Utilizing External Field Effects. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2019, 66, 158-167.	0.2	0
30	Theoretical analysis of experimental densification kinetics in final sintering stage of nano-sized zirconia. Journal of the European Ceramic Society, 2019, 39, 1359-1365.	5.7	6
31	Development of Laser Optical Elements by Spark Plasma Sintering Technique. The Review of Laser Engineering, 2019, 47, 448.	0.0	0
32	Distribution of carbon contamination in oxide ceramics occurring during spark-plasma-sintering (SPS) processing: II - Effect of SPS and loading temperatures. Journal of the European Ceramic Society, 2018, 38, 2596-2604.	5.7	62
33	Production of transparent yttrium oxide ceramics by the combination of low temperature spark plasma sintering and zinc cation-doping. Journal of the European Ceramic Society, 2018, 38, 1972-1980.	5.7	14
34	Distribution of carbon contamination in MgAl2O4 spinel occurring during spark-plasma-sintering (SPS) processing: I – Effect of heating rate and post-annealing. Journal of the European Ceramic Society, 2018, 38, 2588-2595.	5.7	43
35	Transparent ultrafine Yb ³⁺ :Y ₂ O ₃ laser ceramics fabricated by spark plasma sintering. Journal of the American Ceramic Society, 2018, 101, 694-702.	3.8	37
36	Fabrication and Mechanical Properties of Textured Ti ₃ SiC ₂ Systems Using Commercial Powder. Materials Transactions, 2018, 59, 829-834.	1.2	10

#	Article	IF	CITATIONS
37	Fabrication and Mechanical Properties of Textured Ti ₃ SiC ₂ Systems Using Commercial Powders. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 552-557.	0.2	0
38	Evaluation of densification and grain-growth behavior during isothermal sintering of zirconia. Journal of the Ceramic Society of Japan, 2017, 125, 357-363.	1.1	3
39	Possibility of Low-Temperature High-Strain-Rate Superplasticity in Fine-Grained Ceramic Materials. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 515-522.	0.2	0
40	Spark Plasma Sintering of Highly Transparent Hydroxyapatite Ceramics. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 547-551.	0.2	12
41	Low-temperature spark plasma sintering of alumina by using SiC molding set. Journal of the Ceramic Society of Japan, 2016, 124, 1141-1145.	1.1	12
42	Fabrication and Mechanical Properties of Textured Ti ₃ SiC ₂ MAX Phase Systems. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 970-975.	0.2	2
43	Fabrication of Dense Nanostructured Bulk Ceramics by Means of Spark-Plasma-Sintering (SPS) Processing. Materials Science Forum, 2016, 838-839, 225-230.	0.3	1
44	Reduction in sintering temperature for flash-sintering of yttria by nickel cation-doping. Acta Materialia, 2016, 106, 344-352.	7.9	64
45	Densification kinetics during isothermal sintering of 8YSZ. Journal of the European Ceramic Society, 2016, 36, 1269-1275.	5.7	22
46	Influence of pre- and post-annealing on discoloration of MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS). Journal of the European Ceramic Society, 2016, 36, 2961-2968.	5.7	49
47	Nano ZrO ₂ –TiN composites with high strength and conductivity. Journal of the Ceramic Society of Japan, 2015, 123, 86-89.	1.1	6
48	Assessment of carbon contamination in MgAl ₂ O ₄ spinel during spark-plasma-sintering (SPS) processing. Journal of the Ceramic Society of Japan, 2015, 123, 983-988.	1.1	37
49	Influence of Spark Plasma Sintering (<scp>SPS</scp>) Conditions on Transmission of MgAl ₂ O ₄ Spinel. Journal of the American Ceramic Society, 2015, 98, 378-385.	3.8	44
50	Spectroscopic study of the discoloration of transparent MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS) processing. Acta Materialia, 2015, 84, 9-19.	7.9	88
51	Fabrication of Transparent Ceramic Polycrystals by means of Spark-Plasma-Sintering (SPS) Technique. Materia Japan, 2014, 53, 3-10.	0.1	1
52	Influence of Loading Condition on Fabrication of Transparent MgAl ₂ O ₄ Spinel Ceramics by Spark-Plasma-Sintering (SPS) Technique. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2014, 61, 565-574.	0.2	0
53	Grain-boundary sliding model of pore shrinkage in late intermediate sintering stage under hydrostatic pressure. Acta Materialia, 2013, 61, 6661-6669.	7.9	10
54	Development of High-Strain-Rate Superplastic Oxide Ceramics Based on Flow Mechanism. Materials Science Forum, 2012, 735, 9-14.	0.3	2

#	Article	IF	CITATIONS
55	High-pressure spark plasma sintering of MgO-doped transparent alumina. Journal of the Ceramic Society of Japan, 2012, 120, 116-118.	1.1	48
56	Effect of Alumina Dopant on Transparency of Tetragonal Zirconia. Journal of Nanomaterials, 2012, 2012, 1-5.	2.7	41
57	YMnO3-ZnO Thermoelectrics. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1630-1630.	1.2	Ο
58	Effect of loading schedule on densification of MgAl2O4 spinel during spark plasma sintering (SPS) processing. Journal of the European Ceramic Society, 2012, 32, 2303-2309.	5.7	37
59	Shrinkage of Pores Located at Grain Corners by Grain-Boundary Diffusion. Journal of the American Ceramic Society, 2011, 94, 982-984.	3.8	6
60	Optical Properties and Microstructure of Nanocrystalline Cubic Zirconia Prepared by Highâ€Pressure Spark Plasma Sintering. Journal of the American Ceramic Society, 2011, 94, 2981-2986.	3.8	58
61	Lowâ€Temperature Spark Plasma Sintering of Yttria Ceramics with Ultrafine Grain Size. Journal of the American Ceramic Society, 2011, 94, 3301-3307.	3.8	54
62	Highly Infrared Transparent Nanometric Tetragonal Zirconia Prepared by Highâ€Pressure Spark Plasma Sintering. Journal of the American Ceramic Society, 2011, 94, 2739-2741.	3.8	27
63	Fabrication of Transparent Yttria by Highâ€Pressure Spark Plasma Sintering. Journal of the American Ceramic Society, 2011, 94, 3206-3210.	3.8	66
64	Effect of sintering temperature on optical properties and microstructure of translucent zirconia prepared by high-pressure spark plasma sintering. Science and Technology of Advanced Materials, 2011, 12, 055003.	6.1	57
65	Densification behavior of a fine-grained MgAl2O4 spinel during spark plasma sintering (SPS). Scripta Materialia, 2010, 63, 565-568.	5.2	52
66	Effects of Preheating of Powder Before Spark Plasma Sintering of Transparent MgAl ₂ O ₄ Spinel. Journal of the American Ceramic Society, 2010, 93, 2158-2160.	3.8	54
67	Densification Behavior in Spark-Plasma-Sintering of MgAl ₂ O ₄ Spinel. Materials Science Forum, 2010, 654-656, 1986-1989.	0.3	Ο
68	High-Strain-Rate Superplastic Flow Mechanism in ZrO ₂ -30vol% Spinel Two-Phase Composite. Key Engineering Materials, 2010, 433, 333-338.	0.4	1
69	Densification Mechanism of MgAl ₂ O ₄ Spinel during Spark-Plasma-Sintering. Advances in Science and Technology, 2010, 63, 62-67.	0.2	1
70	Fabrication of high-strength transparent MgAl ₂ O ₄ spinel polycrystals by optimizing spark-plasma-sintering conditions. Journal of Materials Research, 2009, 24, 2863-2872.	2.6	55
71	Sparkâ€Plasmaâ€6intering Condition Optimization for Producing Transparent MgAl ₂ O ₄ Spinel Polycrystal. Journal of the American Ceramic Society, 2009, 92, 1208-1216.	3.8	111
72	Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina. Journal of the European Ceramic Society, 2009, 29, 323-327.	5.7	154

#	Article	IF	CITATIONS
73	Microstructure and optical properties of transparent alumina. Acta Materialia, 2009, 57, 1319-1326.	7.9	160
74	Densification of Nanocrystalline Yttria by Low Temperature Spark Plasma Sintering. Journal of the American Ceramic Society, 2008, 91, 1707-1710.	3.8	46
75	Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering processing. Scripta Materialia, 2008, 58, 1114-1117.	5.2	156
76	Microstructural examination in high-strain-rate superplastically deformed tetragonal ZrO2 dispersed with 30 vol% MgAl2O4 spinel. Journal of Materials Research, 2007, 22, 801-813.	2.6	5
77	Fabrication of Nanocrystalline Superplastic ZrO ₂ Ceramics. Materials Science Forum, 2007, 551-552, 491-496.	0.3	7
78	High-strain-rate superplasticity in oxide ceramics. Science and Technology of Advanced Materials, 2007, 8, 578-587.	6.1	41
79	High-strain-rate superplastic flow in tetragonal ZrO2 polycrystal enhanced by the dispersion of 30vol.% MgAl2O4 spinel particles. Acta Materialia, 2007, 55, 4517-4526.	7.9	17
80	Spark plasma sintering of transparent alumina. Scripta Materialia, 2007, 57, 607-610.	5.2	245
81	Mechanical Properties of Textured Alumina Prepared by Colloidal Processing in a Strong Magnetic Field. Materials Research Society Symposia Proceedings, 2006, 977, 1.	0.1	0
82	Atomic Structure of ‹001› <i>Σ</i> 5 Asymmetric Tilt Boundary in Molybdenum. Materia Japan, 2006, 45, 843-843.	0.1	0
83	Microstructural Design for High-Strain-Rate Superplastic Oxide Ceramics. Journal of the Ceramic Society of Japan, 2005, 113, 191-197.	1.3	20
84	Synthesis of dense nanocrystalline ZrO2–MgAl2O4 spinel composite. Scripta Materialia, 2005, 53, 1007-1012.	5.2	39
85	Role of Deformable Fine Spinel Particles in High-Strain-Rate Superplastic Flow of Tetragonal ZrO2. Materials Research Society Symposia Proceedings, 2004, 821, 288.	0.1	0
86	High-Strain-Rate Superplasticity in 3mol%-Y ₂ O ₃ -Stabilized Tetragonal ZrO ₂ Dispersed with 30vol% MgAl ₂ O ₄ Spinel. Materials Science Forum, 2004, 447-448, 229-234	0.3	6
87	S27-354. Strain Softening and Hardening during Superplasticâ€Like Flow in a Fineâ€Grained MgAl ₂ O ₄ Spinel Polycrystal. Journal of the American Ceramic Society, 2004, 87, 1102-1109.	3.8	15
88	A threshold stress for the superplastic deformation in Y2O3-stabilized tetragonal ZrO2. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 655-658.	5.6	10
89	Effect of minor SiO2 addition on the creep behavior of superplastic tetragonal ZrO2. Acta Materialia, 2004, 52, 3355-3364.	7.9	35
90	Effect of MgAl ₂ O ₄ Spinel Dispersion on High-Strain-Rate Superplasticity in Tetragonal ZrO ₂ Polycrystal. Materials Transactions, 2004, 45, 2073-2077.	1.2	11

#	Article	IF	CITATIONS
91	Fracture Toughness of Yttria-Stabilized Cubic Zirconia (8Y-CSZ) Doped with Pure Silica. Materials Transactions, 2004, 45, 3324-3329.	1.2	7
92	Reply to "Comment on the role of intragranular dislocations in superplastic yttria-stabilized zirconia― Scripta Materialia, 2003, 48, 1403-1407.	5.2	20
93	Kinetics of Normal Grain Growth Depending on the Size Distribution of Small Grains. Materials Transactions, 2003, 44, 2239-2244.	1.2	32
94	Highâ€Strainâ€Rate Superplasticity in Y ₂ O ₃ â€Stabilized Tetragonal ZrO ₂ Dispersed with 30 vol% MgAl ₂ O ₄ Spinel. Journal of the American Ceramic Society, 2002, 85, 1900-1902.	3.8	36
95	Enhanced superplasticity in a alumina-containing zirconia prepared by colloidal processing. Scripta Materialia, 2000, 43, 705-710.	5.2	47