
Juliane I Beier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4978865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma Metabolomics Analysis of Polyvinyl Chloride Workers Identifies Altered Processes and Candidate Biomarkers for Hepatic Hemangiosarcoma and Its Development. International Journal of Molecular Sciences, 2021, 22, 5093.	4.1	2
2	Environmental toxicant-induced maladaptive mitochondrial changes: A potential unifying mechanism in fatty liver disease?. Acta Pharmaceutica Sinica B, 2021, 11, 3756-3767.	12.0	9
3	Environmental exposure as a risk-modifying factor in liver diseases: Knowns and unknowns. Acta Pharmaceutica Sinica B, 2021, 11, 3768-3778.	12.0	6
4	Proceeding of the Ronald G. Thurman Memorial Symposium 2020. Juntendo Medical Journal, 2021, 67, 248-256.	0.1	0
5	Combined exposure to polychlorinated biphenyls and high-fat diet modifies the global epitranscriptomic landscape in mouse liver. Environmental Epigenetics, 2021, 7, dvab008.	1.8	1
6	Hepatic Injury Caused by the Environmental Toxicant Vinyl Chloride is Sex-Dependent in Mice. Toxicological Sciences, 2020, 174, 79-91.	3.1	9
7	Olanzapine-induced liver injury in mice: aggravation by high-fat diet and protection with sulforaphane. Journal of Nutritional Biochemistry, 2020, 81, 108399.	4.2	24
8	Vinyl Chloride and High-Fat Diet as a Model of Environment and Obesity Interaction. Journal of Visualized Experiments, 2020, , .	0.3	7
9	Blood BTEXS and heavy metal levels are associated with liver injury and systemic inflammation in Gulf states residents. Food and Chemical Toxicology, 2020, 139, 111242.	3.6	32
10	Adipose tissue-liver crosstalk during pathologic changes caused by vinyl chloride metabolites in mice. Toxicology and Applied Pharmacology, 2020, 399, 115068.	2.8	5
11	Rapamycin attenuates liver injury caused by vinyl chloride metabolite chloroethanol and lipopolysaccharide in mice. Toxicology and Applied Pharmacology, 2019, 382, 114745.	2.8	5
12	Mechanisms of Environmental Contributions to Fatty Liver Disease. Current Environmental Health Reports, 2019, 6, 80-94.	6.7	86
13	Vinyl chloride-induced interaction of nonalcoholic and toxicant-associated steatohepatitis: Protection by the ALDH2 activator Alda-1. Redox Biology, 2019, 24, 101205.	9.0	29
14	ChronicÂ+ binge alcohol exposure promotes inflammation and alters airway mechanics in the lung. Alcohol, 2019, 80, 53-63.	1.7	9
15	Vinyl chloride dysregulates metabolic homeostasis and enhances dietâ€induced liver injury in mice. Hepatology Communications, 2018, 2, 270-284.	4.3	38
16	Pyroptosis: An inflammatory link between NAFLD and NASH with potential therapeutic implications. Journal of Hepatology, 2018, 68, 643-645.	3.7	64
17	Exposure to Vinyl Chloride and Its Influence on Western Diet-Induced Cardiac Remodeling. Chemical Research in Toxicology, 2018, 31, 482-493.	3.3	11
18	Interaction of volatile organic compounds and underlying liver disease: a new paradigm for risk. Biological Chemistry, 2018, 399, 1237-1248.	2.5	45

Juliane I Beier

#	Article	IF	CITATIONS
19	Modeling the Kinetics of Integrin Receptor Binding to Hepatic Extracellular Matrix Proteins. Scientific Reports, 2017, 7, 12444.	3.3	20
20	Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice. Toxicology and Applied Pharmacology, 2016, 311, 34-41.	2.8	22
21	Occupational exposures at a polyvinyl chloride production facility are associated with significant changes to the plasma metabolome. Toxicology and Applied Pharmacology, 2016, 313, 47-56.	2.8	26
22	Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced ChangesÂin Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease. American Journal of Pathology, 2016, 186, 765-776.	3.8	80
23	Vinyl Chloride Metabolites Potentiate Inflammatory Liver Injury Caused by LPS in Mice. Toxicological Sciences, 2016, 151, 312-323.	3.1	38
24	ÂFibrin-mediated integrin signaling plays a critical role in hepatic regeneration after partial hepatectomy in mice. Annals of Hepatology, 2016, 15, 762-72.	1.5	9
25	Potential Role of the Gut/Liver/Lung Axis in Alcohol-Induced Tissue Pathology. Biomolecules, 2015, 5, 2477-2503.	4.0	25
26	Oxidative Stress and Ethanol Toxicity. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 213-232.	0.4	0
27	Transient Receptor Potential Vanilloid 1 Gene Deficiency Ameliorates Hepatic Injury in a Mouse Model of Chronic Binge Alcohol-Induced Alcoholic Liver Disease. American Journal of Pathology, 2015, 185, 43-54.	3.8	25
28	Novel Mechanism of Arenavirus-Induced Liver Pathology. PLoS ONE, 2015, 10, e0122839.	2.5	16
29	Chronicâ€Binge Alcoholâ€Induced Hepatic Injury and Inflammation Were Ameliorated in Mice Deficient for Transient Receptor Potential Vanilloid 1 Gene. FASEB Journal, 2015, 29, 1020.6.	0.5	ο
30	<scp>PKC</scp> <i>ε</i> Contributes to Chronic Ethanolâ€Induced Steatosis in Mice but not Inflammation and Necrosis. Alcoholism: Clinical and Experimental Research, 2014, 38, 801-809.	2.4	1
31	Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease. Toxicology and Applied Pharmacology, 2014, 279, 380-390.	2.8	85
32	Acute ethanol preexposure promotes liver regeneration after partial hepatectomy in mice by activating ALDH2. American Journal of Physiology - Renal Physiology, 2014, 306, G37-G47.	3.4	22
33	Olanzapine Activates Hepatic Mammalian Target of Rapamycin: New Mechanistic Insight into Metabolic Dysregulation with Atypical Antipsychotic Drugs. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 126-135.	2.5	50
34	Ethanol and dietary unsaturated fat (corn oil/linoleic acid enriched) cause intestinal inflammation and impaired intestinal barrier defense in mice chronically fed alcohol. Alcohol, 2013, 47, 257-264.	1.7	55
35	Toxicant-associated Steatohepatitis. Toxicologic Pathology, 2013, 41, 343-360.	1.8	161
36	Alcoholic liver disease and the potential role of plasminogen activator inhibitor-1 and fibrin metabolism. Experimental Biology and Medicine, 2012, 237, 1-9.	2.4	38

Juliane I Beier

#	Article	IF	CITATIONS
37	Plasminogen activator inhibitor-1 deficient mice are protected from angiotensin II-induced fibrosis. Archives of Biochemistry and Biophysics, 2011, 510, 19-26.	3.0	17
38	Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice. Toxicology and Applied Pharmacology, 2011, 257, 356-364.	2.8	70
39	Advances in Alcoholic Liver Disease. Current Gastroenterology Reports, 2011, 13, 56-64.	2.5	77
40	Mechanisms and cell signaling in alcoholic liver disease. Biological Chemistry, 2010, 391, 1249-64.	2.5	144
41	PAI-1 plays a protective role in CCl ₄ -induced hepatic fibrosis in mice: role of hepatocyte division. American Journal of Physiology - Renal Physiology, 2010, 298, G657-G666.	3.4	51
42	Fibrin accumulation plays a critical role in the sensitization to lipopolysaccharide-induced liver injury caused by ethanol in mice. Hepatology, 2009, 49, 1545-1553.	7.3	79
43	Current Experimental Perspectives on the Clinical Progression of Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 2009, 33, 1647-1655.	2.4	50
44	PKCε plays a causal role in acute ethanol-induced steatosis. Archives of Biochemistry and Biophysics, 2009, 482, 104-111.	3.0	27
45	Subhepatotoxic exposure to arsenic enhances lipopolysaccharide-induced liver injury in mice. Toxicology and Applied Pharmacology, 2008, 226, 128-139.	2.8	48
46	New Role of Resistin in Lipopolysaccharide-Induced Liver Damage in Mice. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 801-808.	2.5	47
47	Contribution of the sympathetic hormone epinephrine to the sensitizing effect of ethanol on LPS-induced liver damage in mice. American Journal of Physiology - Renal Physiology, 2008, 294, G1227-G1234.	3.4	34
48	Epidermal growth factor- and stress-induced loss of gap junctional communication is mediated by ERK-1/ERK-2 but not ERK-5 in rat liver epithelial cells. Biochemical and Biophysical Research Communications, 2007, 364, 313-317.	2.1	14
49	Metformin Prevents Alcohol-Induced Liver Injury in the Mouse: Critical Role of Plasminogen Activator Inhibitor-1. Gastroenterology, 2006, 130, 2099-2112.	1.3	192
50	Activation of ErbB2 by 2-methyl-1,4-naphthoquinone (menadione) in human keratinocytes: Role of EGFR and protein tyrosine phosphatases. FEBS Letters, 2006, 580, 1859-1864.	2.8	32
51	Rac upregulates tissue inhibitor of metalloproteinase-1 expression by redox-dependent activation of extracellular signal-regulated kinase signaling. FEBS Journal, 2006, 273, 4754-4769.	4.7	14
52	Extracellular generation of hydrogen peroxide is responsible for activation of EGF receptor by ultraviolet A radiation. Free Radical Biology and Medicine, 2006, 41, 1478-1487.	2.9	25