Yong Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4978462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biocompatible Nanoparticles with Aggregationâ€Induced Emission Characteristics as Farâ€Red/Nearâ€Infrared Fluorescent Bioprobes for In Vitro and In Vivo Imaging Applications. Advanced Functional Materials, 2012, 22, 771-779.	14.9	599
2	Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles. Biomaterials, 2002, 23, 3193-3201.	11.4	464
3	Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials, 2015, 38, 10-21.	11.4	362
4	Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. Journal of Controlled Release, 2007, 118, 7-17.	9.9	304
5	Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chemical Society Reviews, 2018, 47, 1874-1900.	38.1	300
6	Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)–poly(ethylene) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50

7	Increased Enzymatic O-GlcNAcylation of Mitochondrial Proteins Impairs Mitochondrial Function in Cardiac Myocytes Exposed to High Glucose. Journal of Biological Chemistry, 2009, 284, 547-555.	3.4	201
8	Camptothecin derivative-loaded poly(caprolactone-co-lactide)-b-PEG-b-poly(caprolactone-co-lactide) nanoparticles and their biodistribution in mice. Journal of Controlled Release, 2004, 96, 135-148.	9.9	170
9	Conjugated Polymer Based Nanoparticles as Dualâ€Modal Probes for Targeted In Vivo Fluorescence and Magnetic Resonance Imaging. Advanced Functional Materials, 2012, 22, 3107-3115.	14.9	157
10	Hypoxia-Targeting, Tumor Microenvironment Responsive Nanocluster Bomb for Radical-Enhanced Radiotherapy. ACS Nano, 2017, 11, 10159-10174.	14.6	142
11	Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Advanced Drug Delivery Reviews, 2018, 132, 169-187.	13.7	135
12	Overcoming Hypoxia by Multistage Nanoparticle Delivery System to Inhibit Mitochondrial Respiration for Photodynamic Therapy. Advanced Functional Materials, 2019, 29, 1807294.	14.9	132
13	Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. Advanced Materials, 2020, 32, e1904337.	21.0	130
13 14	Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. Advanced Materials, 2020, 32, e1904337. Degradation Behavior of Poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) Micelles in Aqueous Solution. Biomacromolecules, 2004, 5, 1756-1762.	21.0 5.4	130
13 14 15	Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. Advanced Materials, 2020, 32, e1904337. Degradation Behavior of Poly(Îμ-caprolactone)-b-poly(ethylene glycol)-b-poly(Îμ-caprolactone) Micelles in Aqueous Solution. Biomacromolecules, 2004, 5, 1756-1762. Hollow Chitosan/Poly(acrylic acid) Nanospheres as Drug Carriers. Biomacromolecules, 2007, 8, 1069-1076.	21.0 5.4 5.4	130 125 122
13 14 15 16	Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. Advanced Materials, 2020, 32, e1904337. Degradation Behavior of Poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) Micelles in Aqueous Solution. Biomacromolecules, 2004, 5, 1756-1762. Hollow Chitosan/Poly(acrylic acid) Nanospheres as Drug Carriers. Biomacromolecules, 2007, 8, 1069-1076. Organic Dots with Aggregation-Induced Emission (AIE Dots) Characteristics for Dual-Color Cell Tracing. Chemistry of Materials, 2013, 25, 4181-4187.	21.0 5.4 5.4 6.7	130 125 122 115
13 14 15 16 17	Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. Advanced Materials, 2020, 32, e1904337. Degradation Behavior of Poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) Micelles in Aqueous Solution. Biomacromolecules, 2004, 5, 1756-1762. Hollow Chitosan/Poly(acrylic acid) Nanospheres as Drug Carriers. Biomacromolecules, 2007, 8, 1069-1076. Organic Dots with Aggregation-Induced Emission (AIE Dots) Characteristics for Dual-Color Cell Tracing. Chemistry of Materials, 2013, 25, 4181-4187. Doxorubicin-loaded platelets as a smart drug delivery system: An improved therapy for lymphoma. Scientific Reports, 2017, 7, 42632.	21.0 5.4 5.4 6.7 3.3	130 125 122 115 109

#	Article	IF	CITATIONS
19	Fabrication of injectable and superelastic nanofiber rectangle matrices ("peanutsâ€) and their potential applications in hemostasis. Biomaterials, 2018, 179, 46-59.	11.4	96
20	Polymer-Monomer Pairs as a Reaction System for the Synthesis of Magnetic Fe3O4-Polymer Hybrid Hollow Nanospheres. Angewandte Chemie - International Edition, 2004, 43, 6369-6372.	13.8	95
21	Synthesis and application of strawberry-like Fe 3 O 4 -Au nanoparticles as CT-MR dual-modality contrast agents in accurate detection of the progressive liver disease. Biomaterials, 2015, 51, 194-207.	11.4	93
22	An RGD-modified hollow silica@Au core/shell nanoplatform for tumor combination therapy. Acta Biomaterialia, 2017, 62, 273-283.	8.3	89
23	Multifunctional Bi ₂ WO ₆ Nanoparticles for CT-Guided Photothermal and Oxygen-free Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 1132-1146.	8.0	89
24	Au–Hemoglobin Loaded Platelet Alleviating Tumor Hypoxia and Enhancing the Radiotherapy Effect with Low-Dose X-ray. ACS Nano, 2020, 14, 15654-15668.	14.6	85
25	Membrane-Active Hydantoin Derivatives as Antibiotic Agents. Journal of Medicinal Chemistry, 2017, 60, 8456-8465.	6.4	80
26	Dendrimerâ€ 6 tabilized Gold Nanostars as a Multifunctional Theranostic Nanoplatform for CT Imaging, Photothermal Therapy, and Gene Silencing of Tumors. Advanced Healthcare Materials, 2016, 5, 3203-3213.	7.6	79
27	Synthesis of Hydroxypropylcellulose-poly(acrylic acid) Particles with Semi-Interpenetrating Polymer Network Structure. Biomacromolecules, 2008, 9, 2609-2614.	5.4	77
28	Preparation, characterization, and drug release behaviors of drug-loaded ?-caprolactone/L-lactide copolymer nanoparticles. Journal of Applied Polymer Science, 2000, 75, 874-882.	2.6	70
29	Facile synthesis of RGD peptide-modified iron oxide nanoparticles with ultrahigh relaxivity for targeted MR imaging of tumors. Biomaterials Science, 2015, 3, 721-732.	5.4	61
30	Fluorescence guided photothermal/photodynamic ablation of tumours using pH-responsive chlorin e6-conjugated gold nanorods. Colloids and Surfaces B: Biointerfaces, 2017, 160, 345-354.	5.0	60
31	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	14.6	60
32	Degradation and Degradation-Induced Re-Assembly of PVP-PCL Micelles. Biomacromolecules, 2010, 11, 481-488.	5.4	55
33	Bypassing the Immunosuppression of Myeloidâ€Derived Suppressor Cells by Reversing Tumor Hypoxia Using a Plateletâ€Inspired Platform. Advanced Functional Materials, 2020, 30, 2000189.	14.9	54
34	Small Antimicrobial Agents Based on Acylated Reduced Amide Scaffold. Journal of Medicinal Chemistry, 2016, 59, 7877-7887.	6.4	52
35	Folic acid-targeted iron oxide nanoparticles as contrast agents for magnetic resonance imaging of human ovarian cancer. Journal of Ovarian Research, 2016, 9, 19.	3.0	52
36	Antifouling Manganese Oxide Nanoparticles: Synthesis, Characterization, and Applications for Enhanced MR Imaging of Tumors. ACS Applied Materials & Amp; Interfaces, 2017, 9, 47-53.	8.0	52

#	Article	IF	CITATIONS
37	Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nature Communications, 2019, 10, 3051.	12.8	52
38	X-ray CT guided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles. Biomaterials, 2014, 35, 9155-9166.	11.4	51
39	Radiotherapy-Sensitized Tumor Photothermal Ablation Using γ-Polyglutamic Acid Nanogels Loaded with Polypyrrole. Biomacromolecules, 2018, 19, 2034-2042.	5.4	50
40	Facile synthesis of hyaluronic acid-modified Fe ₃ O ₄ /Au composite nanoparticles for targeted dual mode MR/CT imaging of tumors. Journal of Materials Chemistry B, 2015, 3, 9098-9108.	5.8	49
41	Hybrid nanoparticle composites applied to photodynamic therapy: strategies and applications. Journal of Materials Chemistry B, 2020, 8, 4726-4737.	5.8	48
42	Enzyme sensitive, surface engineered nanoparticles for enhanced delivery of camptothecin. Journal of Controlled Release, 2015, 216, 111-120.	9.9	47
43	Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for <i>in vivo</i> chemotherapy of tumors. Drug Delivery, 2018, 25, 1607-1616.	5.7	47
44	LAPONITE-Polyethylenimine Based Theranostic Nanoplatform for Tumor-Targeting CT Imaging and Chemotherapy. ACS Biomaterials Science and Engineering, 2017, 3, 431-442.	5.2	44
45	LAPONITE®-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors. Biomaterials Science, 2016, 4, 474-482.	5.4	41
46	Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opinion on Drug Delivery, 2021, 18, 1-24.	5.0	40
47	Hyaluronic Acid-Modified Magnetic Iron Oxide Nanoparticles for MR Imaging of Surgically Induced Endometriosis Model in Rats. PLoS ONE, 2014, 9, e94718.	2.5	39
48	An Oxygen Selfâ€Evolving, Multistage Delivery System for Deeply Located Hypoxic Tumor Treatment. Advanced Healthcare Materials, 2020, 9, e1901303.	7.6	39
49	Modulating Angiogenesis by Proteomimetics of Vascular Endothelial Growth Factor. Journal of the American Chemical Society, 2022, 144, 270-281.	13.7	39
50	X-ray CT and pneumonia inhibition properties of gold–silver nanoparticles for targeting MRSA induced pneumonia. Biomaterials, 2014, 35, 7032-7041.	11.4	38
51	H ₂ O ₂ â€5ensitive Upconversion Nanocluster Bomb for Triâ€Mode Imagingâ€Guided Photodynamic Therapy in Deep Tumor Tissue. Advanced Healthcare Materials, 2019, 8, e1900972.	7.6	38
52	Doxorubicin-loaded poly(butylcyanoacrylate) nanoparticles produced by emulsifier-free emulsion polymerization. Journal of Applied Polymer Science, 2000, 78, 517-526.	2.6	37
53	Fabrication of Au@Ag core–shell NPs as enhanced CT contrast agents with broad antibacterial properties. Colloids and Surfaces B: Biointerfaces, 2014, 117, 29-35.	5.0	35
54	Long-term monitoring of tumor-related autophagy inÂvivo by Fe3O4NO· nanoparticles. Biomaterials, 2018, 179, 186-198.	11.4	35

#	Article	IF	CITATIONS
55	Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration. International Journal of Nanomedicine, 2016, Volume 11, 3145-3158.	6.7	34
56	Long non-coding RNA CASC2 upregulates PTEN to suppress pancreatic carcinoma cell metastasis by downregulating miR-21. Cancer Cell International, 2019, 19, 18.	4.1	33
57	Anti-RhoJ antibody functionalized Au@I nanoparticles as CT-guided tumor vessel-targeting radiosensitizers in patient-derived tumor xenograft model. Biomaterials, 2017, 141, 1-12.	11.4	32
58	Synthesis and characterization of lignosulfonate- graft -poly (acrylic acid)/hydroxyethyl cellulose semi-interpenetrating hydrogels. Reactive and Functional Polymers, 2017, 115, 28-35.	4.1	31
59	Chipâ€Based Optical Isolator and Nonreciprocal Parityâ€Time Symmetry Induced by Stimulated Brillouin Scattering. Laser and Photonics Reviews, 2020, 14, 1900278.	8.7	31
60	The effects of poly(zwitterions)s versus poly(ethylene glycol) surface coatings on the biodistribution of protein nanoparticles. Biomaterials Science, 2016, 4, 1351-1360.	5.4	30
61	The Sustainability of Energy Conversion Inhibition for Tumor Ferroptosis Therapy and Chemotherapy. Small, 2021, 17, e2102695.	10.0	30
62	Ultra-sensitive diagnosis of orthotopic patient derived hepatocellular carcinoma by Fe@graphene nanoparticles in MRI. RSC Advances, 2016, 6, 113919-113923.	3.6	29
63	MiR-132 promotes the proliferation, invasion and migration of human pancreatic carcinoma by inhibition of the tumor suppressor gene PTEN. Progress in Biophysics and Molecular Biology, 2019, 148, 65-72.	2.9	29
64	Generation of Optical Frequency Comb via Giant Optomechanical Oscillation. Physical Review Letters, 2021, 127, 134301.	7.8	29
65	Ultrafast glucose-responsive, high loading capacity erythrocyte to self-regulate the release of insulin. Acta Biomaterialia, 2018, 69, 301-312.	8.3	28
66	Hollow chitosan–silica nanospheres for doxorubicin delivery to cancer cells with enhanced antitumor effect in vivo. Journal of Materials Chemistry, 2011, 21, 3147.	6.7	26
67	Facile Synthesis of Folic Acid-Modified Iron Oxide Nanoparticles for Targeted MR Imaging in Pulmonary Tumor Xenografts. Molecular Imaging and Biology, 2016, 18, 569-578.	2.6	25
68	Synthesis of β-cyclodextrin modified chitosan–poly(acrylic acid) nanoparticles and use as drug carriers. Carbohydrate Polymers, 2012, 90, 361-369.	10.2	24
69	Epitaxial growth of gold on silver nanoplates for imaging-guided photothermal therapy. Materials Science and Engineering C, 2019, 105, 110023.	7.3	22
70	Facile preparation of hyaluronic acid-modified Fe ₃ O ₄ @Mn ₃ O ₄ nanocomposites for targeted T ₁ /T ₂ dual-mode MR imaging of cancer cells. RSC Advances, 2016, 6, 35295-35304.	3.6	21
71	Doxorubicin Loaded Chitosan–W ₁₈ O ₄₉ Hybrid Nanoparticles for Combined Photothermal–Chemotherapy. Macromolecular Bioscience, 2017, 17, 1700033.	4.1	20
72	Targeted dual-mode imaging and phototherapy of tumors using ICG-loaded multifunctional MWCNTs as a versatile platform. Journal of Materials Chemistry B, 2018, 6, 6122-6132.	5.8	20

#	Article	IF	CITATIONS
73	Daunorubicin and gambogic acid coloaded cysteamine-CdTe quantum dots minimizing the multidrug resistance of lymphoma in vitro and in vivo. International Journal of Nanomedicine, 2016, Volume 11, 5429-5442.	6.7	19
74	Analysis of a triple-cavity photonic molecule based on coupled-mode theory. Physical Review A, 2017, 95, .	2.5	18
75	Paclitaxel‣oaded <i>β</i> â€Cyclodextrinâ€Modified Poly(Acrylic Acid) Nanoparticles through Multivalent Inclusion for Anticancer Therapy. Macromolecular Bioscience, 2016, 16, 341-349.	4.1	15
76	Anti-Fas Antibody Conjugated Nanoparticles Enhancing the Antitumor Effect of Camptothecin by Activating the Fas–FasL Apoptotic Pathway. ACS Applied Materials & Interfaces, 2016, 8, 29950-29959.	8.0	15
77	Acetazolamideâ€Loaded pHâ€Responsive Nanoparticles Alleviating Tumor Acidosis to Enhance Chemotherapy Effects. Macromolecular Bioscience, 2019, 19, e1800366.	4.1	15
78	Fabrication and Characterization of Gd-DTPA-Loaded Chitosan-Poly(Acrylic Acid) Nanoparticles for Magnetic Resonance Imaging. Macromolecular Bioscience, 2015, 15, 1105-1114.	4.1	14
79	Construction of Identical [2 + 2] Schiff-Base Macrocyclic Ligands by Ln ^{III} and Zn ^{II} Template Ions Including Efficient Yb ^{III} Near-Infrared Sensitizers. Inorganic Chemistry, 2015, 54, 5295-5300.	4.0	14
80	Two Types of Anion-Induced Reconstruction of Schiff-Base Macrocyclic Zinc Complexes: Ring-Contraction and Self-Assembly of a Molecular Box. Inorganic Chemistry, 2016, 55, 16-21.	4.0	14
81	Strategies of Alleviating Tumor Hypoxia and Enhancing Tumor Therapeutic Effect by Macromolecular Nanomaterials. Macromolecular Bioscience, 2021, 21, e2100092.	4.1	14
82	Silver nanoshells as tri-mode bactericidal agents integrating long term antibacterial, photohyperthermia and triggered Ag+ release capabilities. RSC Advances, 2013, 3, 10632.	3.6	13
83	Multicomponent Polymeric Nanoparticles Enhancing Intracellular Drug Release in Cancer Cells. ACS Applied Materials & Interfaces, 2014, 6, 21316-21324.	8.0	13
84	Facile Synthesis of Lactobionic Acid-Targeted Iron Oxide Nanoparticles with Ultrahigh Relaxivity for Targeted MR Imaging of an Orthotopic Model of Human Hepatocellular Carcinoma. Particle and Particle Systems Characterization, 2017, 34, 1600113.	2.3	13
85	Physical Stability and Lyophilization of Poly(Îμ-caprolactone)-b-Poly(ethyleneglycol)-b-Poly(Îμ-caprolactone) Micelles. Journal of Nanoscience and Nanotechnology, 2006, 6, 3032-3039.	0.9	12
86	Nitroxide-radicals–modified gold nanorods for in vivo CT/MRI-guided photothermal cancer therapy. International Journal of Nanomedicine, 2018, Volume 13, 7123-7134.	6.7	11
87	Platinum prodrug nanoparticles inhibiting tumor recurrence and metastasis by concurrent chemoradiotherapy. Journal of Nanobiotechnology, 2022, 20, 129.	9.1	11
88	Construction of Chiral [4 + 4] and [2 + 2] Schiff-Base Macrocyclic Zinc(II) Complexes Influenced by Counterions and Pendant Arms. Inorganic Chemistry, 2016, 55, 8260-8262.	4.0	10
89	Porous gold layer coated silver nanoplates with efficient antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110727.	5.0	10
90	Erythrocyte-mimicking subcutaneous platform with a laser-controlled treatment against diabetes. Journal of Controlled Release, 2022, 341, 261-271.	9.9	10

#	Article	IF	CITATIONS
91	Doxorubicin loaded chitosan–ZnO hybrid nanospheres combining cell imaging and cancer therapy. RSC Advances, 2015, 5, 60549-60551.	3.6	8
92	Synthesis of diatrizoic acid-modified LAPONITE® nanodisks for CT imaging applications. RSC Advances, 2016, 6, 57490-57496.	3.6	8
93	Regulating Acidosis and Relieving Hypoxia by Platelet Membrane-Coated Nanoparticle for Enhancing Tumor Chemotherapy. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	8
94	Reversible Surface Switching of Nanogel Triggered by External Stimuli. Angewandte Chemie, 2007, 119, 7234-7237.	2.0	7
95	Facile synthesis of polymer core@silver shell hybrid nanoparticles with super surface enhanced Raman scattering capability. Journal of Colloid and Interface Science, 2013, 393, 119-125.	9.4	7
96	Preservation of Supported Lipid Membrane Integrity from Thermal Disruption: Osmotic Effect. ACS Applied Materials & Interfaces, 2016, 8, 5857-5866.	8.0	7
97	Spatiotemporally Programmable Surface Engineered Nanoparticles for Effective Anticancer Drug Delivery. Macromolecular Bioscience, 2014, 14, 1652-1662.	4.1	6
98	Preparation of <scp>ALA</scp> â€loaded <scp>PLGA</scp> nanoparticles and its application in <scp>PDT</scp> treatment. Journal of Chemical Technology and Biotechnology, 2016, 91, 1128-1135.	3.2	6
99	Immediate postoperative Fibrosis-4 predicts postoperative liver failure for patients with hepatocellular carcinoma undergoing curative surgery. Digestive and Liver Disease, 2018, 50, 61-67.	0.9	6
100	Fluorescence Imaging: Bright Far-Red/Near-Infrared Conjugated Polymer Nanoparticles for In Vivo Bioimaging (Small 18/2013). Small, 2013, 9, 3092-3092.	10.0	5
101	Using PEGylated iron oxide nanoparticles with ultrahigh relaxivity for MR imaging of an orthotopic model of human hepatocellular carcinoma. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	5
102	Small antimicrobial agents encapsulated in poly(epsilon-caprolactone)-poly(ethylene glycol) nanoparticles for treatment of S. aureus-infected wounds. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	5
103	In-situ polymerized nanosilica/acrylic/epoxy hybrid coating: Preparation, microstructure and properties. Science in China Series D: Earth Sciences, 2009, 52, 2204-2209.	0.9	4
104	Imaging: Conjugated Polymer Amplified Farâ€Red/Nearâ€Infrared Fluorescence from Nanoparticles with Aggregationâ€Induced Emission Characteristics for Targeted In Vivo Imaging (Adv. Healthcare Mater.) Tj ETQq0 (0 07rgBT /0	Overlock 10 T
105	Gold Encapsulated Chitosanâ€₽oly(acrylic acid) Hybrid Hollow Nanospheres. Macromolecular Bioscience, 2009, 9, 1272-1280.	4.1	3
106	Polymer-assisted nanoparticulate contrast-enhancing materials. Science China Chemistry, 2010, 53, 479-486.	8.2	3
107	A Series of [2+2] Schiff Base Macrocyclic Dinuclear ZnIIComplexes with Rigid 1,2-Diamine and Flexible 1,8-Diamine Components. European Journal of Inorganic Chemistry, 2017, 2017, 540-546.	2.0	3
108	Preparation of porous chitosan-poly(acrylic acid)-calcium phosphate hybrid nanoparticles via mineralization. Science Bulletin, 2009, 54, 3127-3136.	1.7	2

Үолд Ни

#	Article	IF	CITATIONS
109	Unilateral vertebral artery injury in a patient with displaced upper cervical spine fractures: the treatment for one case of vertebral artery embolism. European Spine Journal, 2018, 27, 409-414.	2.2	2
110	Fibrosis-4 Model Influences Results of Patients with Hepatocellular Carcinoma Undergoing Hepatectomy. BioMed Research International, 2018, 2018, 1-9.	1.9	2
111	Absorption and gain saturable nonlinearities in erbium-doped optical microcavities. Physical Review A, 2019, 100, .	2.5	2
112	Acid susceptible polymeric stealthy nanoparticles for improved anticancer drug delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 1187-1196.	3.4	1
113	X-ray CT detection and photo ablation of metastatic positive lymph node with HER-2 targeting W 18 O 49 platform. Journal of Controlled Release, 2015, 213, e139.	9.9	0
114	Tumor Cell Distinguishable Nanomedicine Integrating Chemotherapeutic Sensitization and Protection. Frontiers in Bioengineering and Biotechnology, 2021, 9, 773021.	4.1	0