Alba Silipo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4978453/publications.pdf

Version: 2024-02-01

		76326	118850
168	5,343	40	62
papers	citations	h-index	g-index
178	178	178	5955
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E404-13.	7.1	271
2	Chemistry of Lipidâ€A: At the Heart of Innate Immunity. Chemistry - A European Journal, 2015, 21, 500-519.	3.3	193
3	The Elicitation of Plant Innate Immunity by Lipooligosaccharide of Xanthomonas campestris. Journal of Biological Chemistry, 2005, 280, 33660-33668.	3.4	168
4	Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology, 2010, 20, 406-419.	2.5	162
5	Hopanoid lipids: from membranes to plant–bacteria interactions. Nature Reviews Microbiology, 2018, 16, 304-315.	28.6	147
6	Peptidoglycan and Muropeptides from Pathogens Agrobacterium and Xanthomonas Elicit Plant Innate Immunity: Structure and Activity. Chemistry and Biology, 2008, 15, 438-448.	6.0	129
7	Degradation of complex carbohydrate: Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support. Food Chemistry, 2013, 139, 1081-1086.	8.2	128
8	Pseudomonas aeruginosa Exploits Lipid A and Muropeptides Modification as a Strategy to Lower Innate Immunity during Cystic Fibrosis Lung Infection. PLoS ONE, 2009, 4, e8439.	2.5	116
9	Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydrate Polymers, 2014, 99, 331-338.	10.2	102
10	Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiology Reviews, 2019, 43, 257-272.	8.6	102
11	Bacteriophage-Resistant Staphylococcus aureus Mutant Confers Broad Immunity against Staphylococcal Infection in Mice. PLoS ONE, 2010, 5, e11720.	2.5	91
12	Chemical Basis of Peptidoglycan Discrimination by PrkC, a Key Kinase Involved in Bacterial Resuscitation from Dormancy. Journal of the American Chemical Society, 2011, 133, 20676-20679.	13.7	89
13	Ammonium hydroxide hydrolysis. Journal of Lipid Research, 2002, 43, 2188-2195.	4.2	88
14	Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes. Nature Communications, 2014, 5, 5106.	12.8	88
15	Intracellular <i>Shigella</i> remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4345-54.	7.1	87
16	A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chemical Reviews, 2022, 122, 15767-15821.	47.7	82
17	Review: Chemical and biological features of < i>Burkholderia cepacia < /i>complex lipopolysaccharides. Innate Immunity, 2008, 14, 127-144.	2.4	70
18	Weak Agonistic LPS Restores Intestinal Immune Homeostasis. Molecular Therapy, 2019, 27, 1974-1991.	8.2	70

#	Article	IF	CITATIONS
19	Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nature Communications, 2020, 11, 4142.	12.8	70
20	New conditions for matrix-assisted laser desorption/ionization mass spectrometry of native bacterial R-type lipopolysaccharides. Rapid Communications in Mass Spectrometry, 2005, 19, 1829-1834.	1.5	64
21	"Rules of Engagement―of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen, 2016, 5, 274-296.	1.9	62
22	The Complete Structure and Pro-inflammatory Activity of the Lipooligosaccharide of the Highly Epidemic and Virulent Gram-Negative BacteriumBurkholderia cenocepacia ET-12 (Strain J2315). Chemistry - A European Journal, 2007, 13, 3501-3511.	3.3	61
23	Lipopolysaccharide structures from Agrobacterium and Rhizobiaceae species. Carbohydrate Research, 2008, 343, 1924-1933.	2.3	61
24	Specific Hopanoid Classes Differentially Affect Free-Living and Symbiotic States of <i>Bradyrhizobium diazoefficiens</i> . MBio, 2015, 6, e01251-15.	4.1	60
25	Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update. Marine Drugs, 2007, 5, 85-112.	4.6	58
26	Biosynthesis and Structure of the Burkholderia cenocepacia K56-2 Lipopolysaccharide Core Oligosaccharide. Journal of Biological Chemistry, 2009, 284, 21738-21751.	3.4	57
27	The Acylation and Phosphorylation Pattern of Lipid A from <i>Xanthomonas Campestris</i> Strongly Influence its Ability to Trigger the Innate Immune Response in Arabidopsis. ChemBioChem, 2008, 9, 896-904.	2.6	56
28	Complete structural characterization of the lipid A fraction of a clinical strain of B. cepacia genomovar I lipopolysaccharide. Glycobiology, 2005, 15, 561-570.	2.5	55
29	Pairing <i>Bacteroides vulgatus</i> LPS Structure with Its Immunomodulatory Effects on Human Cellular Models. ACS Central Science, 2020, 6, 1602-1616.	11.3	55
30	Determination of fatty acid positions in native lipid A by positive and negative electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2004, 39, 378-383.	1.6	51
31	An Unusual Galactofuranose Lipopolysaccharide That Ensures the Intracellular Survival of Toxinâ€Producing Bacteria in Their Fungal Host. Angewandte Chemie - International Edition, 2010, 49, 7476-7480.	13.8	50
32	Chemical Synthesis of a Complex-Type <i>N</i> -Glycan Containing a Core Fucose. Journal of Organic Chemistry, 2016, 81, 10600-10616.	3.2	49
33	Liquid-state NMR spectroscopy for complex carbohydrate structural analysis: A hitchhiker's guide. Carbohydrate Polymers, 2022, 277, 118885.	10.2	49
34	Structural elucidation of the O-chain of the lipopolysaccharide from Xanthomonas campestris strain 8004. Carbohydrate Research, 2003, 338, 277-281.	2.3	47
35	Activation of Human Toll-like Receptor 4 (TLR4) \hat{A} -Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia. Journal of Biological Chemistry, 2015, 290, 21305-21319.	3.4	47
36	Versatility of the Burkholderia cepacia Complex for the Biosynthesis of Exopolysaccharides: A Comparative Structural Investigation. PLoS ONE, 2014, 9, e94372.	2.5	46

#	Article	IF	CITATIONS
37	Insect Gut Symbiont Susceptibility to Host Antimicrobial Peptides Caused by Alteration of the Bacterial Cell Envelope. Journal of Biological Chemistry, 2015, 290, 21042-21053.	3.4	45
38	The Diversity of the Core Oligosaccharide in Lipopolysaccharides. Sub-Cellular Biochemistry, 2010, 53, 69-99.	2.4	44
39	Cancer Immunotherapy of TLR4 Agonist–Antigen Constructs Enhanced with Pathogenâ€Mimicking Magnetite Nanoparticles and Checkpoint Blockade of PD‣1. Small, 2019, 15, e1803993.	10.0	44
40	Reflectron MALDI TOF and MALDI TOF/TOF mass spectrometry reveal novel structural details of native lipooligosaccharides. Journal of Mass Spectrometry, 2011, 46, 1135-1142.	1.6	43
41	Deciphering minimal antigenic epitopes associated with Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharide O-antigens. Nature Communications, 2017, 8, 115.	12.8	42
42	The antibacterial toxin colicin <scp>N</scp> binds to the inner core of lipopolysaccharide and close to its translocator protein. Molecular Microbiology, 2014, 92, 440-452.	2.5	40
43	The Pleurotus ostreatus hydrophobin Vmh2 and its interaction with glucans. Glycobiology, 2010, 20, 594-602.	2.5	39
44	Synthesis of bradyrhizose, a unique inositol-fused monosaccharide relevant to a Nod-factor independent nitrogen fixation. Chemical Communications, 2015, 51, 6964-6967.	4.1	39
45	Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS Journal, 2022, 289, 4251-4303.	4.7	39
46	A novel lipid A fromHalomonas magadiensis inhibits enteric LPS-induced human monocyte activation. European Journal of Immunology, 2006, 36, 354-360.	2.9	37
47	<i>Burkholderia pseudomallei</i> Capsular Polysaccharide Recognition by a Monoclonal Antibody Reveals Key Details toward a Biodefense Vaccine and Diagnostics against Melioidosis. ACS Chemical Biology, 2015, 10, 2295-2302.	3.4	36
48	Conformational Analysis of a Dermatan Sulfateâ€Derived Tetrasaccharide by NMR, Molecular Modeling, and Residual Dipolar Couplings. ChemBioChem, 2008, 9, 240-252.	2.6	34
49	Characterization of liposomes formed by lipopolysaccharides from Burkholderia cenocepacia, Burkholderia multivorans and Agrobacterium tumefaciens: from the molecular structure to the aggregate architecture. Physical Chemistry Chemical Physics, 2010, 12, 13574.	2.8	32
50	Interaction of lipopolysaccharides at intermolecular sites of the periplasmic Lpt transport assembly. Scientific Reports, 2017, 7, 9715.	3.3	32
51	Structure Elucidation of the Highly Heterogeneous Lipid A from the Lipopolysaccharide of the Gram-Negative Extremophile BacteriumHalomonas Magadiensis Strain 21 M1. European Journal of Organic Chemistry, 2004, 2004, 2263-2271.	2.4	31
52	Burkholderia cenocepacia lectin A binding to heptoses from the bacterial lipopolysaccharide. Glycobiology, 2012, 22, 1387-1398.	2.5	31
53	The structure and proinflammatory activity of the lipopolysaccharide fromÂBurkholderiaÂmultivoransÂandÂthe differences between clonal strains colonizingÂpreÂandÂposttransplantedÂlungs. Glycobiology, 2008, 18, 871-881.	2.5	30
54	Persistent cystic fibrosis isolate Pseudomonas aeruginosa strain RP73 exhibits an under-acylated LPS structure responsible of its low inflammatory activity. Molecular Immunology, 2015, 63, 166-175.	2.2	30

#	Article	IF	CITATIONS
55	The Structure of Lipid A of the Lipopolysaccharide from Burkholderia caryophylli with a 4-Amino-4-deoxy-L-arabinopyranose 1-Phosphate Residue Exclusively in Glycosidic Linkage. Chemistry - A European Journal, 2003, 9, 1542-1548.	3.3	29
56	Full structural characterization of the lipid A components from the Agrobacterium tumefaciens strain C58 lipopolysaccharide fraction. Glycobiology, 2004, 14, 805-815.	2.5	28
57	A novel type of highly negatively charged lipooligosaccharide from Pseudomonas stutzeri OX1 possessing two 4,6-O-(1-carboxy)-ethylidene residues in the outer core region. FEBS Journal, 2004, 271, 2691-2704.	0.2	26
58	The structure of the lipooligosaccharide from Xanthomonas oryzae pv. Oryzae: the causal agent of the bacterial leaf blight in rice. Carbohydrate Research, 2016, 427, 38-43.	2.3	26
59	Gramâ€Negative Extremophile Lipopolysaccharides: Promising Source of Inspiration for a New Generation of Endotoxin Antagonists. European Journal of Organic Chemistry, 2017, 2017, 4055-4073.	2.4	26
60	The Lipid A fromRhodopseudomonas palustrisStrain BisA53 LPS Possesses a Unique Structure and Low Immunostimulant Properties. Chemistry - A European Journal, 2017, 23, 3637-3647.	3.3	26
61	Lipopolysaccharide from Gutâ€Associated Lymphoidâ€Tissueâ€Resident <i>Alcaligenes faecalis</i> Structure Determination and Chemical Synthesis of Its Lipidâ€A. Angewandte Chemie - International Edition, 2021, 60, 10023-10031.	13.8	26
62	Full Structural Characterisation of the Lipooligosaccharide of aBurkholderiapyrrocinia Clinical Isolate. European Journal of Organic Chemistry, 2006, 2006, 4874-4883.	2.4	25
63	Insights on the conformational properties of hyaluronic acid by using NMR residual dipolar couplings and MD simulations. Glycobiology, 2010, 20, 1208-1216.	2.5	25
64	NMR Spectroscopic Analysis Reveals Extensive Binding Interactions of Complex Xyloglucan Oligosaccharides with the <i>Cellvibrio japonicus</i> Chemistry - A European Journal, 2012, 18, 13395-13404.	3.3	25
65	Lipopolysaccharides. , 2010, , 133-153.		25
66	A Unique Bicyclic Monosaccharide from the <i>Bradyrhizobium</i> Lipopolysaccharide and Its Role in the Molecular Interaction with Plants. Angewandte Chemie - International Edition, 2011, 50, 12610-12612.	13.8	24
67	Chemistry and Biology of the Potent Endotoxin from a <i>Burkholderia dolosa</i> Clinical Isolate from a Cystic Fibrosis Patient. ChemBioChem, 2013, 14, 1105-1115.	2.6	24
68	The lipopolysaccharide core oligosaccharide of Burkholderia plays a critical role in maintaining a proper gut symbiosis with the bean bug Riptortus pedestris. Journal of Biological Chemistry, 2017, 292, 19226-19237.	3.4	24
69	Unveiling Molecular Recognition of Sialoglycans by Human Siglec-10. IScience, 2020, 23, 101231.	4.1	24
70	Synthesis of Bradyrhizose Oligosaccharides Relevant to the <i>Bradyrhizobium</i> Oâ€Antigen. Angewandte Chemie - International Edition, 2017, 56, 2092-2096.	13.8	22
71	The complete structure of the lipooligosaccharide from the halophilic bacterium Pseudoalteromonas issachenkonii KMM 3549T. Carbohydrate Research, 2004, 339, 1985-1993.	2.3	21
72	Structural characterizations of lipids A by MS/MS of doubly charged ions on a hybrid linear ion trap/orbitrap mass spectrometer. Journal of Mass Spectrometry, 2008, 43, 478-484.	1.6	21

#	Article	IF	Citations
73	Understanding the Antibacterial Resistance: Computational Explorations in Bacterial Membranes. ACS Omega, 2021, 6, 6041-6054.	3.5	21
74	Structural determination of lipid A of the lipopolysaccharide from Pseudomonas reactans. FEBS Journal, 2002, 269, 2498-2505.	0.2	20
75	Complete Structural Elucidation of a Novel Lipooligosaccharide from the Outer Membrane of the Marine BacteriumShewanella pacifica. European Journal of Organic Chemistry, 2005, 2005, 2281-2291.	2.4	20
76	Structural characterization of the carbohydrate backbone of the lipooligosaccharide of the marine bacterium Arenibacter certesii strain KMM 3941T. Carbohydrate Research, 2005, 340, 2540-2549.	2.3	19
77	Full structural characterization of Shigella flexneri M90T serotype 5 wild-type R-LPS and its ÂgalU mutant: glycine residue location in the inner core of the lipopolysaccharide. Glycobiology, 2007, 18, 260-269.	2.5	19
78	Structural Study and Conformational Behavior of the Two Different Lipopolysaccharide Oâ€Antigens Produced by the Cystic Fibrosis Pathogen <i>Burkholderia multivorans</i> Journal, 2009, 15, 7156-7166.	3.3	19
79	Different sugar residues of the lipopolysaccharide outer core are required for early interactions of Salmonella enterica serovars Typhi and Typhimurium with epithelial cells. Microbial Pathogenesis, 2011, 50, 70-80.	2.9	19
80	Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel Diffusion-ordered NMR spectroscopy. International Journal of Biological Macromolecules, 2017, 103, 744-750.	7.5	19
81	Structure of O-Antigen and Hybrid Biosynthetic Locus in Burkholderia cenocepacia Clonal Variants Recovered from a Cystic Fibrosis Patient. Frontiers in Microbiology, 2017, 8, 1027.	3.5	19
82	Analysis of Synthetic Monodisperse Polysaccharides by Wide Mass Range Ultrahigh-Resolution MALDI Mass Spectrometry. Analytical Chemistry, 2021, 93, 4666-4675.	6.5	19
83	Investigation of protein-ligand complexes by ligand-based NMR methods. Carbohydrate Research, 2021, 503, 108313.	2.3	19
84	Structural basis for Glycan-receptor binding by mumps virus hemagglutinin-neuraminidase. Scientific Reports, 2020, 10, 1589.	3.3	19
85	Mesoscopic and microstructural characterization of liposomes formed by the lipooligosaccharide from Salmonella minnesota strain 595 (Re mutant). Physical Chemistry Chemical Physics, 2009, 11, 2314.	2.8	18
86	Structure, Genetics and Function of an Exopolysaccharide Produced by a Bacterium Living within Fungal Hyphae. ChemBioChem, 2015, 16, 387-392.	2.6	18
87	The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS. Marine Drugs, 2017, 15, 201.	4.6	18
88	Solid State NMR Studies of Intact Lipopolysaccharide Endotoxin. ACS Chemical Biology, 2018, 13, 2106-2113.	3.4	18
89	Structure and inflammatory activity of the LPS isolated from Acetobacter pasteurianus CIP103108. International Journal of Biological Macromolecules, 2018, 119, 1027-1035.	7.5	18
90	Adaptive defence-related changes in the metabolome of Sorghum bicolor cells in response to lipopolysaccharides of the pathogen Burkholderia andropogonis. Scientific Reports, 2020, 10, 7626.	3.3	18

#	Article	IF	CITATIONS
91	A novel rhamno-mannan exopolysaccharide isolated from biofilms of Burkholderia multivorans C1576. Carbohydrate Research, 2015, 411, 42-48.	2.3	17
92	The Very Long Chain Fatty Acid (C26:25OH) Linked to the Lipid A Is Important for the Fitness of the Photosynthetic Bradyrhizobium Strain ORS278 and the Establishment of a Successful Symbiosis with Aeschynomene Legumes. Frontiers in Microbiology, 2017, 8, 1821.	3.5	17
93	Zymomonas mobilis exopolysaccharide structure and role in high ethanol tolerance. Carbohydrate Polymers, 2018, 201, 293-299.	10.2	17
94	First structural characterization of Burkholderia vietnamiensis lipooligosaccharide from cystic fibrosis-associated lung transplantation strains. Glycobiology, 2009, 19, 1214-1223.	2.5	16
95	The lipid A of Burkholderia multivorans C1576 smooth-type lipopolysaccharide and its pro-inflammatory activity in a cystic fibrosis airways model. Innate Immunity, 2010, 16, 354-365.	2.4	16
96	Convergent Synthesis of a Bisecting <i>N</i> â€Acetylglucosamine (GlcNAc)â€Containing Nâ€Glycan. Chemistry - an Asian Journal, 2018, 13, 1544-1551.	3.3	16
97	Characterisation of the Dynamic Interactions between Complex <i>N</i> â€Glycans and Human CD22. ChemBioChem, 2020, 21, 129-140.	2.6	16
98	The structure of the phosphorylated carbohydrate backbone of the lipopolysaccharide of the phytopathogen bacterium Pseudomonas tolaasii. Carbohydrate Research, 2004, 339, 2241-2248.	2.3	15
99	Full Structural Characterization of an Extracellular Polysaccharide Produced by the Freshwater Cyanobacterium <i>Oscillatoria planktothrix</i> FP1. European Journal of Organic Chemistry, 2010, 2010, 5594-5600.	2.4	15
100	Lipid A Structure., 2011,, 1-20.		15
101	New tagged naplephos ligands for asymmetric allylic substitutions under traditional and unconventional conditions. Tetrahedron, 2011, 67, 4826-4831.	1.9	15
102	Lipopolysaccharides as Microbe-associated Molecular Patterns: A Structural Perspective. RSC Drug Discovery Series, 2015, , 38-63.	0.3	15
103	Determination of the Structure of the Lipid A Fraction from the Lipopolysaccharide of Pseudomonas Cichorii by Means of NMR and MALDI-TOF Mass Spectrometry. European Journal of Organic Chemistry, 2002, 2002, 3119-3125.	2.4	14
104	The O-chain structure from the LPS of marine halophilic bacterium Pseudoalteromonas carrageenovora-type strain IAM 12662T. Carbohydrate Research, 2005, 340, 2693-2697.	2.3	14
105	The complete structure of the core carbohydrate backbone from the LPS of marine halophilic bacterium Pseudoalteromonas carrageenovora type strain IAM 12662T. Carbohydrate Research, 2005, 340, 1475-1482.	2.3	13
106	The structure of the O-specific polysaccharide from the lipopolysaccharide of Burkholderia anthina. Carbohydrate Research, 2009, 344, 1697-1700.	2.3	13
107	An Unusual Galactofuranose Lipopolysaccharide That Ensures the Intracellular Survival of Toxinâ€Producing Bacteria in Their Fungal Host. Angewandte Chemie, 2010, 122, 7638-7642.	2.0	13
108	Structural characterization of two lipopolysaccharide O-antigens produced by the endofungal bacterium Burkholderia sp. HKI-402 (B4). Carbohydrate Research, 2012, 347, 95-98.	2.3	13

#	Article	IF	CITATIONS
109	Structural and conformational study of the O-polysaccharide produced by the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris strain BisA53. Carbohydrate Polymers, 2014, 114, 384-391.	10.2	13
110	Structure of the Lipopolysaccharide from the <i>Bradyrhizobium</i> sp. ORS285 <i>rfaL</i> Mutant Strain. ChemistryOpen, 2017, 6, 541-553.	1.9	13
111	The Structures of the Lipid A Moieties from the Lipopolysaccharides of Two Phytopathogenic Bacteria, Xanthomonas campestris pv.pruni and Xanthomonas fragariae. European Journal of Organic Chemistry, 2004, 2004, 1336-1343.	2.4	12
112	Structural Analysis of a Novel Polysaccharide of the Lipopolysaccharide-Deficient Extremophile Gram-Negative BacteriumThermus thermophilus HB8. European Journal of Organic Chemistry, 2004, 2004, 5047-5054.	2.4	12
113	Structural investigation of the lipopolysaccharide O-chain isolated from Burkholderia fungorum strain DSM 17061. Carbohydrate Research, 2016, 433, 31-35.	2.3	12
114	<i>Xanthomonas citri</i> pv. <i>citri</i> Pathotypes: LPS Structure and Function as Microbeâ€Associated Molecular Patterns. ChemBioChem, 2017, 18, 772-781.	2.6	12
115	A Comprehensive Study of the Interaction between Peptidoglycan Fragments and the Extracellular Domain of <i>Mycobacterium tuberculosis</i> Ser/Thr Kinase PknB. ChemBioChem, 2017, 18, 2094-2098.	2.6	12
116	The structure of the carbohydrate backbone of the lipooligosaccharide from the halophilic bacterium Arcobacter halophilus. Carbohydrate Research, 2010, 345, 850-853.	2.3	11
117	Against the rules: A marine bacterium, Loktanella rosea, possesses a unique lipopolysaccharide. Glycobiology, 2010, 20, 586-593.	2.5	11
118	<i>Prevotella denticola</i> Lipopolysaccharide from a Cystic Fibrosis Isolate Possesses a Unique Chemical Structure. European Journal of Organic Chemistry, 2016, 2016, 1732-1738.	2.4	11
119	Structure of the unusual Sinorhizobium fredii HH103 lipopolysaccharide and its role in symbiosis. Journal of Biological Chemistry, 2020, 295, 10969-10987.	3.4	11
120	The Structure of the Oâ€Chain Polysaccharide from the Gramâ€Negative Endophytic Bacterium <i>Burkholderia phytofirmans</i> Strain PsJN. European Journal of Organic Chemistry, 2008, 2008, 2303-2308.	2.4	10
121	Solving the structural puzzle of bacterial glycome. Current Opinion in Structural Biology, 2021, 68, 74-83.	5.7	10
122	Current analytical methods to study plant water extracts: the example of two mushrooms species, Inonotus hispidus and Sparassis crispa. Phytochemical Analysis, 2007, 18, 33-41.	2.4	9
123	Lipid A Structure and Immunoinhibitory Effect of the Marine Bacterium <i>Cobetia pacifica </i> KMM 3879 < sup>T . European Journal of Organic Chemistry, 2018, 2018, 2707-2716.	2.4	9
124	Bradyrhizobium Lipid A: Immunological Properties and Molecular Basis of Its Binding to the Myeloid Differentiation Protein-2/Toll-Like Receptor 4 Complex. Frontiers in Immunology, 2018, 9, 1888.	4.8	9
125	The Structure of the Lipid A from the Halophilic Bacterium Spiribacter salinus M19-40T. Marine Drugs, 2018, 16, 124.	4.6	9
126	Synthesis of Forsythenethoside A, a Neuroprotective Macrocyclic Phenylethanoid Glycoside, and NMR Analysis of Conformers. Journal of Organic Chemistry, 2019, 84, 13733-13743.	3.2	9

#	Article	IF	CITATIONS
127	Lipopolysaccharide O-antigen molecular and supramolecular modifications of plant root microbiota are pivotal for host recognition. Carbohydrate Polymers, 2022, 277, 118839.	10.2	9
128	The structure of the carbohydrate backbone of the lipooligosaccharide from an alkaliphilic Halomonas sp Carbohydrate Research, 2010, 345, 1971-1975.	2.3	8
129	Structure of the lipopolysaccharide isolated from the novel species Uruburuella suis. Carbohydrate Research, 2012, 357, 75-82.	2.3	8
130	Structural Study of the Lipopolysaccharide Oâ€Antigen Produced by the Emerging Cystic Fibrosis Pathogen <i>Pandoraea pulmonicola</i> . European Journal of Organic Chemistry, 2012, 2012, 2243-2249.	2.4	8
131	Unraveling the Interaction between the LPS Oâ€Antigen of <i>Burkholderia anthina</i> and the 5D8 Monoclonal Antibody by Using a Multidisciplinary Chemical Approach, with Synthesis, NMR, and Molecular Modeling Methods. ChemBioChem, 2013, 14, 1485-1493.	2.6	8
132	A hydrophilic olefin Pt(0) complex containing a glucoconjugated 2-iminopyridine ligand: Synthesis, characterization, stereochemistry and biological activity. Inorganica Chimica Acta, 2021, 516, 120092.	2.4	8
133	Behavior of glycolylated sialoglycans in the binding pockets of murine and human CD22. IScience, 2021, 24, 101998.	4.1	8
134	An antagonist of lipid A action in mammals has complex effects on lipid A induction of defence responses in the model plant Arabidopsis thaliana. Microbes and Infection, 2008, 10, 571-574.	1.9	7
135	Structural Elucidation of a Novel <i>B. cenocepacia</i> ETâ€12 Lipooligosaccharide Isolated from a Cystic Fibrosis Patient after Lung Transplantation. European Journal of Organic Chemistry, 2010, 2010, 1299-1306.	2.4	7
136	Synthesis of the tetrasaccharide outer core fragment of Burkholderia multivorans lipooligosaccharide. Carbohydrate Research, 2015, 403, 182-191.	2.3	7
137	Lipopolysaccharide structure and biological activity from the cystic fibrosis pathogens Burkholderia cepacia complex. Carbohydrate Chemistry, 2012, , 13-39.	0.3	6
138	The Structure of the Lipid A of Gram-Negative Cold-Adapted Bacteria Isolated from Antarctic Environments. Marine Drugs, 2020, 18, 592.	4.6	6
139	Covalently bonded hopanoid-Lipid A from Bradyrhizobium: The role of unusual molecular structure and calcium ions in regulating the lipid bilayers organization. Journal of Colloid and Interface Science, 2021, 594, 891-901.	9.4	6
140	Chemical Synthesis of Sialyl <i>N</i> â€Glycans and Analysis of Their Recognition by Neuraminidase. Angewandte Chemie - International Edition, 2021, 60, 24686-24693.	13.8	6
141	Molecular recognition of sialoglycans by streptococcal Siglec-like adhesins: toward the shape of specific inhibitors. RSC Chemical Biology, 2021, 2, 1618-1630.	4.1	6
142	Efficient synthesis of O-antigen fragments expressed by Burkholderia anthina by modular synthesis approach. Carbohydrate Research, 2015, 404, 98-107.	2.3	5
143	The LPS O-Antigen in Photosynthetic Bradyrhizobium Strains Is Dispensable for the Establishment of a Successful Symbiosis with Aeschynomene Legumes. PLoS ONE, 2016, 11, e0148884.	2.5	5
144	NMR analysis of the binding mode of two fungal endo- \hat{l}^2 -1,4-mannanases from GH5 and GH26 families. Organic and Biomolecular Chemistry, 2016, 14, 314-322.	2.8	5

#	Article	IF	CITATIONS
145	A chronic strain of the cystic fibrosis pathogen Pandoraea pulmonicola expresses a heterogenous hypo-acylated lipid A. Glycoconjugate Journal, 2021, 38, 135-144.	2.7	5
146	Semisynthetic Isomers of Fucosylated Chondroitin Sulfate Polysaccharides with Fucosyl Branches at a Non-Natural Site. Biomacromolecules, 2021, 22, 5151-5161.	5 . 4	5
147	The Unusual Lipid A Structure and Immunoinhibitory Activity of LPS from Marine Bacteria Echinicola pacifica KMM 6172T and Echinicola vietnamensis KMM 6221T. Microorganisms, 2021, 9, 2552.	3.6	5
148	Structural Study of Binding of αâ€Mannosides to Mannanâ€Binding Lectins. European Journal of Organic Chemistry, 2012, 2012, 5275-5281.	2.4	4
149	Bacterial Lipopolysaccharides: An Overview of Their Structure, Biosynthesis and Immunological Activity. , 2015, , 57-89.		4
150	Synthesis of Bradyrhizose Oligosaccharides Relevant to the <i>Bradyrhizobium</i> Oâ€Antigen. Angewandte Chemie, 2017, 129, 2124-2128.	2.0	4
151	Targeting the Bacterial Cytoskeleton of the Burkholderia cepacia Complex for Antimicrobial Development: A Cautionary Tale. International Journal of Molecular Sciences, 2018, 19, 1604.	4.1	4
152	The O-chain structure from the LPS of the bacterium Naxibacter alkalitolerans YIM 31775T. Carbohydrate Research, 2007, 342, 757-761.	2.3	3
153	A Ureaâ€Linked Glucosamine Dimer as a Building Block for the Synthesis of Linear and Cyclic Neosaccharides. European Journal of Organic Chemistry, 2010, 2010, 4062-4074.	2.4	3
154	Structure and Immunological Activity of the Lipopolysaccharide Isolated from the Species <i>Alkalimonas delamerensis</i> European Journal of Organic Chemistry, 2013, 2013, 2653-2665.	2.4	3
155	Synthesis and biological evaluation of $5\hat{a}\in^2$ -glycyl derivatives of uridine as inhibitors of 1,4- \hat{l}^2 -galactosyltransferase. Bioorganic Chemistry, 2015, 58, 18-25.	4.1	3
156	Structural and Conformational Study of the Oâ€Antigenic Portion of the Lipopolysaccharide Isolated from <i>Burkholderia gladioli</i> pv. <i>cocovenenans</i> European Journal of Organic Chemistry, 2016, 2016, 748-755.	2.4	3
157	<i>Rhodopseudomonas palustris</i> Strain CGA009 Produces an O-Antigen Built up by a C-4-Branched Monosaccharide: Structural and Conformational Studies. Organic Letters, 2018, 20, 3656-3660.	4.6	3
158	The Lipidâ€A Structure from the Marine Sponge Symbiont <i>Endozoicomonas</i> sp. HEX 311. ChemBioChem, 2019, 20, 230-236.	2.6	3
159	Exploring the fascinating world of sialoglycans in the interplay with Siglecs. Carbohydrate Chemistry, 2020, , 31-55.	0.3	3
160	Conformationally Constrained Sialyl Analogues as New Potential Binders of h D22. ChemBioChem, 2022, 23, .	2.6	3
161	Expression, Purification, Crystallization and Preliminary X-Ray Crystallographic Analysis of the Peptidoglycan Binding Region of the Ser/Thr Kinase PrkC from Staphylococcus aureus. Protein and Peptide Letters, 2010, 17, 1296-1299.	0.9	2
162	Glycans in Bacterial Infections: Gram-Negative Infections in the Respiratory Tract., 2021,, 233-249.		2

ALBA SILIPO

#	Article	IF	CITATION
163	The Peculiar Structure of Acetobacter pasteurianus CIP103108 LPS Core Oligosaccharide. ChemBioChem, 2021, 22, 147-150.	2.6	1
164	Lipopolysaccharide from Gutâ€Associated Lymphoidâ€Tissueâ€Resident <i>Alcaligenes faecalis</i> Structure Determination and Chemical Synthesis of Its Lipidâ€A. Angewandte Chemie, 2021, 133, 10111-1011	9.2.0	1
165	Molecular Modeling Study of the Carbohydrate Region of the Endotoxin from <i>Burkholderia cenocepacia</i> ETâ€12. European Journal of Organic Chemistry, 2011, 2011, 5114-5122.	2.4	O
166	Front Cover: Gram-Negative Extremophile Lipopolysaccharides: Promising Source of Inspiration for a New Generation of Endotoxin Antagonists (Eur. J. Org. Chem. 28/2017). European Journal of Organic Chemistry, 2017, 2017, 4054-4054.	2.4	0
167	Chemical Synthesis of Sialyl Nâ€Glycans and Analysis of Their Recognition by Neuraminidase. Angewandte Chemie, 2021, 133, 24891.	2.0	O
168	Characterization of Natural and Synthetic Sialoglycans Targeting the Hemagglutinin-Neuraminidase of Mumps Virus. Frontiers in Chemistry, 2021, 9, 711346.	3.6	0