
## Anna A Shvedova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4978284/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in<br>mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L698-L708.                            | 2.9  | 1,144     |
| 2  | Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human<br>Keratinocyte Cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2003, 66,<br>1909-1926.                   | 2.3  | 1,104     |
| 3  | Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation.<br>Nature Nanotechnology, 2010, 5, 354-359.                                                                                         | 31.5 | 698       |
| 4  | Exposure to Carbon Nanotube Material: Aerosol Release During the Handling of Unrefined<br>Single-Walled Carbon Nanotube Material. Journal of Toxicology and Environmental Health - Part A:<br>Current Issues, 2004, 67, 87-107. | 2.3  | 675       |
| 5  | Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress. Toxicology and Applied<br>Pharmacology, 2012, 261, 121-133.                                                                                          | 2.8  | 439       |
| 6  | Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks.<br>Toxicology and Applied Pharmacology, 2017, 329, 96-111.                                                                    | 2.8  | 373       |
| 7  | Cardiovascular Effects of Pulmonary Exposure to Single-Wall Carbon Nanotubes. Environmental<br>Health Perspectives, 2007, 115, 377-382.                                                                                         | 6.0  | 359       |
| 8  | Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes.<br>Toxicology, 2009, 257, 161-171.                                                                                             | 4.2  | 323       |
| 9  | Single-walled Carbon Nanotubes: Geno- and Cytotoxic Effects in Lung Fibroblast V79 Cells. Journal of<br>Toxicology and Environmental Health - Part A: Current Issues, 2007, 70, 2071-2079.                                      | 2.3  | 249       |
| 10 | Current understanding of interactions between nanoparticles and the immune system. Toxicology and Applied Pharmacology, 2016, 299, 78-89.                                                                                       | 2.8  | 236       |
| 11 | Close Encounters of the Small Kind: Adverse Effects of Man-Made Materials Interfacing with the<br>Nano-Cosmos of Biological Systems. Annual Review of Pharmacology and Toxicology, 2010, 50, 63-88.                             | 9.4  | 226       |
| 12 | Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine: Nanotechnology,<br>Biology, and Medicine, 2005, 1, 313-316.                                                                                          | 3.3  | 220       |
| 13 | Biodegradation of Singleâ€Walled Carbon Nanotubes by Eosinophil Peroxidase. Small, 2013, 9, 2721-2729.                                                                                                                          | 10.0 | 171       |
| 14 | Sequential Exposure to Carbon Nanotubes and Bacteria Enhances Pulmonary Inflammation and<br>Infectivity. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 579-590.                                         | 2.9  | 165       |
| 15 | Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Letters, 2000, 477, 1-7.                                                                                           | 2.8  | 162       |
| 16 | <i>In Vivo</i> Evaluation of the Pulmonary Toxicity of Cellulose Nanocrystals: A Renewable and<br>Sustainable Nanomaterial of the Future. ACS Sustainable Chemistry and Engineering, 2014, 2, 1691-1698.                        | 6.7  | 157       |
| 17 | Impaired Clearance and Enhanced Pulmonary Inflammatory/Fibrotic Response to Carbon Nanotubes in<br>Myeloperoxidase-Deficient Mice. PLoS ONE, 2012, 7, e30923.                                                                   | 2.5  | 156       |
| 18 | Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicology and Applied Pharmacology, 2007, 221, 339-348.                          | 2.8  | 144       |

ANNA A SHVEDOVA

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A Natural Vanishing Act: The Enzyme-Catalyzed Degradation of Carbon Nanomaterials. Accounts of Chemical Research, 2012, 45, 1770-1781.                                                                                             | 15.6 | 141       |
| 20 | Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Particle and Fibre Toxicology, 2012, 9, 10.                                                                 | 6.2  | 138       |
| 21 | Lung Macrophages "Digest―Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway.<br>ACS Nano, 2014, 8, 5610-5621.                                                                                                     | 14.6 | 127       |
| 22 | Fibrosis biomarkers in workers exposed to MWCNTs. Toxicology and Applied Pharmacology, 2016, 299, 125-131.                                                                                                                         | 2.8  | 127       |
| 23 | Direct Effects of Carbon Nanotubes on Dendritic Cells Induce Immune Suppression Upon Pulmonary Exposure. ACS Nano, 2011, 5, 5755-5762.                                                                                             | 14.6 | 116       |
| 24 | Phosphatidylserine Targets Single-Walled Carbon Nanotubes to Professional Phagocytes In Vitro and<br>In Vivo. PLoS ONE, 2009, 4, e4398.                                                                                            | 2.5  | 108       |
| 25 | Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L170-L182.        | 2.9  | 104       |
| 26 | Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactionsa~†. Advanced Drug Delivery Reviews, 2009, 61, 1375-1385.                                                  | 13.7 | 103       |
| 27 | Comparative Proteomics and Pulmonary Toxicity of Instilled Single-Walled Carbon Nanotubes,<br>Crocidolite Asbestos, and Ultrafine Carbon Black in Mice. Toxicological Sciences, 2011, 120, 123-135.                                | 3.1  | 103       |
| 28 | Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient<br>C57BL/6 mice exposed to carbon nanotubes. Toxicology and Applied Pharmacology, 2008, 231, 235-240.                          | 2.8  | 94        |
| 29 | Redox Cycling of Phenol Induces Oxidative Stress in Human Epidermal Keratinocytes. Journal of<br>Investigative Dermatology, 2000, 114, 354-364.                                                                                    | 0.7  | 89        |
| 30 | Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications.<br>Toxicology and Applied Pharmacology, 2016, 299, 58-69.                                                                          | 2.8  | 89        |
| 31 | Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation?. Chemosphere, 2017, 171, 671-680.                                                                                        | 8.2  | 84        |
| 32 | Oxidative Stress and Dermal Toxicity of Iron Oxide Nanoparticles In Vitro. Cell Biochemistry and Biophysics, 2013, 67, 461-476.                                                                                                    | 1.8  | 80        |
| 33 | The role of nanotoxicology in realizing the †helping without harm' paradigm of nanomedicine: lessons<br>from studies of pulmonary effects of singleâ€walled carbon nanotubes. Journal of Internal Medicine,<br>2010, 267, 106-118. | 6.0  | 76        |
| 34 | Graphene Oxide, But Not Fullerenes, Targets Immunoproteasomes and Suppresses Antigen Presentation<br>by Dendritic Cells. Small, 2013, 9, 1686-1690.                                                                                | 10.0 | 75        |
| 35 | Citrullination of proteins: a common post-translational modification pathway induced by different nanoparticles <i>in vitro</i> and <i>in vivo</i> . Nanomedicine, 2012, 7, 1181-1195.                                             | 3.3  | 72        |
| 36 | Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes. PLoS ONE, 2016, 11, e0150628.                                                                                        | 2.5  | 70        |

ANNA A SHVEDOVA

| #  | Article                                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Global Phospholipidomics Analysis Reveals Selective Pulmonary Peroxidation Profiles upon Inhalation of Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 7342-7353.                                                                                                                                  | 14.6 | 64        |
| 38 | Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Particle and Fibre Toxicology, 2015, 13, 28.                                                                                                                                                                     | 6.2  | 64        |
| 39 | Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 2863-2872. | 2.3  | 63        |
| 40 | Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Scientific Reports, 2018, 8, 1115.                                                                                                                                                                                      | 3.3  | 62        |
| 41 | Carbon Nanotubes Enhance Metastatic Growth of Lung Carcinoma via Upâ€Regulation of<br>Myeloidâ€Đerived Suppressor Cells. Small, 2013, 9, 1691-1695.                                                                                                                                                   | 10.0 | 61        |
| 42 | Aerosolization of Single-Walled Carbon Nanotubes for an Inhalation Study. Inhalation Toxicology, 2008, 20, 751-760.                                                                                                                                                                                   | 1.6  | 59        |
| 43 | Single-walled carbon nanotubes impair human macrophage engulfment of apoptotic cell corpses.<br>Inhalation Toxicology, 2009, 21, 131-136.                                                                                                                                                             | 1.6  | 52        |
| 44 | Molecular modeling in structural nano-toxicology: Interactions of nano-particles with nano-machinery of cells. Advanced Drug Delivery Reviews, 2013, 65, 2070-2077.                                                                                                                                   | 13.7 | 52        |
| 45 | Graphene Oxide Attenuates Th2-Type Immune Responses, but Augments Airway Remodeling and<br>Hyperresponsiveness in a Murine Model of Asthma. ACS Nano, 2014, 8, 5585-5599.                                                                                                                             | 14.6 | 51        |
| 46 | Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung. Toxicology and Applied Pharmacology, 2013, 272, 373-383.                                                                                               | 2.8  | 50        |
| 47 | MDSC and TGFÎ <sup>2</sup> Are Required for Facilitation of Tumor Growth in the Lungs of Mice Exposed to Carbon Nanotubes. Cancer Research, 2015, 75, 1615-1623.                                                                                                                                      | 0.9  | 50        |
| 48 | Size-dependent effects of tungsten carbide–cobalt particles on oxygen radical production and<br>activation of cell signaling pathways in murine epidermal cells. Toxicology and Applied Pharmacology,<br>2009, 241, 260-268.                                                                          | 2.8  | 49        |
| 49 | Oxidative Stress, Inflammatory Biomarkers, and Toxicity in Mouse Lung and Liver after Inhalation<br>Exposure to 100% Biodiesel or Petroleum Diesel Emissions. Journal of Toxicology and Environmental<br>Health - Part A: Current Issues, 2013, 76, 907-921.                                          | 2.3  | 49        |
| 50 | Pulmonary exposure to cellulose nanocrystals caused deleterious effects to reproductive system in male mice. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 984-997.                                                                                              | 2.3  | 45        |
| 51 | Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit<br>disparate immune responses upon pharyngeal aspiration in mice. Journal of Immunotoxicology, 2018, 15,<br>12-23.                                                                                | 1.7  | 45        |
| 52 | There's plenty of room at the forum: Potential risks and safety assessment of engineered nanomaterials. Nanotoxicology, 2007, 1, 73-84.                                                                                                                                                               | 3.0  | 44        |
| 53 | Selective Peroxidation and Externalization of Phosphatidylserine in Normal Human Epidermal<br>Keratinocytes During Oxidative Stress Induced by Cumene Hydroperoxide. Journal of Investigative<br>Dermatology, 2002, 118, 1008-1018.                                                                   | 0.7  | 38        |
| 54 | In Vitro Toxicity Evaluation of Lignin-(Un)coated Cellulose Based Nanomaterials on Human A549 and THP-1 Cells. Biomacromolecules, 2016, 17, 3464-3473.                                                                                                                                                | 5.4  | 33        |

Anna A Shvedova

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Applied Nanotoxicology. International Journal of Toxicology, 2016, 35, 5-16.                                                                                                                                                               | 1.2  | 32        |
| 56 | Toward Mechanismâ€based Antioxidant Interventions. Annals of the New York Academy of Sciences, 2002, 959, 188-198.                                                                                                                         | 3.8  | 31        |
| 57 | Dual Acute Proinflammatory and Antifibrotic Pulmonary Effects of Short Palate, Lung, and Nasal<br>Epithelium Clone–1 after Exposure to Carbon Nanotubes. American Journal of Respiratory Cell and<br>Molecular Biology, 2013, 49, 759-767. | 2.9  | 31        |
| 58 | Nanotoxicology ten years later: Lights and shadows. Toxicology and Applied Pharmacology, 2016, 299, 1-2.                                                                                                                                   | 2.8  | 31        |
| 59 | ESR evidence for in vivo formation of free radicals in tissue of mice exposed to single-walled carbon nanotubes. Free Radical Biology and Medicine, 2014, 73, 154-165.                                                                     | 2.9  | 27        |
| 60 | DERMAL AND SYSTEMIC TOXICITY AFTER APPLICATION OF SEMISYNTHETIC METAL-WORKING FLUIDS IN B6C3F1 MICE. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2000, 61, 579-589.                                           | 2.3  | 24        |
| 61 | Fantastic voyage and opportunities of engineered nanomaterials: What are the potential risks of occupational exposures?. Journal of Occupational and Environmental Medicine, 2010, 52, 943-946.                                            | 1.7  | 23        |
| 62 | Antioxidant Balance and Free Radical Generation in Vitamin E-Deficient Mice after Dermal Exposure to Cumene Hydroperoxide. Chemical Research in Toxicology, 2002, 15, 1451-1459.                                                           | 3.3  | 20        |
| 63 | Mediation of the single-walled carbon nanotubes induced pulmonary fibrogenic response by osteopontin and TGF-β1. Experimental Lung Research, 2017, 43, 311-326.                                                                            | 1.2  | 19        |
| 64 | Pro/antioxidant Status in Murine Skin Following Topical Exposure to Cumene Hydroperoxide<br>Throughout the Ontogeny of Skin Cancer. Biochemistry (Moscow), 2004, 69, 23-31.                                                                | 1.5  | 18        |
| 65 | Pulmonary exposure to single-walled carbon nanotubes does not affect the early immune response against Toxoplasma gondii. Particle and Fibre Toxicology, 2012, 9, 16.                                                                      | 6.2  | 18        |
| 66 | Abnormalities in the male reproductive system after exposure to diesel and biodiesel blend.<br>Environmental and Molecular Mutagenesis, 2015, 56, 265-276.                                                                                 | 2.2  | 18        |
| 67 | Hollow carbon spheres trigger inflammasome-dependent IL-1β secretion in macrophages. Carbon, 2017, 113, 243-251.                                                                                                                           | 10.3 | 18        |
| 68 | Enhanced oxidative stress in the skin of vitamin E deficient mice exposed to semisynthetic metal working fluids. Toxicology, 2002, 176, 135-143.                                                                                           | 4.2  | 16        |
| 69 | Quantitative Analysis of Phospholipid Peroxidation and Antioxidant Protection in Live Human<br>Epidermal Keratinocytes. Bioscience Reports, 2001, 21, 33-43.                                                                               | 2.4  | 15        |
| 70 | Ins and Outs in Environmental and Occupational Safety Studies of Asthma and Engineered<br>Nanomaterials. ACS Nano, 2017, 11, 7565-7571.                                                                                                    | 14.6 | 14        |
| 71 | Mutagenicity of biodiesel or diesel exhaust particles and the effect of engine operating conditions.<br>Journal of Environmental Engineering & Ecological Science, 2013, 2, 3.                                                             | 0.7  | 13        |
| 72 | Elevated oxidative stress in skin of B6C3F1 mice affects dermal exposure to metal working fluid.<br>Toxicology and Industrial Health, 2000, 16, 267-276.                                                                                   | 1.4  | 12        |

Anna A Shvedova

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Comparative analysis of lung and blood transcriptomes in mice exposed to multi-walled carbon nanotubes. Toxicology and Applied Pharmacology, 2020, 390, 114898.                                                                                         | 2.8  | 12        |
| 74 | tert-butyl hydroperoxide/hemoglobin-induced oxidative stress and damage to vascular smooth muscle<br>cells. Biochemical Pharmacology, 1999, 57, 989-1001.                                                                                               | 4.4  | 11        |
| 75 | Characterization of pulmonary responses in mice to asbestos/asbestiform fibers using gene expression profiles. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2018, 81, 60-79.                                                | 2.3  | 11        |
| 76 | [14] Peroxidation of phosphatidylserine in mechanisms of apoptotic signaling. Methods in Enzymology, 2002, 352, 159-174.                                                                                                                                | 1.0  | 10        |
| 77 | Comparative cytotoxicity of respirable surface-treated/untreated calcium carbonate rock dust particles in vitro. Toxicology and Applied Pharmacology, 2019, 362, 67-76.                                                                                 | 2.8  | 10        |
| 78 | Galvanic Manufacturing in the Cities of Russia: Potential Source of Ambient Nanoparticles. PLoS ONE, 2014, 9, e110573.                                                                                                                                  | 2.5  | 9         |
| 79 | Multi-walled carbon nanotubes elicit concordant changes in DNA methylation and gene expression following long-term pulmonary exposure in mice. Carbon, 2021, 178, 563-572.                                                                              | 10.3 | 8         |
| 80 | Carbon Nanotubes: Biodegradation of Single-Walled Carbon Nanotubes by Eosinophil Peroxidase<br>(Small 16/2013). Small, 2013, 9, 2720-2720.                                                                                                              | 10.0 | 6         |
| 81 | Differential responses of murine alveolar macrophages to elongate mineral particles of asbestiform and non-asbestiform varieties: Cytotoxicity, cytokine secretion and transcriptional changes. Toxicology and Applied Pharmacology, 2020, 409, 115302. | 2.8  | 6         |
| 82 | Metal working fluids: sub-chronic effects on pulmonary functions in B6C3F1 mice given vitamin E deficient and sufficient diets. Toxicology, 2002, 177, 285-297.                                                                                         | 4.2  | 5         |
| 83 | Respiratory System, Part Two: Allergy and Asthma. , 2017, , 243-253.                                                                                                                                                                                    |      | 3         |