Wei-Jun Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4977797/publications.pdf

Version: 2024-02-01

231 papers 14,174 citations

65 h-index 107 g-index

247 all docs

247 docs citations

times ranked

247

18484 citing authors

#	Article	IF	CITATIONS
1	Mass spectrometryâ€based targeted proteomics for analysis of protein mutations. Mass Spectrometry Reviews, 2023, 42, 796-821.	2.8	19
2	Evaluation of Differential Peptide Loading on Tandem Mass Tag-Based Proteomic and Phosphoproteomic Data Quality. Journal of the American Society for Mass Spectrometry, 2022, 33, 17-30.	1.2	2
3	Exploratory study reveals far reaching systemic and cellular effects of verapamil treatment in subjects with type 1 diabetes. Nature Communications, 2022, 13 , 1159 .	5.8	28
4	Multi-Site Observational Study to Assess Biomarkers for Susceptibility or Resilience to Chronic Pain: The Acute to Chronic Pain Signatures (A2CPS) Study Protocol. Frontiers in Medicine, 2022, 9, 849214.	1.2	4
5	Hanging drop sample preparation improves sensitivity of spatial proteomics. Lab on A Chip, 2022, 22, 2869-2877.	3.1	12
6	Regulation of hyperoxia-induced neonatal lung injury via post-translational cysteine redox modifications. Redox Biology, 2022, 55, 102405.	3.9	4
7	Characterization of cellular oxidative stress response by stoichiometric redox proteomics. American Journal of Physiology - Cell Physiology, 2021, 320, C182-C194.	2.1	23
8	Proteomic Approaches for Advancing the Understanding and Application of Oleaginous Bacteria for Bioconversion of Lignin to Lipids. ACS Symposium Series, 2021, , 61-96.	0.5	3
9	Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440. Biotechnology for Biofuels, 2021, 14, 11.	6.2	28
10	Defective insulin receptor signaling in hPSCs skews pluripotency and negatively perturbs neural differentiation. Journal of Biological Chemistry, 2021, 296, 100495.	1.6	2
11	Lipid production from non-sugar compounds in pretreated lignocellulose hydrolysates by Rhodococcus jostii RHA1. Biomass and Bioenergy, 2021, 145, 105970.	2.9	6
12	Surfactant-assisted one-pot sample preparation for label-free single-cell proteomics. Communications Biology, 2021, 4, 265.	2.0	46
13	New Insights Into the Biology of Protein O-GlcNA cylation: Approaches and Observations. Frontiers in Aging, 2021, $1, \dots$	1.2	17
14	Stoichiometric Thiol Redox Proteomics for Quantifying Cellular Responses to Perturbations. Antioxidants, 2021, 10, 499.	2.2	19
15	Proteomic Profiling of the Substantia Nigra to Identify Determinants of Lewy Body Pathology and Dopaminergic Neuronal Loss. Journal of Proteome Research, 2021, 20, 2266-2282.	1.8	10
16	Enhancing Top-Down Proteomics of Brain Tissue with FAIMS. Journal of Proteome Research, 2021, 20, 2780-2795.	1.8	36
17	A Comprehensive Urine Proteome Database Generated From Patients With Various Renal Conditions and Prostate Cancer. Frontiers in Medicine, 2021, 8, 548212.	1.2	18
18	Assessment of TMT Labeling Efficiency in Large-Scale Quantitative Proteomics: The Critical Effect of Sample pH. ACS Omega, 2021, 6, 12660-12666.	1.6	11

#	Article	lF	CITATIONS
19	Repetitive diacetyl vapor exposure promotes ubiquitin proteasome stress and precedes bronchiolitis obliterans pathology. Archives of Toxicology, 2021, 95, 2469-2483.	1.9	8
20	Enhanced epithelial sodium channel activity in neonatal Scnn1b mouse lung attenuates high oxygen-induced lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L29-L41.	1.3	4
21	Altered β-Cell Prohormone Processing and Secretion in Type 1 Diabetes. Diabetes, 2021, 70, 1038-1050.	0.3	28
22	Resin-Assisted Capture Coupled with Isobaric Tandem Mass Tag Labeling for Multiplexed Quantification of Protein Thiol Oxidation. Journal of Visualized Experiments, 2021, , .	0.2	3
23	Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nature Protocols, 2021, 16, 3737-3760.	5.5	110
24	Fate, cytotoxicity and cellular metabolomic impact of ingested nanoscale carbon dots using simulated digestion and a triculture small intestinal epithelial model. NanoImpact, 2021, 23, 100349.	2.4	10
25	Endurance Training Reprograms The White Adipose Tissue Proteome Of Rats In A Sex-specific Manner. Medicine and Science in Sports and Exercise, 2021, 53, 119-120.	0.2	0
26	A Sweet H ₂ S/H ₂ O ₂ Dual Release System and Specific Protein S-Persulfidation Mediated by Thioglucose/Glucose Oxidase. Journal of the American Chemical Society, 2021, 143, 13325-13332.	6.6	23
27	Facile One-Pot Nanoproteomics for Label-Free Proteome Profiling of 50–1000 Mammalian Cells. Journal of Proteome Research, 2021, 20, 4452-4461.	1.8	12
28	Defining the Dynamic Regulation of O-GlcNAc Proteome in the Mouse Cortexthe O-GlcNAcylation of Synaptic and Trafficking Proteins Related to Neurodegenerative Diseases. Frontiers in Aging, 2021, 2, .	1.2	10
29	Elamipretide (SS-31) treatment attenuates age-associated post-translational modifications of heart proteins. GeroScience, 2021, 43, 2395-2412.	2.1	17
30	Mass spectrometry-based direct detection of multiple types of protein thiol modifications in pancreatic beta cells under endoplasmic reticulum stress. Redox Biology, 2021, 46, 102111.	3.9	27
31	Comprehensive Proteomics Analysis of Stressed Human Islets Identifies GDF15 as a Target for Type 1 Diabetes Intervention. Cell Metabolism, 2020, 31, 363-374.e6.	7.2	78
32	Evaluation of the cytotoxic and cellular proteome impacts of food-grade TiO2 (E171) using simulated gastrointestinal digestions and a tri-culture small intestinal epithelial model. NanoImpact, 2020, 17, 100202.	2.4	30
33	A proteome-wide assessment of the oxidative stress paradigm for metal and metal-oxide nanomaterials in human macrophages. NanoImpact, 2020, 17, 100194.	2.4	29
34	Protein thiol oxidation in the rat lung following e-cigarette exposure. Redox Biology, 2020, 37, 101758.	3.9	16
35	Stochiometric quantification of the thiol redox proteome of macrophages reveals subcellular compartmentalization and susceptibility to oxidative perturbations. Redox Biology, 2020, 36, 101649.	3.9	34
36	Receptor-Driven ERK Pulses Reconfigure MAPK Signaling and Enable Persistence of Drug-Adapted BRAF-Mutant Melanoma Cells. Cell Systems, 2020, 11, 478-494.e9.	2.9	71

#	Article	IF	CITATIONS
37	Near-Single-Cell Proteomics Profiling of the Proximal Tubular and Glomerulus of the Normal Human Kidney. Frontiers in Medicine, 2020, 7, 499.	1.2	12
38	Cytotoxicity and cellular proteome impact of cellulose nanocrystals using simulated digestion and an in vitro small intestinal epithelium cellular model. NanoImpact, 2020, 20, 100269.	2.4	10
39	Proteomic Tissue-Based Classifier for Early Prediction of Prostate Cancer Progression. Cancers, 2020, 12, 1268.	1.7	8
40	Block Design with Common Reference Samples Enables Robust Large-Scale Label-Free Quantitative Proteome Profiling. Journal of Proteome Research, 2020, 19, 2863-2872.	1.8	10
41	Development of Multiplexed Immuno-N-Terminomics to Reveal the Landscape of Proteolytic Processing in Early Embryogenesis of <i>Drosophila melanogaster</i> in Early Embryogenesis of <i>Drosophila melanogaster</i>	3.2	7
42	Accurate Identification of Deamidation and Citrullination from Global Shotgun Proteomics Data Using a Dual-Search Delta Score Strategy. Journal of Proteome Research, 2020, 19, 1863-1872.	1.8	16
43	Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell, 2020, 181, 1464-1474.	13.5	147
44	Nitrate bioreduction dynamics in hyporheic zone sediments under cyclic changes of chemical compositions. Journal of Hydrology, 2020, 585, 124836.	2.3	3
45	Oxidative Stress and Redox Modifications in Nanomaterial–Cellular Interactions. Molecular and Integrative Toxicology, 2020, , 127-148.	0.5	5
46	Carrier-assisted One-pot Sample Preparation for Targeted Proteomics Analysis of Small Numbers of Human Cells. Journal of Visualized Experiments, 2020, , .	0.2	3
47	Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice. ELife, 2020, 9, .	2.8	68
48	Meta-analysis of peptides to detect protein significance. Statistics and Its Interface, 2020, 13, 465-474.	0.2	0
49	High-Throughput Single Cell Proteomics Enabled by Multiplex Isobaric Labeling in a Nanodroplet Sample Preparation Platform. Analytical Chemistry, 2019, 91, 13119-13127.	3.2	156
50	Automated Nanoflow Two-Dimensional Reversed-Phase Liquid Chromatography System Enables In-Depth Proteome and Phosphoproteome Profiling of Nanoscale Samples. Analytical Chemistry, 2019, 91, 9707-9715.	3.2	36
51	The role of proteomics in assessing beta-cell dysfunction and death in type 1 diabetes. Expert Review of Proteomics, 2019, 16, 569-582.	1.3	8
52	Response to Comment on Sims et al. Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes. Diabetes Care 2019;42:258–264. Diabetes Care, 2019, 42, e85-e86.	4.3	5
53	Increased \hat{i}^2 -cell proliferation before immune cell invasion prevents progression of type 1 diabetes. Nature Metabolism, 2019, 1, 509-518.	5.1	38
54	Boosting to Amplify Signal with Isobaric Labeling (BASIL) Strategy for Comprehensive Quantitative Phosphoproteomic Characterization of Small Populations of Cells. Analytical Chemistry, 2019, 91, 5794-5801.	3.2	86

#	Article	IF	CITATIONS
55	Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science, 2019, 364, 355-362.	6.0	134
56	Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnology for Biofuels, 2019, 12, 60.	6.2	69
57	Carrier-Assisted Single-Tube Processing Approach for Targeted Proteomics Analysis of Low Numbers of Mammalian Cells. Analytical Chemistry, 2019, 91, 1441-1451.	3.2	24
58	Improving mitochondrial function with SS-31 reverses age-related redox stress and improves exercise tolerance in aged mice. Free Radical Biology and Medicine, 2019, 134, 268-281.	1.3	101
59	Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes. Diabetes Care, 2019, 42, 258-264.	4.3	82
60	Stable Acinar Progenitor Cell Model Identifies Treacle-Dependent Radioresistance. Radiation Research, 2019, 192, 135.	0.7	4
61	Abstract 3165: Identification of candidate biomarkers for aggressive prostate cancer using targeted proteomics and FFPE tissue samples with outcomes data. , 2019 , , .		0
62	Abstract LB-B09: ERK pulses drive non-genetic resistance in drug-adapted BRAFV600Emelanoma cells. , 2019, , .		0
63	Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nature Communications, 2018, 9, 882.	5.8	384
64	Targeted Quantification of Phosphorylation Dynamics in the Context of EGFR-MAPK Pathway. Analytical Chemistry, 2018, 90, 5256-5263.	3.2	39
65	Subnanogram proteomics: Impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples. International Journal of Mass Spectrometry, 2018, 427, 4-10.	0.7	67
66	Genomics and biochemistry investigation on the metabolic pathway of milled wood and alkali lignin-derived aromatic metabolites of Comamonas serinivorans SP-35. Biotechnology for Biofuels, 2018, 11, 338.	6.2	39
67	Reversal of age related post-translational modifications improves mitochondrial and skeletal muscle function through redox dependent mechanisms. Free Radical Biology and Medicine, 2018, 128, S124.	1.3	0
68	Insulin receptor-mediated signaling regulates pluripotency markers and lineage differentiation. Molecular Metabolism, 2018, 18, 153-163.	3.0	18
69	Nanoproteomics comes of age. Expert Review of Proteomics, 2018, 15, 865-871.	1.3	42
70	Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biology, 2018, 17, 367-376.	3.9	68
71	Spatially Resolved Proteome Mapping of Laser Capture Microdissected Tissue with Automated Sample Transfer to Nanodroplets. Molecular and Cellular Proteomics, 2018, 17, 1864-1874.	2.5	105
72	Urinary Virome Perturbations in Kidney Transplantation. Frontiers in Medicine, 2018, 5, 72.	1.2	12

#	Article	IF	Citations
73	Nanowell-mediated two-dimensional liquid chromatography enables deep proteome profiling of <1000 mammalian cells. Chemical Science, 2018, 9, 6944-6951.	3.7	33
74	Serum biomarkers for diagnosis and prediction of type 1 diabetes. Translational Research, 2018, 201, 13-25.	2.2	42
75	Facile carrier-assisted targeted mass spectrometric approach for proteomic analysis of low numbers of mammalian cells. Communications Biology, 2018, 1, 103.	2.0	21
76	Mass spectrometry-based proteomics for system-level characterization of biological responses to engineered nanomaterials. Analytical and Bioanalytical Chemistry, 2018, 410, 6067-6077.	1.9	22
77	Abstract 2573: Selection of candidate biomarkers for aggressive prostate cancer based on targeted proteomics. , 2018, , .		0
78	Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnology for Biofuels, 2017, 10, 44.	6.2	129
79	Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes. Environmental Microbiology Reports, 2017, 9, 512-521.	1.0	16
80	Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Molecular BioSystems, 2017, 13, 816-829.	2.9	52
81	An alphaâ€synuclein MRM assay with diagnostic potential for Parkinson's disease and monitoring disease progression. Proteomics - Clinical Applications, 2017, 11, 1700045.	0.8	9
82	S-Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1). Journal of Biological Chemistry, 2017, 292, 19743-19751.	1.6	22
83	Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics. Environmental Science & Environmental	4.6	27
84	Deep-Dive Targeted Quantification for Ultrasensitive Analysis of Proteins in Nondepleted Human Blood Plasma/Serum and Tissues. Analytical Chemistry, 2017, 89, 9139-9146.	3.2	21
85	Targeted proteomic assays for quantitation of proteins identified by proteogenomic analysis of ovarian cancer. Scientific Data, 2017, 4, 170091.	2.4	29
86	Advances in microscale separations towards nanoproteomics applications. Journal of Chromatography A, 2017, 1523, 40-48.	1.8	43
87	LC-SRM-Based Targeted Quantification of Urinary Protein Biomarkers. Methods in Molecular Biology, 2017, 1788, 145-156.	0.4	4
88	Quantitative proteomics identifies altered Oâ€GlcNAcylation of structural, synaptic and memoryâ€associated proteins in Alzheimer's disease. Journal of Pathology, 2017, 243, 78-88.	2.1	105
89	Fatiguing Contractions Induce Acute Redox Signaling in Mouse Muscle. Free Radical Biology and Medicine, 2017, 112, 191-192.	1.3	3
90	Optimization for Peptide Sample Preparation for Urine Peptidomics. Methods in Molecular Biology, 2017, 1788, 63-72.	0.4	5

#	Article	IF	CITATIONS
91	Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics. Journal of Translational Medicine, 2017, 15, 175.	1.8	5
92	Multiplexed targeted mass spectrometry assays for prostate cancer-associated urinary proteins. Oncotarget, 2017, 8, 101887-101898.	0.8	14
93	Abstract 226: Verification of prostate cancer genomics biomarker candidates at protein level using PRISM-SRM., 2017,,.		0
94	Advances in targeted proteomics and applications to biomedical research. Proteomics, 2016, 16, 2160-2182.	1.3	175
95	S&T-10 PROSTATE CANCER DIAGNOSIS BY MULTIPLE SECRETED PROTEIN BIOMARKERS IN VOIDED URINE. Journal of Urology, 2016, 195, .	0.2	0
96	Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry. Molecular and Cellular Proteomics, 2016, 15, 3694-3705.	2.5	29
97	Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway. Science Signaling, 2016, 9, rs6.	1.6	119
98	Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1021, 57-68.	1.2	47
99	SerpinB1 Promotes Pancreatic \hat{l}^2 Cell Proliferation. Cell Metabolism, 2016, 23, 194-205.	7.2	177
100	9-Fluorenylmethyl (Fm) Disulfides: Biomimetic Precursors for Persulfides. Organic Letters, 2016, 18, 904-907.	2.4	65
101	Mining the human urine proteome for monitoring renal transplant injury. Kidney International, 2016, 89, 1244-1252.	2.6	80
102	SNaPP: Simplified Nanoproteomics Platform for Reproducible Global Proteomic Analysis of Nanogram Protein Quantities. Endocrinology, 2016, 157, 1307-1314.	1.4	48
103	The current state of the art of quantitative phosphoproteomics and its applications to diabetes research. Expert Review of Proteomics, 2016, 13, 421-433.	1.3	26
104	Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry–Based Assays. Clinical Chemistry, 2016, 62, 48-69.	1.5	187
105	Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress. ACS Nano, 2016, 10, 524-538.	7. 3	77
106	The clinical impact of recent advances in LC-MS for cancer biomarker discovery and verification. Expert Review of Proteomics, 2016, 13, 99-114.	1.3	50
107	Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays. Methods in Molecular Biology, 2016, 1410, 223-236.	0.4	33
108	An efficient method for native protein purification in the selected range from prostate cancer tissue digests. Chinese Clinical Oncology, 2016, 5, 78-78.	0.4	4

#	Article	IF	CITATIONS
109	Abstract 3872: Quantification of mutant SPOP proteins in prostate cancer using targeted proteomics. , 2016, , .		0
110	The Measurement of Reversible Redox Dependent Post-translational Modifications and Their Regulation of Mitochondrial and Skeletal Muscle Function. Frontiers in Physiology, 2015, 6, 347.	1.3	46
111	Sensitive Targeted Quantification of ERK Phosphorylation Dynamics and Stoichiometry in Human Cells without Affinity Enrichment. Analytical Chemistry, 2015, 87, 1103-1110.	3.2	32
112	Preserved DNA Damage Checkpoint Pathway Protects against Complications in Long-Standing Type 1 Diabetes. Cell Metabolism, 2015, 22, 239-252.	7.2	40
113	Compensatory Islet Response to Insulin Resistance Revealed by Quantitative Proteomics. Journal of Proteome Research, 2015, 14, 3111-3122.	1.8	22
114	Analytical platform evaluation for quantification of ERG in prostate cancer using protein and mRNA detection methods. Journal of Translational Medicine, 2015, 13, 54.	1.8	23
115	Abstract 1818: Analytical platform evaluation for quantification of ERG oncoprotein in prostate cancer using protein and mRNA detection methods. , 2015, , .		0
116	High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model. PLoS ONE, 2014, 9, e92332.	1.1	13
117	Proteomic approaches for site-specific <i>O</i> -GlcNAcylation analysis. Bioanalysis, 2014, 6, 2571-2580.	0.6	13
118	Proteome-wide Light/Dark Modulation of Thiol Oxidation in Cyanobacteria Revealed by Quantitative Site-specific Redox Proteomics. Molecular and Cellular Proteomics, 2014, 13, 3270-3285.	2.5	75
119	Detecting differential protein expression in large-scale population proteomics. Bioinformatics, 2014, 30, 2741-2746.	1.8	17
120	A Method to Determine Lysine Acetylation Stoichiometries. International Journal of Proteomics, 2014, 2014, 1-8.	2.0	33
121	Antibodyâ€independent targeted quantification of TMPRSS2â€ERG fusion protein products in prostate cancer. Molecular Oncology, 2014, 8, 1169-1180.	2.1	24
122	A Highly Sensitive Targeted Mass Spectrometric Assay for Quantification of AGR2 Protein in Human Urine and Serum. Journal of Proteome Research, 2014, 13, 875-882.	1.8	59
123	Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling. Free Radical Biology and Medicine, 2014, 67, 460-470.	1.3	91
124	Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nature Protocols, 2014, 9, 64-75.	5.5	131
125	Expediting SRM Assay Development for Large-Scale Targeted Proteomics Experiments. Journal of Proteome Research, 2014, 13, 4479-4487.	1.8	29
126	Brain Insulin Lowers Circulating BCAA Levels by Inducing Hepatic BCAA Catabolism. Cell Metabolism, 2014, 20, 898-909.	7.2	124

#	Article	IF	CITATIONS
127	Optimization for peptide sample preparation for urine peptidomics. Clinical Proteomics, 2014, 11, 7.	1.1	33
128	The Identification of Novel Potential Injury Mechanisms and Candidate Biomarkers in Renal Allograft Rejection by Quantitative Proteomics. Molecular and Cellular Proteomics, 2014, 13, 621-631.	2.5	73
129	Perturbations in the Urinary Exosome in Transplant Rejection. Frontiers in Medicine, 2014, 1, 57.	1.2	43
130	Abstract 2483: An antibody-independent, complementary SRM strategy for ultrasensitive and multiplexed quantification of cancer biomarker candidates. , 2014 , , .		0
131	Liver-Derived Systemic Factors Drive \hat{l}^2 Cell Hyperplasia in Insulin-Resistant States. Cell Reports, 2013, 3, 968.	2.9	1
132	Traumaâ€associated human neutrophil alterations revealed by comparative proteomics profiling. Proteomics - Clinical Applications, 2013, 7, 571-583.	0.8	17
133	Long-Gradient Separations Coupled with Selected Reaction Monitoring for Highly Sensitive, Large Scale Targeted Protein Quantification in a Single Analysis. Analytical Chemistry, 2013, 85, 9196-9203.	3.2	41
134	Liver-Derived Systemic Factors Drive \hat{I}^2 Cell Hyperplasia in Insulin-Resistant States. Cell Reports, 2013, 3, 401-410.	2.9	123
135	Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger. Fungal Genetics and Biology, 2013, 61, 120-132.	0.9	25
136	Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry. Free Radical Biology and Medicine, 2013, 57, 68-78.	1.3	61
137	Evaluation of Selected Binding Domains for the Analysis of Ubiquitinated Proteomes. Journal of the American Society for Mass Spectrometry, 2013, 24, 1214-1223.	1.2	7
138	Targeted Quantification of Low ng/mL Level Proteins in Human Serum without Immunoaffinity Depletion. Journal of Proteome Research, 2013, 12, 3353-3361.	1.8	68
139	Resin-Assisted Enrichment of N-Terminal Peptides for Characterizing Proteolytic Processing. Analytical Chemistry, 2013, 85, 6826-6832.	3.2	24
140	Synthesis and Application of an Environmentally Insensitive Cy3-Based Arsenical Fluorescent Probe To Identify Adaptive Microbial Responses Involving Proximal Dithiol Oxidation. Journal of the American Chemical Society, 2013, 135, 3567-3575.	6.6	25
141	In-Source Fragmentation and the Sources of Partially Tryptic Peptides in Shotgun Proteomics. Journal of Proteome Research, 2013, 12, 910-916.	1.8	51
142	Antibody-free PRISM–SRM for multiplexed protein quantification: is this the new competition for immunoassays in bioanalysis?. Bioanalysis, 2013, 5, 267-269.	0.6	20
143	Determination of Burn Patient Outcome by Large-Scale Quantitative Discovery Proteomics. Critical Care Medicine, 2013, 41, 1421-1434.	0.4	55
144	Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15395-15400.	3.3	211

#	Article	IF	Citations
145	IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography–mass spectrometry for human plasma proteomics biomarker discovery. Methods, 2012, 56, 246-253.	1.9	57
146	Identification of phosphorylated butyrylcholinesterase in human plasma using immunoaffinity purification and mass spectrometry. Analytica Chimica Acta, 2012, 723, 68-75.	2.6	28
147	Analysis of serum total and free PSA using immunoaffinity depletion coupled to SRM: correlation with clinical immunoassay tests. Journal of Proteomics, 2012, 75, 4747-4757.	1.2	43
148	Mapping N-Linked Glycosylation Sites in the Secretome and Whole Cells of <i>Aspergillus niger</i> Using Hydrazide Chemistry and Mass Spectrometry. Journal of Proteome Research, 2012, 11, 143-156.	1.8	62
149	Simple Sodium Dodecyl Sulfate-Assisted Sample Preparation Method for LC-MS-Based Proteomics Applications. Analytical Chemistry, 2012, 84, 2862-2867.	3.2	74
150	Advancing the sensitivity of selected reaction monitoringâ€based targeted quantitative proteomics. Proteomics, 2012, 12, 1074-1092.	1.3	186
151	Abstract 1268: Accurate measurement of serum total and free PSA using immunoaffinity depletion coupled to SRM: Correlation with clinical immunoassays. , 2012, , .		0
152	Unraveling pancreatic islet biology by quantitative proteomics. Expert Review of Proteomics, 2011, 8, 495-504.	1.3	12
153	Identification of <i>c</i> -Type Heme-Containing Peptides Using Nonactivated Immobilized Metal Affinity Chromatography Resin Enrichment and Higher-Energy Collisional Dissociation. Analytical Chemistry, 2011, 83, 7260-7268.	3.2	5
154	Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics. Journal of Biological Chemistry, 2011, 286, 25443-25449.	1.6	171
155	Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics, 2011, 11, 4569-4577.	1.3	135
156	18O-Labeled Proteome Reference as Global Internal Standards for Targeted Quantification by Selected Reaction Monitoring-Mass Spectrometry. Molecular and Cellular Proteomics, 2011, 10, M110.007302.	2.5	17
157	Enhanced Sensitivity for Selected Reaction Monitoring Mass Spectrometry-based Targeted Proteomics Using a Dual Stage Electrodynamic Ion Funnel Interface. Molecular and Cellular Proteomics, 2011, 10, S1-S9.	2.5	49
158	Trypsin-Catalyzed Oxygen-18 Labeling for Quantitative Proteomics. Methods in Molecular Biology, 2011, 753, 43-54.	0.4	9
159	Shotgun proteomics identifies proteins specific for acute renal transplant rejection. Proteomics - Clinical Applications, 2010, 4, 32-47.	0.8	105
160	Clinical microfluidics for neutrophil genomics and proteomics. Nature Medicine, 2010, 16, 1042-1047.	15.2	168
161	Endogenous 3,4-Dihydroxyphenylalanine and Dopaquinone Modifications on Protein Tyrosine. Molecular and Cellular Proteomics, 2010, 9, 1199-1208.	2.5	23
162	CD90/THY1 is overexpressed in prostate cancer-associated fibroblasts and could serve as a cancer biomarker. Modern Pathology, 2010, 23, 1346-1356.	2.9	97

#	Article	IF	CITATIONS
163	Quantitative Analysis of Cell Surface Membrane Proteins Using Membrane-Impermeable Chemical Probe Coupled with sup 18 / sup O Labeling. Journal of Proteome Research, 2010, 9, 2160-2169.	1.8	19
164	Plasma Proteome Response to Severe Burn Injury Revealed by ¹⁸ O-Labeled "Universal― Reference-Based Quantitative Proteomics. Journal of Proteome Research, 2010, 9, 4779-4789.	1.8	54
165	Improved LCâ^MS/MS Spectral Counting Statistics by Recovering Low-Scoring Spectra Matched to Confidently Identified Peptide Sequences. Journal of Proteome Research, 2010, 9, 5698-5704.	1.8	47
166	Sensitive immunoassays of nitrated fibrinogen in human biofluids. Talanta, 2010, 81, 1662-1669.	2.9	11
167	Mapping protein abundance patterns in the brain using voxelation combined with liquid chromatography and mass spectrometry. Methods, 2010, 50, 77-84.	1.9	43
168	Region-Specific Protein Abundance Changes in the Brain of MPTP-Induced Parkinson's Disease Mouse Model. Journal of Proteome Research, 2010, 9, 1496-1509.	1.8	69
169	Large-Scale Multiplexed Quantitative Discovery Proteomics Enabled by the Use of an 18O-Labeled "Universal―Reference Sample. Journal of Proteome Research, 2009, 8, 290-299.	1.8	59
170	Mouse-Specific Tandem IgY7-SuperMix Immunoaffinity Separations for Improved LC-MS/MS Coverage of the Plasma Proteome. Journal of Proteome Research, 2009, 8, 5387-5395.	1.8	17
171	A statistical framework for protein quantitation in bottom-up MS-based proteomics. Bioinformatics, 2009, 25, 2028-2034.	1.8	149
172	A Simple Procedure for Effective Quenching of Trypsin Activity and Prevention of ¹⁸ O-Labeling Back-Exchange. Journal of Proteome Research, 2009, 8, 2157-2163.	1.8	50
173	Dual spatial maps of transcript and protein abundance in the mouse brain. Expert Review of Proteomics, 2009, 6, 243-249.	1.3	7
174	An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells. Journal of Proteome Research, 2009, 8, 3852-3861.	1.8	51
175	Elimination of Systematic Mass Measurement Errors in Liquid Chromatographyâ´'Mass Spectrometry Based Proteomics Using Regression Models anda PrioriPartial Knowledge of the Sample Content. Analytical Chemistry, 2008, 80, 693-706.	3.2	38
176	Characterization of the Mouse Pancreatic Islet Proteome and Comparative Analysis with Other Mouse Tissues. Journal of Proteome Research, 2008, 7, 3114-3126.	1.8	47
177	Capillary-Based Multi Nanoelectrospray Emitters:  Improvements in Ion Transmission Efficiency and Implementation with Capillary Reversed-Phase LC-ESI-MS. Analytical Chemistry, 2008, 80, 143-149.	3.2	70
178	Rapid Sample Processing for LC-MS-Based Quantitative Proteomics Using High Intensity Focused Ultrasound. Journal of Proteome Research, 2008, 7, 3860-3867.	1.8	40
179	Quantitative Proteome Mapping of Nitrotyrosines. Methods in Enzymology, 2008, 440, 191-205.	0.4	21
180	Application of Proteomics in the Discovery of Candidate Protein Biomarkers in a Diabetes Autoantibody Standardization Program Sample Subset. Journal of Proteome Research, 2008, 7, 698-707.	1.8	58

#	Article	IF	Citations
181	Proteome-Wide Identification of Proteins and Their Modifications with Decreased Ambiguities and Improved False Discovery Rates Using Unique Sequence Tags. Analytical Chemistry, 2008, 80, 1871-1882.	3.2	46
182	Quantitative Phosphoproteome Analysis of Lysophosphatidic Acid Induced Chemotaxis Applying Dual-Step ¹⁸ O Labeling Coupled with Immobilized Metal-Ion Affinity Chromatography. Journal of Proteome Research, 2008, 7, 4215-4224.	1.8	16
183	Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis Revealed by Proteomic and Transcriptomic Analyses of the Striata in Two Mouse Models of Parkinson's Disease. Journal of Proteome Research, 2008, 7, 666-677.	1.8	96
184	DAnTE: a statistical tool for quantitative analysis of -omics data. Bioinformatics, 2008, 24, 1556-1558.	1.8	397
185	Enhanced Detection of Low Abundance Human Plasma Proteins Using a Tandem IgY12-SuperMix Immunoaffinity Separation Strategy. Molecular and Cellular Proteomics, 2008, 7, 1963-1973.	2.5	183
186	Profiling signaling polarity in chemotactic cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8328-8333.	3. 3	78
187	Quantitative Analysis of Human Immunodeficiency Virus Type 1-Infected CD4 + Cell Proteome: Dysregulated Cell Cycle Progression and Nuclear Transport Coincide with Robust Virus Production. Journal of Virology, 2007, 81, 7571-7583.	1.5	84
188	A genome-scale map of expression for a mouse brain section obtained using voxelation. Physiological Genomics, 2007, 30, 313-321.	1.0	27
189	Spatial mapping of protein abundances in the mouse brain by voxelation integrated with high-throughput liquid chromatography-mass spectrometry. Genome Research, 2007, 17, 328-336.	2.4	62
190	Quantitative proteomic approaches for studying phosphotyrosine signaling. Expert Review of Proteomics, 2007, 4, 13-23.	1.3	41
191	A Method for Selective Enrichment and Analysis of Nitrotyrosine-Containing Peptides in Complex Proteome Samples. Journal of Proteome Research, 2007, 6, 2257-2268.	1.8	88
192	Accurate Mass Measurements in Proteomics. Chemical Reviews, 2007, 107, 3621-3653.	23.0	102
193	The Use of a Quantitative Cysteinyl-Peptide Enrichment Technology for High-Throughput Quantitative Proteomics. Methods in Molecular Biology, 2007, 359, 107-124.	0.4	16
194	Characterization of the Mouse Brain Proteome Using Global Proteomic Analysis Complemented with Cysteinyl-Peptide Enrichment. Journal of Proteome Research, 2006, 5, 361-369.	1.8	126
195	Evaluation of Multiprotein Immunoaffinity Subtraction for Plasma Proteomics and Candidate Biomarker Discovery Using Mass Spectrometry. Molecular and Cellular Proteomics, 2006, 5, 2167-2174.	2.5	197
196	Normalization Approaches for Removing Systematic Biases Associated with Mass Spectrometry and Label-Free Proteomics. Journal of Proteome Research, 2006, 5, 277-286.	1.8	375
197	Endogenously Nitrated Proteins in Mouse Brain: Links to Neurodegenerative Diseaseâ€. Biochemistry, 2006, 45, 8009-8022.	1.2	138
198	Characterization of the Human Pancreatic Islet Proteome by Two-Dimensional LC/MS/MS. Journal of Proteome Research, 2006, 5, 3345-3354.	1.8	58

#	Article	IF	Citations
199	Improved Peptide Elution Time Prediction for Reversed-Phase Liquid Chromatography-MS by Incorporating Peptide Sequence Information. Analytical Chemistry, 2006, 78, 5026-5039.	3.2	163
200	Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrometry Reviews, 2006, 25, 450-482.	2.8	291
201	Advances and Challenges in Liquid Chromatography-Mass Spectrometry-based Proteomics Profiling for Clinical Applications. Molecular and Cellular Proteomics, 2006, 5, 1727-1744.	2.5	309
202	High Dynamic Range Characterization of the Trauma Patient Plasma Proteome. Molecular and Cellular Proteomics, 2006, 5, 1899-1913.	2.5	142
203	Ultra-sensitive, high throughput and quantitative proteomics measurements. International Journal of Mass Spectrometry, 2005, 240, 195-212.	0.7	17
204	Comparative proteome analyses of human plasma followingin vivo lipopolysaccharide administration using multidimensional separations coupled with tandem mass spectrometry. Proteomics, 2005, 5, 572-584.	1.3	125
205	Improved proteome coverage by using high efficiency cysteinyl peptide enrichment: The human mammary epithelial cell proteome. Proteomics, 2005, 5, 1263-1273.	1.3	65
206	Proteome Analysis of Liver Cells Expressing a Full-Length Hepatitis C Virus (HCV) Replicon and Biopsy Specimens of Posttransplantation Liver from HCV-Infected Patients. Journal of Virology, 2005, 79, 7558-7569.	1.5	80
207	Quantitative Proteome Analysis of Human Plasma following in Vivo Lipopolysaccharide Administration Using 160/180 Labeling and the Accurate Mass and Time Tag Approach. Molecular and Cellular Proteomics, 2005, 4, 700-709.	2.5	156
208	Utilizing Human Blood Plasma for Proteomic Biomarker Discoveryâ€. Journal of Proteome Research, 2005, 4, 1073-1085.	1.8	288
209	Probability-Based Evaluation of Peptide and Protein Identifications from Tandem Mass Spectrometry and SEQUEST Analysis:Â The Human Proteome. Journal of Proteome Research, 2005, 4, 53-62.	1.8	320
210	Development and Evaluation of a Micro- and Nanoscale Proteomic Sample Preparation Method. Journal of Proteome Research, 2005, 4, 2397-2403.	1.8	161
211	Human PlasmaN-Glycoproteome Analysis by Immunoaffinity Subtraction, Hydrazide Chemistry, and Mass Spectrometry. Journal of Proteome Research, 2005, 4, 2070-2080.	1.8	394
212	Targeted Comparative Proteomics by Liquid Chromatography-Tandem Fourier Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2005, 77, 400-406.	3.2	47
213	Simultaneous monitoring of Zn ²⁺ secretion and intracellular Ca ²⁺ from islets and islet cells by fluorescence microscopy. BioTechniques, 2004, 37, 922-933.	0.8	31
214	High-throughput proteomics using Fourier transform ion cyclotron resonance mass spectrometry. Expert Review of Proteomics, 2004, 1, 87-95.	1.3	41
215	High-Throughput Comparative Proteome Analysis Using a Quantitative Cysteinyl-peptide Enrichment Technology. Analytical Chemistry, 2004, 76, 5345-5353.	3.2	142
216	Phosphoprotein Isotope-Coded Solid-Phase Tag Approach for Enrichment and Quantitative Analysis of Phosphopeptides from Complex Mixtures. Analytical Chemistry, 2003, 75, 5441-5450.	3.2	140

#	Article	IF	CITATIONS
217	Imaging of Zn2+Release from Pancreatic \hat{l}^2 -Cells at the Level of Single Exocytotic Events. Analytical Chemistry, 2003, 75, 3468-3475.	3.2	102
218	Microscale determination of purines in tissue samples by capillary liquid chromatography with electrochemical detection. Analyst, The, 2003, 128, 1013.	1.7	15
219	Effect of the Insulin Mimetic L-783,281 on Intracellular [Ca2+] and Insulin Secretion From Pancreatic Â-Cells. Diabetes, 2002, 51, S43-S49.	0.3	44
220	Detection and Imaging of Zinc Secretion from Pancreatic \hat{I}^2 -Cells Using a New Fluorescent Zinc Indicator. Journal of the American Chemical Society, 2002, 124, 776-778.	6.6	395
221	Spatial Organization of Ca2+ Entry and Exocytosis in Mouse Pancreatic β-Cells. Biochemical and Biophysical Research Communications, 2001, 286, 315-321.	1.0	21
222	Localized Exocytosis Detected by Spatially Resolved Amperometry in Single Pancreatic \hat{l}^2 -Cells. Cell Biochemistry and Biophysics, 2000, 33, 227-240.	0.9	24
223	Correlated Oscillations in Glucose Consumption, Oxygen Consumption, and Intracellular Free Ca2+ in Single Islets of Langerhans. Journal of Biological Chemistry, 2000, 275, 6642-6650.	1.6	111
224	Roles of Insulin Receptor Substrate-1, Phosphatidylinositol 3-Kinase, and Release of Intracellular Ca2+ Stores in Insulin-stimulated Insulin Secretion in \hat{l}^2 -Cells. Journal of Biological Chemistry, 2000, 275, 22331-22338.	1.6	149
225	Detection of Secretion from Single Pancreatic \hat{l}^2 -Cells Using Extracellular Fluorogenic Reactions and Confocal Fluorescence Microscopy. Analytical Chemistry, 2000, 72, 711-717.	3.2	100
226	Finite analytic solution and finite analytic numerical method for solving two-dimensional diffusion problems on microelectrodes. Journal of Electroanalytical Chemistry, 1997, 439, 29-36.	1.9	10
227	Finite analytic numerical method $\hat{a}\in$ " a new numerical simulation method for electrochemical problems. Journal of Electroanalytical Chemistry, 1996, 411, 19-27.	1.9	25
228	Application of the finite analytic numerical method. Part 1. Diffusion problems on coplanar and elevated interdigitated microarray band electrodes. Journal of Electroanalytical Chemistry, 1996, 411, 29-36.	1.9	27
229	Application of a finite analytic numerical method. Part 2. Digital simulation of charge transfer to an oblate hemispheroid microelectrode and experiment verification. Journal of Electroanalytical Chemistry, 1996, 414, 1-10.	1.9	17
230	Application of the finite analytical numerical method. Part 3. Digital simulation of charge transfer to a micro-ring electrode interface. Journal of Electroanalytical Chemistry, 1996, 417, 45-51.	1.9	20
231	The Use of a Quantitative Cysteinyl-Peptide Enrichment Technology for High-Throughput Quantitative Proteomics., 0,, 107-124.		0