List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4977323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applying green chemistry to raw material selection and product formulation at The Estée Lauder Companies. Green Chemistry, 2022, 24, 2397-2408.	9.0	5
2	The 2022 Outstanding Achievements in Environmental Science & Technology Award─The Americas Region. Environmental Science and Technology Letters, 2022, 9, 1-2.	8.7	0
3	The 2022 Outstanding Achievements in Environmental Science & Technology Award: The Americas Region. Environmental Science & Technology, 2022, 56, 1-2.	10.0	1
4	Synthetic Cooling Agents in US-marketed E-cigarette Refill Liquids and Popular Disposable E-cigarettes: Chemical Analysis and Risk Assessment. Nicotine and Tobacco Research, 2022, 24, 1037-1046.	2.6	31
5	What to Expect When Expecting in Lab: A Review of Unique Risks and Resources for Pregnant Researchers in the Chemical Laboratory. Chemical Research in Toxicology, 2022, 35, 163-198.	3.3	5
6	Improved Copper Circularity as a Result of Increased Material Efficiency in the U.S. Housing Stock. Environmental Science & Technology, 2022, 56, 4565-4577.	10.0	2
7	The 2021 <i>ES&T</i> Reviewer Awards. Environmental Science & Technology, 2022, 56, 7373-7374.	10.0	0
8	Differences in flavourant levels and synthetic coolant use between USA, EU and Canadian Juul products. Tobacco Control, 2021, 30, 453-455.	3.2	34
9	Quantification of Flavorants and Nicotine in Waterpipe Tobacco and Mainstream Smoke and Comparison to E-cigarette Aerosol. Nicotine and Tobacco Research, 2021, 23, 600-604.	2.6	8
10	<scp>CO₂</scp> process intensification of algae oil extraction to biodiesel. AICHE Journal, 2021, 67, .	3.6	12
11	Towards resolution of antibacterial mechanisms in metal and metal oxide nanomaterials: a meta-analysis of the influence of study design on mechanistic conclusions. Environmental Science: Nano, 2021, 8, 37-66.	4.3	16
12	Performance and Sustainability Tradeoffs of Oxidized Carbon Nanotubes as a Cathodic Material in Lithiumâ€Oxygen Batteries. ChemSusChem, 2021, 14, 898-908.	6.8	10
13	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
14	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
15	Remembering Jim Morgan and Our True North. Environmental Science & Technology, 2021, 55, 2709-2710.	10.0	2
16	The 2021 Outstanding Achievements in Environmental Science & Technology Award: The Asia–Pacific Region. Environmental Science and Technology Letters, 2021, 8, 1-2.	8.7	2
17	The 2021 Outstanding Achievements in Environmental Science & Technology Award—The Asia-Pacific Region. Environmental Science & Technology, 2021, 55, 809-810.	10.0	0
18	Electrocatalysis for Chemical and Fuel Production: Investigating Climate Change Mitigation Potential and Economic Feasibility. Environmental Science & amp; Technology, 2021, 55, 3240-3249.	10.0	30

#	Article	IF	CITATIONS
19	Moving from Protection to Prosperity: Evolving the U.S. Environmental Protection Agency for the next 50 years. Environmental Science & amp; Technology, 2021, 55, 2779-2789.	10.0	7
20	Nano-structural effects on Hematite (α-Fe2O3) nanoparticle radiofrequency heating. Nano Convergence, 2021, 8, 8.	12.1	20
21	Copper Recycling Flow Model for the United States Economy: Impact of Scrap Quality on Potential Energy Benefit. Environmental Science & Technology, 2021, 55, 5485-5495.	10.0	22
22	ES&T Works. Environmental Science & amp; Technology, 2021, 55, 2711-2712.	10.0	0
23	A review of immobilization techniques to improve the stability and bioactivity of lysozyme. Green Chemistry Letters and Reviews, 2021, 14, 302-338.	4.7	27
24	Selective adsorption of arsenic over phosphate by transition metal cross-linked chitosan. Chemical Engineering Journal, 2021, 412, 128582.	12.7	44
25	Green Chemistry: A Framework for a Sustainable Future. Organometallics, 2021, 40, 1801-1805.	2.3	4
26	Green Chemistry: A Framework for a Sustainable Future. Organic Letters, 2021, 23, 4935-4939.	4.6	6
27	Green Chemistry: A Framework for a Sustainable Future. Environmental Science & Technology, 2021, 55, 8459-8463.	10.0	12
28	Green Chemistry: A Framework for a Sustainable Future. Organic Process Research and Development, 2021, 25, 1455-1459.	2.7	18
29	Green Chemistry: A Framework for a Sustainable Future. Journal of Organic Chemistry, 2021, 86, 8551-8555.	3.2	4
30	Green Chemistry: A Framework for a Sustainable Future. ACS Sustainable Chemistry and Engineering, 2021, 9, 8336-8340.	6.7	2
31	Green Chemistry: A Framework for a Sustainable Future. Environmental Science and Technology Letters, 2021, 8, 487-491.	8.7	7
32	Green Chemistry: A Framework for a Sustainable Future. Industrial & Engineering Chemistry Research, 2021, 60, 8964-8968.	3.7	3
33	Green Chemistry: A Framework for a Sustainable Future. ACS Omega, 2021, 6, 16254-16258.	3.5	7
34	ES&T's Best Papers of 2020. Environmental Science & Technology, 2021, 55, 11489-11490.	10.0	0
35	Utilizing the broad electromagnetic spectrum and unique nanoscale properties for chemical-free water treatment. Current Opinion in Chemical Engineering, 2021, 33, 100709.	7.8	3
36	Welcome to the Future: Introducing ES&T's Inaugural Early Career Editorial Advisory Board. Environmental Science & Technology, 2021, 55, 811-812.	10.0	0

#	Article	IF	CITATIONS
37	Creating cascading non-linear solutions for the UN sustainable development goals through green chemistry. CheM, 2021, 7, 2825-2828.	11.7	3
38	CRISPR-Generated Nrf2a Loss- and Gain-of-Function Mutants Facilitate Mechanistic Analysis of Chemical Oxidative Stress-Mediated Toxicity in Zebrafish. Chemical Research in Toxicology, 2020, 33, 426-435.	3.3	8
39	Toward Less Hazardous Industrial Compounds: Coupling Quantum Mechanical Computations, Biomarker Responses, and Behavioral Profiles To Identify Bioactivity of SN2 Electrophiles in Alternative Vertebrate Models. Chemical Research in Toxicology, 2020, 33, 367-380.	3.3	8
40	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
41	Doing nano-enabled water treatment right: sustainability considerations from design and research through development and implementation. Environmental Science: Nano, 2020, 7, 3255-3278.	4.3	13
42	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
43	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
44	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
45	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	Ο
46	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
47	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	Ο
48	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
49	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
50	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
51	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
52	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
53	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
54	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0

#	Article	IF	CITATIONS
55	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
56	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
58	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
60	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
61	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
62	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
63	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
64	Aerobic oxidation of arsenite to arsenate by Cu(ii)–chitosan/O2 in Fenton-like reaction, a XANES investigation. Environmental Science: Water Research and Technology, 2020, 6, 2713-2722.	2.4	0
65	Toward Informed Design of Nanomaterials: A Mechanistic Analysis of Structure–Property–Function Relationships for Faceted Nanoscale Metal Oxides. ACS Nano, 2020, 14, 16472-16501.	14.6	41
66	<i>Environmental Science & Technology</i> and the United States Environmental Protection Agency: A Core Partnership in the Environmental Research Community. Environmental Science & Technology, 2020, 54, 14775-14775.	10.0	1
67	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
68	The Green Print: Advancement of Environmental Sustainability in Healthcare. Resources, Conservation and Recycling, 2020, 161, 104882.	10.8	121
69	Ionic cross-linked polyvinyl alcohol tunes vitrification and cold-crystallization of sugar alcohol for long-term thermal energy storage. Green Chemistry, 2020, 22, 5447-5462.	9.0	47
70	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
71	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
72	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1

#	Article	IF	CITATIONS
73	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
74	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
75	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	Ο
76	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
77	Magnetically recoverable carbon-coated iron carbide with arsenic adsorptive removal properties. SN Applied Sciences, 2020, 2, 1.	2.9	6
78	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
79	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	Ο
80	Why Was My Paper Rejected without Review?. Environmental Science & Technology, 2020, 54, 11641-11644.	10.0	10
81	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
82	Chemical Adducts of Reactive Flavor Aldehydes Formed in E-Cigarette Liquids Are Cytotoxic and Inhibit Mitochondrial Function in Respiratory Epithelial Cells. Nicotine and Tobacco Research, 2020, 22, S25-S34.	2.6	42
83	The 2021 James J. Morgan Early Career Award Winners: The Americas Region. Environmental Science & Technology, 2020, 54, 15561-15562.	10.0	0
84	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
85	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	Ο
86	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
87	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	Ο
88	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
89	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
90	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0

#	Article	IF	CITATIONS
91	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
92	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
93	Forward Together. Environmental Science & amp; Technology, 2020, 54, 4697-4697.	10.0	5
94	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
95	<i>ES&T</i> 's Best Papers of 2019. Environmental Science & Technology, 2020, 54, 7025-7026.	10.0	0
96	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
97	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
98	Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 2020, 15, 801-810.	31.5	119
99	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
100	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
101	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
102	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
103	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
104	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
105	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
106	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
107	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
108	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0

#	Article	IF	CITATIONS
109	Making Waves. Environmental Science & amp; Technology, 2020, 54, 6449-6450.	10.0	7
110	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
111	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
112	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13
113	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
114	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
115	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
116	Exploring the Mechanisms of Selectivity for Environmentally Significant Oxo-Anion Removal during Water Treatment: A Review of Common Competing Oxo-Anions and Tools for Quantifying Selective Adsorption. Environmental Science & Technology, 2020, 54, 9769-9790.	10.0	117
117	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
118	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
119	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
120	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
121	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
122	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
123	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
124	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
125	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
126	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0

#	Article	IF	CITATIONS
127	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	Ο
128	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
129	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
130	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
131	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
132	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
133	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
134	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
135	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
136	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
137	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
138	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
139	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
140	Evolving Today to Best Serve Tomorrow. Environmental Science & Technology, 2020, 54, 5923-5924.	10.0	6
141	Designing for a green chemistry future. Science, 2020, 367, 397-400.	12.6	645
142	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
143	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
144	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0

#	Article	IF	CITATIONS
145	Tunable Molybdenum Disulfide-Enabled Fiber Mats for High-Efficiency Removal of Mercury from Water. ACS Applied Materials & Interfaces, 2020, 12, 18446-18456.	8.0	55
146	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
147	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
148	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
149	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
150	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
151	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
152	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
153	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
154	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
155	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
156	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
157	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
158	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
159	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
160	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
161	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
162	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0

#	Article	IF	CITATIONS
163	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
164	Superparamagnetic MOF@GO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents. Science of the Total Environment, 2020, 738, 139213.	8.0	35
165	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
166	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
167	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
168	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
169	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	Ο
170	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
171	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
172	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
173	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
174	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
175	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	Ο
176	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
177	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
178	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
179	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0
180	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0

#	Article	IF	CITATIONS
181	The 2021 James J. Morgan Early Career Award Winners: The Americas Region. Environmental Science and Technology Letters, 2020, 7, 871-872.	8.7	0
182	Flavor-solvent reaction products in electronic cigarette liquids activate respiratory irritant receptors and elicit cytotoxic metabolic responses in airway epithelial cell. , 2020, , .		0
183	Flavorant–Solvent Reaction Products and Menthol in JUUL E-Cigarettes and Aerosol. American Journal of Preventive Medicine, 2019, 57, 425-427.	3.0	39
184	Tailored mesoporous biochar sorbents from pinecone biomass for the adsorption of natural organic matter from lake water. Journal of Molecular Liquids, 2019, 291, 111248.	4.9	45
185	The periodic table of the elements of green and sustainable chemistry. Green Chemistry, 2019, 21, 6545-6566.	9.0	90
186	Establishing structure-property-hazard relationships for multi-walled carbon nanotubes: The role of aggregation, surface charge, and oxidative stress on embryonic zebrafish mortality. Carbon, 2019, 155, 587-600.	10.3	23
187	Dataset for natural organic matter treatment by tailored biochars. Data in Brief, 2019, 25, 104353.	1.0	2
188	Mono- and poly-unsaturated triacylglycerol fractionation from Chlorella sp. using supercritical carbon dioxide. Algal Research, 2019, 43, 101644.	4.6	4
189	Cradle-to-Gate Greenhouse Gas Emissions for Twenty Anesthetic Active Pharmaceutical Ingredients Based on Process Scale-Up and Process Design Calculations. ACS Sustainable Chemistry and Engineering, 2019, 7, 6580-6591.	6.7	86
190	Removal of arsenic with reduced graphene oxide-TiO2-enabled nanofibrous mats. Chemical Engineering Journal, 2019, 375, 122040.	12.7	40
191	Controlling metal oxide nanoparticle size and shape with supercritical fluid synthesis. Green Chemistry, 2019, 21, 3769-3781.	9.0	49
192	Flexibility and intensity of global water use. Nature Sustainability, 2019, 2, 515-523.	23.7	106
193	Toward Realizing Multifunctionality: Photoactive and Selective Adsorbents for the Removal of Inorganics in Water Treatment. Accounts of Chemical Research, 2019, 52, 1206-1214.	15.6	32
194	Supercritical CO2 Transesterification of Triolein to Methyl-Oleate in a Batch Reactor: Experimental and Simulation Results. Processes, 2019, 7, 16.	2.8	7
195	Teaching Atom Economy and E-Factor Concepts through a Green Laboratory Experiment: Aerobic Oxidative Cleavage of meso-Hydrobenzoin to Benzaldehyde Using a Heterogeneous Catalyst. Journal of Chemical Education, 2019, 96, 761-765.	2.3	31
196	Preferential adsorption of selenium oxyanions onto {1 1 0} and {0 1 2} nano-hematite facets. Journal c Colloid and Interface Science, 2019, 537, 465-474.	of _{9.4}	40
197	Formation of flavorant–propylene Glycol Adducts With Novel Toxicological Properties in Chemically Unstable E-Cigarette Liquids. Nicotine and Tobacco Research, 2019, 21, 1248-1258.	2.6	139
198	The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 20, 1929-1961.	9.0	499

#	Article	IF	CITATIONS
199	Life cycle considerations of nano-enabled agrochemicals: are today's tools up to the task?. Environmental Science: Nano, 2018, 5, 1057-1069.	4.3	26
200	Greener Methodology: An Aldol Condensation of an Unprotected C-Glycoside with Solid Base Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 7810-7817.	6.7	7
201	A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations. Nature Nanotechnology, 2018, 13, 708-714.	31.5	89
202	The United Nations sustainability goals: How can sustainable chemistry contribute?. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 150-153.	5.9	87
203	The safer chemical design game. Gamification of green chemistry and safer chemical design concepts for high school and undergraduate students. Green Chemistry Letters and Reviews, 2018, 11, 103-110.	4.7	32
204	The Molecular Design Research Network. Toxicological Sciences, 2018, 161, 241-248.	3.1	17
205	Presence of High-Intensity Sweeteners in Popular Cigarillos of Varying Flavor Profiles. JAMA - Journal of the American Medical Association, 2018, 320, 1380.	7.4	13
206	Multifunctional photoactive and selective adsorbent for arsenite and arsenate: Evaluation of nano titanium dioxide-enabled chitosan cross-linked with copper. Journal of Hazardous Materials, 2018, 358, 145-154.	12.4	47
207	Comparative behavioral toxicology with two common larval fish models: Exploring relationships among modes of action and locomotor responses. Science of the Total Environment, 2018, 640-641, 1587-1600.	8.0	49
208	The Value-Adding Connections Between the Management of Ecoinnovation and the Principles of Green Chemistry and Green Engineering. , 2018, , 981-998.		8
209	Low risk posed by engineered and incidental nanoparticles in drinking water. Nature Nanotechnology, 2018, 13, 661-669.	31.5	118
210	Selectively biorefining astaxanthin and triacylglycerol co-products from microalgae with supercritical carbon dioxide extraction. Bioresource Technology, 2018, 269, 81-88.	9.6	33
211	Carbon Dioxide Mediated Transesterification of Mixed Triacylglyceride Substrates. Energy & Fuels, 2018, 32, 9624-9632.	5.1	5
212	Exploration of a Novel, Enamine-Solid-Base Catalyzed Aldol Condensation with C-Glycosidic Pyranoses and Furanoses. ACS Sustainable Chemistry and Engineering, 2018, 6, 11196-11199.	6.7	5
213	Process Intensification of Algae Oil Extraction to Biodiesel. Computer Aided Chemical Engineering, 2018, 44, 1699-1704.	0.5	3
214	Harmonized algal biofuel life cycle assessment studies enable direct process train comparison. Applied Energy, 2018, 224, 494-509.	10.1	24
215	Sooting tendencies of diesel fuels, jet fuels, and their surrogates in diffusion flames. Fuel, 2017, 197, 445-458.	6.4	90
216	Meta-analysis and Harmonization of Life Cycle Assessment Studies for Algae Biofuels. Environmental Science & amp; Technology, 2017, 51, 9419-9432.	10.0	49

#	Article	IF	CITATIONS
217	Freshwater Vulnerability beyond Local Water Stress: Heterogeneous Effects of Water-Electricity Nexus Across the Continental United States. Environmental Science & Technology, 2017, 51, 9899-9910.	10.0	38
218	Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO ₂ to CO conversion via the reverse water-gas shift reaction. Nanoscale, 2017, 9, 12984-12995.	5.6	36
219	Toward the Design of Less Hazardous Chemicals: Exploring Comparative Oxidative Stress in Two Common Animal Models. Chemical Research in Toxicology, 2017, 30, 893-904.	3.3	26
220	The effect of sucralose on flavor sweetness in electronic cigarettes varies between delivery devices. PLoS ONE, 2017, 12, e0185334.	2.5	20
221	Timeâ€dependent life cycle assessment of microalgal biorefinery coâ€products. Biofuels, Bioproducts and Biorefining, 2016, 10, 409-421.	3.7	17
222	More than Target 6.3: A Systems Approach to Rethinking Sustainable Development Goals in a Resource-Scarce World. Engineering, 2016, 2, 481-489.	6.7	56
223	The role of counter ions in nano-hematite synthesis: Implications for surface area and selenium adsorption capacity. Journal of Hazardous Materials, 2016, 310, 117-124.	12.4	54
224	Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World. Environmental Science & Technology, 2016, 50, 5143-5153.	10.0	84
225	The Molecular Basis of Sustainability. CheM, 2016, 1, 10-12.	11.7	39
226	Coupled molecular design diagrams to guide safer chemical design with reduced likelihood of perturbing the NRF2-ARE antioxidant pathway and inducing cytotoxicity. Green Chemistry, 2016, 18, 6387-6394.	9.0	7
227	Overcoming implementation barriers for nanotechnology in drinking water treatment. Environmental Science: Nano, 2016, 3, 1241-1253.	4.3	101
228	Safer by Design. Green Chemistry, 2016, 18, 4324-4324.	9.0	11
229	Ammonia inhibition in oleaginous microalgae. Algal Research, 2016, 19, 123-127.	4.6	115
230	Probabilistic diagram for designing chemicals with reduced potency to incur cytotoxicity. Green Chemistry, 2016, 18, 4461-4467.	9.0	11
231	Systems Approach to Climate, Water, and Diarrhea in Hubli-Dharwad, India. Environmental Science & Technology, 2016, 50, 13042-13051.	10.0	15
232	A Strategy for Material Supply Chain Sustainability: Enabling a Circular Economy in the Electronics Industry through Green Engineering. ACS Sustainable Chemistry and Engineering, 2016, 4, 5879-5888.	6.7	65
233	Simultaneous Extraction, Fractionation, and Enrichment of Microalgal Triacylglyerides by Exploiting the Tunability of Neat Supercritical Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2016, 4, 6222-6230.	6.7	14
234	Current Status and Future Challenges in Molecular Design for Reduced Hazard. ACS Sustainable Chemistry and Engineering, 2016, 4, 5900-5906.	6.7	35

#	Article	IF	CITATIONS
235	(Virtual) Water Flows Uphill toward Money. Environmental Science & Technology, 2016, 50, 12320-12330.	10.0	34
236	High-Intensity Sweeteners in Alternative Tobacco Products. Nicotine and Tobacco Research, 2016, 18, 2169-2173.	2.6	30
237	Assessment of predictive models for estimating the acute aquatic toxicity of organic chemicals. Green Chemistry, 2016, 18, 4432-4445.	9.0	99
238	Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases. Science of the Total Environment, 2016, 548-549, 82-90.	8.0	49
239	Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide. Environmental Science & Technology, 2016, 50, 3975-3984.	10.0	96
240	Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex. Water Research, 2016, 88, 889-896.	11.3	58
241	Estimates of solid waste disposal rates and reduction targets for landfill gas emissions. Nature Climate Change, 2016, 6, 162-165.	18.8	129
242	Phase equilibria of triolein to biodiesel reactor systems. Fluid Phase Equilibria, 2016, 409, 171-192.	2.5	25
243	Identifying and designing chemicals with minimal acute aquatic toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6289-6294.	7.1	75
244	Life Cycle Payback Estimates of Nanosilver Enabled Textiles under Different Silver Loading, Release, And Laundering Scenarios Informed by Literature Review. Environmental Science & Technology, 2015, 49, 7529-7542.	10.0	44
245	Coordinating modeling and experimental research of engineered nanomaterials to improve life cycle assessment studies. Environmental Science: Nano, 2015, 2, 669-682.	4.3	39
246	Highly Conductive Single-Walled Carbon Nanotube Thin Film Preparation by Direct Alignment on Substrates from Water Dispersions. Langmuir, 2015, 31, 1155-1163.	3.5	18
247	Economic and Environmental Assessment of Office Building Rainwater Harvesting Systems in Various U.S. Cities. Environmental Science & Technology, 2015, 49, 1768-1778.	10.0	53
248	Toward designing safer chemicals. Science, 2015, 347, 215-215.	12.6	17
249	Toward safer multi-walled carbon nanotube design: Establishing a statistical model that relates surface charge and embryonic zebrafish mortality. Nanotoxicology, 2015, 10, 1-10.	3.0	25
250	Enhanced dispersion and electronic performance of single-walled carbon nanotube thin films without surfactant: A comprehensive study of various treatment processes. Carbon, 2015, 93, 1008-1020.	10.3	11
251	Application of membrane dewatering for algal biofuel. Algal Research, 2015, 11, 1-12.	4.6	103
252	Toward substitution with no regrets. Science, 2015, 347, 1198-1199.	12.6	107

#	Article	IF	CITATIONS
253	Designing nanomaterials to maximize performance and minimize undesirable implications guided by the Principles of Green Chemistry. Chemical Society Reviews, 2015, 44, 5758-5777.	38.1	183
254	Role of CO ₂ in Mass Transfer, Reaction Kinetics, and Interphase Partitioning for the Transesterification of Triolein in an Expanded Methanol System with Heterogeneous Acid Catalyst. ACS Sustainable Chemistry and Engineering, 2015, 3, 2669-2677.	6.7	17
255	Reducing aquatic hazards of industrial chemicals: Probabilistic assessment of sustainable molecular design guidelines. Environmental Toxicology and Chemistry, 2014, 33, 1894-1902.	4.3	21
256	Green Chemistry as a Leadership Opportunity for Toxicology: We Must Take the Wheel. Toxicological Sciences, 2014, 141, 4-5.	3.1	12
257	Adsorption of selenite and selenate by nanocrystalline aluminum oxide, neat and impregnated in chitosan beads. Water Research, 2014, 50, 373-381.	11.3	119
258	Evaluating microalgal integrated biorefinery schemes: Empirical controlled growth studies and life cycle assessment. Bioresource Technology, 2014, 151, 19-27.	9.6	81
259	Life Cycle Impacts and Benefits of a Carbon Nanotube-Enabled Chemical Gas Sensor. Environmental Science & Technology, 2014, 48, 11360-11368.	10.0	48
260	Toward Tailored Functional Design of Multi-Walled Carbon Nanotubes (MWNTs): Electrochemical and Antimicrobial Activity Enhancement via Oxidation and Selective Reduction. Environmental Science & Technology, 2014, 48, 5938-5945.	10.0	44
261	Energy–Water Nexus Analysis of Enhanced Water Supply Scenarios: A Regional Comparison of Tampa Bay, Florida, and San Diego, California. Environmental Science & Technology, 2014, 48, 5883-5891.	10.0	94
262	Enzymatic and acid hydrolysis of Tetraselmis suecica for polysaccharide characterization. Bioresource Technology, 2014, 173, 415-421.	9.6	42
263	Effect of System Conditions for Biodiesel Production via Transesterification Using Carbon Dioxide–Methanol Mixtures in the Presence of a Heterogeneous Catalyst. ACS Sustainable Chemistry and Engineering, 2014, 2, 387-395.	6.7	23
264	A system dynamics approach for urban water reuse planning: a case study from the Great Lakes region. Stochastic Environmental Research and Risk Assessment, 2013, 27, 675-691.	4.0	27
265	Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends in Biotechnology, 2013, 31, 134-138.	9.3	178
266	Realizing Comparable Oxidative and Cytotoxic Potential of Single- and Multiwalled Carbon Nanotubes through Annealing. Environmental Science & amp; Technology, 2013, 47, 130726133045005.	10.0	24
267	Consequential Environmental and Economic Life Cycle Assessment of Green and Gray Stormwater Infrastructures for Combined Sewer Systems. Environmental Science & Technology, 2013, 47, 11189-11198.	10.0	120
268	A Free Energy Approach to the Prediction of Olefin and Epoxide Mutagenicity and Carcinogenicity. Chemical Research in Toxicology, 2012, 25, 2780-2787.	3.3	18
269	Barriers to the Implementation of Green Chemistry in the United States. Environmental Science & Technology, 2012, 46, 10892-10899.	10.0	56
270	Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads. Water Research, 2012, 46, 4427-4434.	11.3	127

#	Article	IF	CITATIONS
271	Impact of Surface Functionalization on Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. Environmental Science & Technology, 2012, 46, 6297-6305.	10.0	119
272	Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans. Bioresource Technology, 2012, 121, 445-449.	9.6	103
273	Towards rational molecular design for reduced chronic aquatic toxicity. Green Chemistry, 2012, 14, 1001.	9.0	52
274	Derivation and synthesis of renewable surfactants. Chemical Society Reviews, 2012, 41, 1499-1518.	38.1	237
275	Construction Matters: Comparing Environmental Impacts of Building Modular and Conventional Homes in the United States. Journal of Industrial Ecology, 2012, 16, 243-253.	5.5	140
276	Green chemistry and green engineering in China: drivers, policies and barriers to innovation. Journal of Cleaner Production, 2012, 32, 193-203.	9.3	92
277	Combinatorial Life Cycle Assessment to Inform Process Design of Industrial Production of Algal Biodiesel. Environmental Science & Technology, 2011, 45, 7060-7067.	10.0	318
278	Fate of Sucralose through Environmental and Water Treatment Processes and Impact on Plant Indicator Species. Environmental Science & Technology, 2011, 45, 1363-1369.	10.0	158
279	Biodiesel production: the potential of algal lipids extracted with supercritical carbon dioxide. Green Chemistry, 2011, 13, 1422.	9.0	131
280	Green Chemistry and Green Engineering: A Framework for Sustainable Technology Development. Annual Review of Environment and Resources, 2011, 36, 271-293.	13.4	166
281	Linear and cyclic C-glycosides as surfactants. Green Chemistry, 2011, 13, 321-325.	9.0	38
282	Optimization of capacity and kinetics for a novel bio-based arsenic sorbent, TiO2-impregnated chitosan bead. Water Research, 2011, 45, 5745-5754.	11.3	69
283	Algae as a source of renewable chemicals: opportunities and challenges. Green Chemistry, 2011, 13, 1399.	9.0	201
284	Sustainability and Commerce Trends. Journal of Industrial Ecology, 2011, 15, 821-824.	5.5	21
285	Towards rational molecular design: derivation of property guidelines for reduced acute aquatic toxicity. Green Chemistry, 2011, 13, 2373.	9.0	66
286	Toward molecular design for hazard reduction—fundamental relationships between chemical properties and toxicity. Tetrahedron, 2010, 66, 1031-1039.	1.9	28
287	Challenges in Developing Biohydrogen as a Sustainable Energy Source: Implications for a Research Agenda. Environmental Science & amp; Technology, 2010, 44, 2243-2254.	10.0	161
288	A Proactive Approach to Toxic Chemicals: Moving Green Chemistry Beyond Alternatives in the "Safe Chemicals Act of 2010― Environmental Science & Technology, 2010, 44, 6022-6023.	10.0	10

#	Article	IF	CITATIONS
289	Accelerated Solvent Extraction of Lignin from Aleurites moluccana (Candlenut) Nutshells. Journal of Agricultural and Food Chemistry, 2010, 58, 10045-10048.	5.2	30
290	Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead. Water Research, 2010, 44, 5722-5729.	11.3	139
291	Measuring the Embodied Energy in Drinking Water Supply Systems: A Case Study in The Great Lakes Region. Environmental Science & Technology, 2010, 44, 9516-9521.	10.0	72
292	Integrating Green Engineering into Engineering Curricula. ACS Symposium Series, 2009, , 137-146.	0.5	1
293	Toward Understanding <i>Opuntia</i> as a Natural Coagulant. Proceedings of the Water Environment Federation, 2009, 2009, 167-173.	0.0	1
294	Toward Green Nano. Journal of Industrial Ecology, 2008, 12, 316-328.	5.5	145
295	Global Stressors on Water Quality and Quantity. Environmental Science & Technology, 2008, 42, 4247-4254.	10.0	168
296	Comparison of Life Cycle Emissions and Energy Consumption for Environmentally Adapted Metalworking Fluid Systems. Environmental Science & Technology, 2008, 42, 8534-8540.	10.0	59
297	Toward Understanding the Efficacy and Mechanism of <i>Opuntia</i> spp. as a Natural Coagulant for Potential Application in Water Treatment. Environmental Science & Technology, 2008, 42, 4274-4279.	10.0	222
298	Spatial Assessment of Net Mercury Emissions from the Use of Fluorescent Bulbs. Environmental Science & Technology, 2008, 42, 8564-8570.	10.0	38
299	Design Through the 12 Principles of Green Engineering. IEEE Engineering Management Review, 2007, 35, 16-16.	1.3	45
300	Integrating Developed and Developing World Knowledge into Global Discussions and Strategies for Sustainability. 2. Economics and Governance. Environmental Science & Technology, 2007, 41, 3422-3430.	10.0	16
301	Integrating Developed and Developing World Knowledge into Global Discussions and Strategies for Sustainability. 1. Science and Technology. Environmental Science & Technology, 2007, 41, 3415-3421.	10.0	25
302	Chapter 10 When is waste not a waste?. Sustainability Science and Engineering, 2006, 1, 201-221.	0.6	3
303	Influence of Ion Accumulation on the Emulsion Stability and Performance of Semi-Synthetic Metalworking Fluids. Environmental Science & Technology, 2004, 38, 2482-2490.	10.0	20
304	Peer Reviewed: Design Through the 12 Principles of Green Engineering. Environmental Science & Technology, 2003, 37, 94A-101A.	10.0	992
305	Design of Hard Water Stable Emulsifier Systems for Petroleum- and Bio-based Semi-synthetic Metalworking Fluids. Environmental Science & Technology, 2003, 37, 5278-5288.	10.0	46
306	Peer Reviewed: Applying the Principles of Green Engineering to Cradle-to-Cradle Design. Environmental Science & Technology, 2003, 37, 434A-441A.	10.0	224

#	ARTICLE	IF	CITATIONS
307	Diffusion of Sustainable Systems Engineering Through Interdisciplinary Graduate and Undergraduate Education at the University of Michigan. , 2003, , .		0
308	Partitioning of Ethoxylated Nonionic Surfactants in Water/NAPL Systems:Â Effects of Surfactant and NAPL Properties. Environmental Science & Technology, 2000, 34, 1583-1588.	10.0	71
309	Partitioning of Ethoxylated Nonionic Surfactants into Nonaqueous-Phase Organic Liquids:Â Influence on Solubilization Behavior. Environmental Science & Technology, 1999, 33, 169-176.	10.0	49
310	Approaches to Innovations in the Aerospace Sector through Green Engineering and Green Chemistry. , 0, , .		0
311	Hearing All Voices to Address Environmental Challenges at a Global Scale. Environmental Science & Technology, 0, , .	10.0	1