Francisco J Ruiz-Ruano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4976867/publications.pdf

Version: 2024-02-01

52 1,287 19 32
papers citations h-index g-index

59 59 59 1091 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Transposable element landscapes illuminate past evolutionary events in the endangered fern <i>Vandenboschia speciosa</i> . Genome, 2022, 65, 95-103.	2.0	3
2	Occasional paternal inheritance of the germline-restricted chromosome in songbirds. Proceedings of the National Academy of Sciences of the United States of America, $2022, 119, \ldots$	7.1	10
3	Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biology, 2022, 20, 36.	3.8	29
4	Mendelian nightmares: the germline-restricted chromosome of songbirds. Chromosome Research, 2022, 30, 255-272.	2.2	11
5	In-Depth Satellitome Analyses of 37 <i>Drosophila</i> Species Illuminate Repetitive DNA Evolution in the <i>Drosophila</i> Genus. Genome Biology and Evolution, 2022, 14, .	2.5	16
6	Satellite DNA Is an Inseparable Fellow Traveler of B Chromosomes. Progress in Molecular and Subcellular Biology, 2021, 60, 85-102.	1.6	2
7	A long-term conserved satellite DNA that remains unexpanded in several genomes of Characiformes fish is actively transcribed. Genome Biology and Evolution, 2021, 13, .	2.5	12
8	Long-term persistence of supernumerary B chromosomes in multiple species of Astyanax fish. BMC Biology, 2021, 19, 52.	3.8	8
9	Out of patterns, the euchromatic B chromosome of the grasshopper Abracris flavolineata is not enriched in high-copy repeats. Heredity, 2021, 127, 475-483.	2.6	10
10	Mind the <i>numt </i> : Finding informative mitochondrial markers in a giant grasshopper genome. Journal of Zoological Systematics and Evolutionary Research, 2021, 59, 635-645.	1.4	12
11	Satellite DNA content of B chromosomes in the characid fish Characidium gomesi supports their origin from sex chromosomes. Molecular Genetics and Genomics, 2020, 295, 195-207.	2.1	22
12	Satellitome Analysis in the Ladybird Beetle Hippodamia variegata (Coleoptera, Coccinellidae). Genes, 2020, 11, 783.	2.4	18
13	Development and characterization of 15 novel polymorphic microsatellite loci for two important bot flies (Diptera, Oestridae) by next-generation sequencing. Parasitology Research, 2020, 119, 2829-2835.	1.6	1
14	High dynamism for neo-sex chromosomes: satellite DNAs reveal complex evolution in a grasshopper. Heredity, 2020, 125, 124-137.	2.6	25
15	Eight Million Years of Satellite DNA Evolution in Grasshoppers of the Genus Schistocerca Illuminate the Ins and Outs of the Library Hypothesis. Genome Biology and Evolution, 2020, 12, 88-102.	2.5	30
16	The complete mitochondrial genome of Talpa aquitania (Talpidae; Insectivora), a mole species endemic to northern Spain and southern France. Molecular Biology Reports, 2020, 47, 2397-2403.	2.3	6
17	Differential Expression of Genes Related to Sexual Determination Can Modify the Reproductive Cycle of Astyanax scabripinnis (Characiformes: Characidae) in B Chromosome Carrier Individuals. Genes, 2019, 10, 909.	2.4	3

Complete mitochondrial genome of the Western Capercaillie Tetrao urogallus (Phasianidae,) Tj ETQq0 0 0 rgBT /Overlock 10 If 50 62 To

#	Article	IF	Citations
19	How dynamic could be the 45S rDNA cistron? An intriguing variability in a grasshopper species revealed by integration of chromosomal and genomic data. Chromosoma, 2019, 128, 165-175.	2.2	14
20	Phylogenetic signal of genomic repeat abundances can be distorted by random homoplasy: a case study from hominid primates. Zoological Journal of the Linnean Society, 2019, 185, 543-554.	2.3	11
21	Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Scientific Reports, 2019, 9, 5856.	3.3	40
22	Programmed DNA elimination of germline development genes in songbirds. Nature Communications, 2019, 10, 5468.	12.8	66
23	Full plastome sequence of the fern Vandenboschia speciosa (Hymenophyllales): structural singularities and evolutionary insights. Journal of Plant Research, 2019, 132, 3-17.	2.4	8
24	Gene expression changes elicited by a parasitic B chromosome in the grasshopper Eyprepocnemis plorans are consistent with its phenotypic effects. Chromosoma, 2019, 128, 53-67.	2.2	15
25	Characterization of the satellitome in lower vascular plants: the case of the endangered fern <i>Vandenboschia speciosa (i). Annals of Botany, 2019, 123, 587-599.</i>	2.9	20
26	High-throughput analysis of satellite DNA in the grasshopper Pyrgomorpha conica reveals abundance of homologous and heterologous higher-order repeats. Chromosoma, 2018, 127, 323-340.	2.2	29
27	Quantitative sequence characterization for repetitive DNA content in the supernumerary chromosome of the migratory locust. Chromosoma, 2018, 127, 45-57.	2.2	25
28	Post-meiotic B chromosome expulsion, during spermiogenesis, in two grasshopper species. Chromosoma, 2017, 126, 633-644.	2.2	9
29	Protein-coding genes in B chromosomes of the grasshopper Eyprepocnemis plorans. Scientific Reports, 2017, 7, 45200.	3.3	53
30	High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax. Scientific Reports, 2017, 7, 12726.	3.3	40
31	Satellite DNA content illuminates the ancestry of a supernumerary (B) chromosome. Chromosoma, 2017, 126, 487-500.	2.2	36
32	Transcription of a B chromosome CAP-G pseudogene does not influence normal Condensin Complex genes in a grasshopper. Scientific Reports, 2017, 7, 17650.	3.3	9
33	A Glimpse into the Satellite DNA Library in Characidae Fish (Teleostei, Characiformes). Frontiers in Genetics, 2017, 8, 103.	2.3	27
34	First complete female mitochondrial genome in four bivalve species genus Donax and their phylogenetic relationships within the Veneroida order. PLoS ONE, 2017, 12, e0184464.	2.5	19
35	Uncovering the Ancestry of B Chromosomes in Moenkhausia sanctaefilomenae (Teleostei, Characidae). PLoS ONE, 2016, 11, e0150573.	2.5	48
36	High-throughput analysis of the satellitome illuminates satellite DNA evolution. Scientific Reports, 2016, 6, 28333.	3.3	176

#	Article	IF	Citations
37	The complete mitochondrial genome sequence of <i>Astyanax paranae</i> (Teleostei: characiformes). Mitochondrial DNA Part B: Resources, 2016, 1, 586-587.	0.4	6
38	Origin of B chromosomes in the genus Astyanax (Characiformes, Characidae) and the limits of chromosome painting. Molecular Genetics and Genomics, 2016, 291, 1407-1418.	2.1	28
39	DNA barcoding of Iberian Peninsula and North Africa Tawny Owls <i>Strix aluco</i> suggests the Strait of Gibraltar as an important barrier for phylogeography. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 4475-4478.	0.7	6
40	Genomics of Ecological Adaptation in Cactophilic Drosophila. Genome Biology and Evolution, 2015, 7, 349-366.	2.5	51
41	Intragenomic distribution of RTE retroelements suggests intrachromosomal movement. Chromosome Research, 2015, 23, 211-223.	2.2	O
42	Non-random expression of ribosomal DNA units in a grasshopper showing high intragenomic variation for the ITS2 region. Insect Molecular Biology, 2015, 24, 319-330.	2.0	2
43	Transient Microgeographic Clines during B Chromosome Invasion. American Naturalist, 2015, 186, 675-681.	2.1	9
44	A step to the gigantic genome of the desert locust: chromosome sizes and repeated DNAs. Chromosoma, 2015, 124, 263-275.	2.2	53
45	Next generation sequencing and FISH reveal uneven and nonrandom microsatellite distribution in two grasshopper genomes. Chromosoma, 2015, 124, 221-234.	2.2	40
46	U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization. Heredity, 2015, 114, 207-219.	2.6	22
47	A mobile insulator system to detect and disrupt <i>cis</i> regulatory landscapes in vertebrates. Genome Research, 2014, 24, 487-495.	5.5	12
48	Disparate molecular evolution of two types of repetitive DNAs in the genome of the grasshopper Eyprepocnemis plorans. Heredity, 2014, 112, 531-542.	2.6	22
49	Delimiting the Origin of a B Chromosome by FISH Mapping, Chromosome Painting and DNA Sequence Analysis in Astyanax paranae (Teleostei, Characiformes). PLoS ONE, 2014, 9, e94896.	2.5	85
50	The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species. Chromosome Research, 2013, 21, 393-406.	2.2	7
51	DNA Amount of X and B Chromosomes in the Grasshoppers & lt; i> Eyprepocnemis plorans & lt; i> and & lt; i> Locusta migratoria & lt; i>. Cytogenetic and Genome Research, 2011, 134, 120-126.	1.1	30
52	DNA metabarcoding of Neotropical ichthyoplankton: Enabling high accuracy with lower cost. Metabarcoding and Metagenomics, 0, 3, .	0.0	21