List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4976664/publications.pdf Version: 2024-02-01

		1893	3915
411	37,428	102	177
papers	citations	h-index	g-index
422	422	422	32411
all docs	docs citations	times ranked	citing authors

IANG-KYO KIM

#	Article	IF	CITATIONS
1	Rational Design of All Resistive Multifunctional Sensors with Stimulus Discriminability. Advanced Functional Materials, 2022, 32, .	14.9	33
2	NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries. Energy Storage Materials, 2022, 44, 477-486.	18.0	73
3	Interdigitated Three-Dimensional Heterogeneous Nanocomposites for High-Performance Mechanochromic Smart Membranes. ACS Nano, 2022, 16, 68-77.	14.6	15
4	Superinsulating BNNS/PVA Composite Aerogels with High Solar Reflectance for Energy-Efficient Buildings. Nano-Micro Letters, 2022, 14, 54.	27.0	36
5	Deciphering the exceptional kinetics of hierarchical nitrogen-doped carbon electrodes for high-performance vanadium redox flow batteries. Journal of Materials Chemistry A, 2022, 10, 5605-5613.	10.3	14
6	Highly Sodiophilic, Defectâ€Rich, Ligninâ€Derived Skeletal Carbon Nanofiber Host for Sodium Metal Batteries. Advanced Energy Materials, 2022, 12, .	19.5	47
7	Integrated Water and Thermal Managements in Bioinspired Hierarchical MXene Aerogels for Highly Efficient Solarâ€Powered Water Evaporation. Advanced Functional Materials, 2022, 32, .	14.9	94
8	Highly porous carbon nanofiber electrodes for vanadium redox flow batteries. Nanoscale, 2022, 14, 5804-5813.	5.6	16
9	Accelerating the dissolution kinetics of iodine with a cosolvent for a high-current zinc–iodine flow battery. Journal of Materials Chemistry A, 2022, 10, 14090-14097.	10.3	18
10	Liquefication for performance versatility. Nature Energy, 2022, 7, 478-479.	39.5	0
11	Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Progress in Materials Science, 2021, 115, 100708.	32.8	150
12	Green Strategies to Printed Sensors for Healthcare Applications. Polymer Reviews, 2021, 61, 116-156.	10.9	30
13	Rationally designed nanostructured metal chalcogenides for advanced sodium-ion batteries. Energy Storage Materials, 2021, 34, 582-628.	18.0	73
14	Unveiling solid electrolyte interface morphology and electrochemical kinetics of amorphous Sb2Se3/CNT composite anodes for ultrafast sodium storage. Carbon, 2021, 171, 119-129.	10.3	21
15	Unravelling intercalation-regulated nanoconfinement for durably ultrafast sieving graphene oxide membranes. Journal of Membrane Science, 2021, 619, 118791.	8.2	80
16	Discovering melamine-specific bioreceptors via phage display, constructing its validation method based on the quenching on nanocomplex, and applying screened bioreceptor to the electrochemical assay of melamine. Sensors and Actuators B: Chemical, 2021, 330, 129279.	7.8	2
17	In situ growth of Sn nanoparticles confined carbon-based TiO2/TiN composite with long-term cycling stability for sodium-ion batteries. Electrochimica Acta, 2021, 367, 137450.	5.2	16
18	Recent advances of bimetallic nanomaterials and its nanocomposites for biosensing applications. TrAC - Trends in Analytical Chemistry, 2021, 135, 116159.	11.4	49

#	Article	IF	CITATIONS
19	Flexible temperature sensors made of aligned electrospun carbon nanofiber films with outstanding sensitivity and selectivity towards temperature. Materials Horizons, 2021, 8, 1488-1498.	12.2	61
20	Metal–organic framework-derived carbon as a positive electrode for high-performance vanadium redox flow batteries. Journal of Materials Chemistry A, 2021, 9, 5648-5656.	10.3	30
21	Beyond homogeneous dispersion: oriented conductive fillers for high <i>κ</i> nanocomposites. Materials Horizons, 2021, 8, 3009-3042.	12.2	21
22	Hierarchical crumpled NiMn ₂ O ₄ @MXene composites for high rate ion transport electrochemical supercapacitors. Dalton Transactions, 2021, 50, 9827-9832.	3.3	9
23	Rational Exploration of Conversion-Alloying Reaction Based Anodes for High-Performance K-Ion Batteries. , 2021, 3, 406-413.		21
24	Revealing Cathode–Electrolyte Interface on Flowerâ€Shaped Na ₃ V ₂ (PO ₄) ₃ /C Cathode through Cryogenic Electron Microscopy. Advanced Energy and Sustainability Research, 2021, 2, 2100072.	5.8	8
25	Anisotropic, Wrinkled, and Crack-Bridging Structure for Ultrasensitive, Highly Selective Multidirectional Strain Sensors. Nano-Micro Letters, 2021, 13, 122.	27.0	74
26	Enhanced Oxygen Evolution Reaction by Efficient Bubble Dynamics of Aligned Nonoxidized Graphene Aerogels. ACS Sustainable Chemistry and Engineering, 2021, 9, 10326-10334.	6.7	12
27	Recent advances in emerging nonaqueous K-ion batteries: from mechanistic insights to practical applications. Energy Storage Materials, 2021, 39, 305-346.	18.0	27
28	Morphology, chemistry, performance trident: Insights from hollow, mesoporous carbon nanofibers for dendrite-free sodium metal batteries. Nano Energy, 2021, 86, 106132.	16.0	34
29	MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106430.	7.6	53
30	Understanding solid electrolyte interphases: Advanced characterization techniques and theoretical simulations. Nano Energy, 2021, 89, 106489.	16.0	43
31	Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance. Chemical Engineering Journal, 2020, 379, 122304.	12.7	201
32	Role of the anatase/TiO ₂ (B) heterointerface for ultrastable high-rate lithium and sodium energy storage performance. Nanoscale Horizons, 2020, 5, 150-162.	8.0	88
33	Graphene-based wearable piezoresistive physical sensors. Materials Today, 2020, 36, 158-179.	14.2	262
34	Dual-phase MoS ₂ as a high-performance sodium-ion battery anode. Journal of Materials Chemistry A, 2020, 8, 2114-2122.	10.3	160
35	A 3D porous FeP/rGO modulated separator as a dual-function polysulfide barrier for high-performance lithium sulfur batteries. Nanoscale Horizons, 2020, 5, 530-540.	8.0	90
36	Dendrite-free lithium metal and sodium metal batteries. Energy Storage Materials, 2020, 27, 522-554.	18.0	151

#	Article	IF	CITATIONS
37	MoSe2 nanosheets embedded in nitrogen/phosphorus co-doped carbon/graphene composite anodes for ultrafast sodium storage. Journal of Power Sources, 2020, 476, 228660.	7.8	28
38	Sodiophilically Graded Gold Coating on Carbon Skeletons for Highly Stable Sodium Metal Anodes. Small, 2020, 16, e2003815.	10.0	37
39	Sodium Batteries: Sodiophilically Graded Gold Coating on Carbon Skeletons for Highly Stable Sodium Metal Anodes (Small 40/2020). Small, 2020, 16, 2070223.	10.0	1
40	Inter-overlapped MoS ₂ /C composites with large-interlayer-spacing for high-performance sodium-ion batteries. Nanoscale Horizons, 2020, 5, 1127-1135.	8.0	30
41	3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: recent advances and perspectives. Functional Composites and Structures, 2020, 2, 022001.	3.4	21
42	Enhancement of MoTe2 near-infrared absorption with gold hollow nanorods for photodetection. Nano Research, 2020, 13, 1636-1643.	10.4	21
43	Frontispiece: Molybdenum Disulfide Based Nanomaterials for Rechargeable Batteries. Chemistry - A European Journal, 2020, 26, .	3.3	0
44	Human skin-inspired integrated multidimensional sensors based on highly anisotropic structures. Materials Horizons, 2020, 7, 2378-2389.	12.2	56
45	Highly Thermally Conductive Dielectric Nanocomposites with Synergistic Alignments of Graphene and Boron Nitride Nanosheets. Advanced Functional Materials, 2020, 30, 1910826.	14.9	223
46	Affinity-engineered carbon nanofibers as a scaffold for Na metal anodes. Journal of Materials Chemistry A, 2020, 8, 14757-14768.	10.3	22
47	Thin solid electrolyte interface on chemically bonded Sb2Te3/CNT composite anodes for high performance sodium ion full cells. Nano Energy, 2020, 71, 104613.	16.0	38
48	Hydrogel-derived VPO ₄ /porous carbon framework for enhanced lithium and sodium storage. Nanoscale, 2020, 12, 3812-3819.	5.6	25
49	Molybdenum Disulfide Based Nanomaterials for Rechargeable Batteries. Chemistry - A European Journal, 2020, 26, 6296-6319.	3.3	49
50	Metal–organic framework-induced mesoporous carbon nanofibers as an ultrastable Na metal anode host. Journal of Materials Chemistry A, 2020, 8, 10269-10282.	10.3	47
51	Nano-fibrous composite sound absorbers inspired by owl feather surfaces. Applied Acoustics, 2019, 156, 151-157.	3.3	17
52	Building 3D Architecture in 2D Thin Film for Effective EMI Shielding. Matter, 2019, 1, 796-798.	10.0	14
53	Novel onion-like graphene aerogel beads for efficient solar vapor generation under non-concentrated illumination. Journal of Materials Chemistry A, 2019, 7, 4400-4407.	10.3	62
54	3D pomegranate-like TiN@graphene composites with electrochemical reaction chambers as sulfur hosts for ultralong-life lithium–sulfur batteries. Nanoscale Horizons, 2019, 4, 531-539.	8.0	53

#	Article	IF	CITATIONS
55	Non-flammable electrolyte for dendrite-free sodium-sulfur battery. Energy Storage Materials, 2019, 23, 8-16.	18.0	92
56	Highly Aligned, Anisotropic Carbon Nanofiber Films for Multidirectional Strain Sensors with Exceptional Selectivity. Advanced Functional Materials, 2019, 29, 1901623.	14.9	137
57	Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries. Nanoscale, 2019, 11, 10984-10991.	5.6	55
58	Ultrafast Li ⁺ Diffusion Kinetics of 2D Oxidized Phosphorus for Quasi-Solid-State Bendable Batteries with Exceptional Energy Densities. Chemistry of Materials, 2019, 31, 4113-4123.	6.7	17
59	Self-limiting electrode with double-carbon layers as walls for efficient sodium storage performance. Nanoscale, 2019, 11, 11025-11032.	5.6	14
60	Graphene Oxide Aerogel Beads Filled with Phase Change Material for Latent Heat Storage and Release. ACS Applied Energy Materials, 2019, 2, 3657-3664.	5.1	42
61	Tungsten Nitride/Carbon Cloth as Bifunctional Electrode for Effective Polysulfide Recycling. ACS Applied Energy Materials, 2019, 2, 3314-3322.	5.1	35
62	Nitrogen-doped graphene fiber webs for multi-battery energy storage. Nanoscale, 2019, 11, 6334-6342.	5.6	38
63	Fabrication of Ti3+ doped TiO2 coated Mn3O4 nanorods with voids and channels for lithium storage. Chemical Engineering Journal, 2019, 370, 1425-1433.	12.7	31
64	Graphene/RuO2 nanocrystal composites as sulfur host for lithium-sulfur batteries. Journal of Energy Chemistry, 2019, 35, 204-211.	12.9	32
65	Novel mussel-inspired zwitterionic hydrophilic polymer to boost membrane water-treatment performance. Journal of Membrane Science, 2019, 582, 1-8.	8.2	109
66	Cr ₂ O ₃ nanosheet/carbon cloth anode with strong interaction and fast charge transfer for pseudocapacitive energy storage in lithium-ion batteries. RSC Advances, 2019, 9, 33446-33453.	3.6	20
67	A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application. Journal of Materials Chemistry A, 2019, 7, 27099-27109.	10.3	61
68	Electrosprayed multiscale porous carbon microspheres as sulfur hosts for long-life lithium-sulfur batteries. Carbon, 2019, 141, 16-24.	10.3	54
69	Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 2282-2294.	8.0	105
70	Correlation between Li Plating Behavior and Surface Characteristics of Carbon Matrix toward Stable Li Metal Anodes. Advanced Energy Materials, 2019, 9, 1802777.	19.5	109
71	2D MoS2 grown on biomass-based hollow carbon fibers for energy storage. Applied Surface Science, 2019, 469, 854-863.	6.1	79
72	Cable-like double-carbon layers for fast ion and electron transport: An example of CNT@NCT@MnO2 3D nanostructure for high-performance supercapacitors. Carbon, 2019, 143, 335-342.	10.3	66

#	Article	IF	CITATIONS
73	Ultrathin Sb2S3 nanosheet anodes for exceptional pseudocapacitive contribution to multi-battery charge storage. Energy Storage Materials, 2019, 20, 36-45.	18.0	51
74	Vertically aligned ultrathin MoS2 nanosheets grown on graphene-wrapped hollow carbon microtubes derived from loofah sponge as advanced anodes for highly reversible lithium storage. Electrochimica Acta, 2019, 296, 989-998.	5.2	36
75	Understanding the roles of activated porous carbon nanotubes as sulfur support and separator coating for lithium-sulfur batteries. Electrochimica Acta, 2018, 268, 1-9.	5.2	61
76	Hierarchical MoS ₂ /Carbon microspheres as long-life and high-rate anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 5668-5677.	10.3	128
77	Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today, 2018, 19, 84-107.	11.9	365
78	Evolution of Hollow Nâ€Doped Mesoporous Carbon Microspheres from Outdated Milk as Sulfur Cathodes for Lithium‣ulfur Batteries. ChemistrySelect, 2018, 3, 3952-3957.	1.5	10
79	An Ultralight Graphene Honeycomb Sandwich for Stretchable Lightâ€Emitting Displays. Advanced Functional Materials, 2018, 28, 1707043.	14.9	61
80	Graphene Size-Dependent Multifunctional Properties of Unidirectional Graphene Aerogel/Epoxy Nanocomposites. ACS Applied Materials & Interfaces, 2018, 10, 6580-6592.	8.0	71
81	Revealing Pseudocapacitive Mechanisms of Metal Dichalcogenide SnS ₂ /Grapheneâ€CNT Aerogels for Highâ€Energy Na Hybrid Capacitors. Advanced Energy Materials, 2018, 8, 1702488.	19.5	135
82	Graphene-Directed Formation of a Nitrogen-Doped Porous Carbon Sheet with High Catalytic Performance for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 13508-13514.	3.1	16
83	A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Materials Horizons, 2018, 5, 275-284.	12.2	129
84	Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochimica Acta, 2018, 271, 507-518.	5.2	42
85	4.2 Effect of Interface Strength on Metal Matrix Composites Properties. , 2018, , 22-59.		3
86	Restoration of Degraded Nickelâ€Rich Cathode Materials for Longâ€Life Lithiumâ€lon Batteries. ChemElectroChem, 2018, 5, 78-83.	3.4	49
87	Sliced graphene foam films for dual-functional wearable strain sensors and switches. Nanoscale Horizons, 2018, 3, 35-44.	8.0	84
88	Rational Assembly of Hollow Microporous Carbon Spheres as P Hosts for Longâ€Life Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1702267.	19.5	85
89	Rational design of double-confined Mn2O3/S@Al2O3 nanocube cathodes for lithium-sulfur batteries. Journal of Solid State Electrochemistry, 2018, 22, 849-858.	2.5	19
90	Highly conductive porous graphene/sulfur composite ribbon electrodes for flexible lithium–sulfur batteries. Nanoscale, 2018, 10, 21132-21141.	5.6	27

#	Article	IF	CITATIONS
91	Rational Design of 3D Honeycomb-Like SnS2 Quantum Dots/rGO Composites as High-Performance Anode Materials for Lithium/Sodium-Ion Batteries. Nanoscale Research Letters, 2018, 13, 389.	5.7	28
92	Metallic MoS ₂ nanosheets: multifunctional electrocatalyst for the ORR, OER and Li–O ₂ batteries. Nanoscale, 2018, 10, 22549-22559.	5.6	93
93	Highly Conductive and Fracture-Resistant Epoxy Composite Based on Non-oxidized Graphene Flake Aerogel. ACS Applied Materials & Interfaces, 2018, 10, 37507-37516.	8.0	54
94	Co Nanoparticles Encapsulated in Porous N-Doped Carbon Nanofibers as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2018, 165, J3271-J3275.	2.9	26
95	Chemical interactions between red P and functional groups in NiP3/CNT composite anodes for enhanced sodium storage. Journal of Materials Chemistry A, 2018, 6, 20184-20194.	10.3	44
96	<i>In situ</i> TEM study of lithiation into a PPy coated α-MnO ₂ /graphene foam freestanding electrode. Materials Chemistry Frontiers, 2018, 2, 1481-1488.	5.9	16
97	Novel 2D Sb ₂ S ₃ Nanosheet/CNT Coupling Layer for Exceptional Polysulfide Recycling Performance. Advanced Energy Materials, 2018, 8, 1800710.	19.5	93
98	Mesoporous MnCo ₂ S ₄ nanosheet arrays as an efficient catalyst for Li–O ₂ batteries. Nanoscale, 2018, 10, 15588-15599.	5.6	65
99	In Situ Formation of Copperâ€Based Hosts Embedded within 3D Nâ€Đoped Hierarchically Porous Carbon Networks for Ultralong Cycle Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1804520.	14.9	80
100	Ultrafine SnO2 nanoparticles encapsulated in ordered mesoporous carbon framework for Li-ion battery anodes. Electrochimica Acta, 2018, 284, 436-443.	5.2	52
101	Graphene/Boron Nitride–Polyurethane Microlaminates for Exceptional Dielectric Properties and High Energy Densities. ACS Applied Materials & Interfaces, 2018, 10, 26641-26652.	8.0	81
102	Size-dependent effects of graphene oxide on the osteogenesis of human adipose-derived mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2018, 169, 20-29.	5.0	33
103	Densely-stacked N-doped mesoporous TiO2/carbon microsphere derived from outdated milk as high-performance electrode material for energy storages. Ceramics International, 2018, 44, 16265-16272.	4.8	18
104	Room-temperature liquid metal-based anodes for high-energy potassium-based electrochemical devices. Chemical Communications, 2018, 54, 8032-8035.	4.1	47
105	In Situ TEM Study of Volume Expansion in Porous Carbon Nanofiber/Sulfur Cathodes with Exceptional Highâ€Rate Performance. Advanced Energy Materials, 2017, 7, 1602078.	19.5	93
106	Heterogeneous, mesoporous NiCo ₂ O ₄ –MnO ₂ /graphene foam for asymmetric supercapacitors with ultrahigh specific energies. Journal of Materials Chemistry A, 2017, 5, 3547-3557.	10.3	106
107	Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2017, 9, 9059-9069.	8.0	438
108	A Catalytic Etching-Wetting-Dewetting Mechanism in the Formation of Hollow Graphitic Carbon Fiber. CheM, 2017, 2, 299-310.	11.7	44

#	Article	IF	CITATIONS
109	Construction of tubular polypyrrole-wrapped biomass-derived carbon nanospheres as cathode materials for lithium–sulfur batteries. Journal Physics D: Applied Physics, 2017, 50, 115002.	2.8	16
110	Porous RuO2 nanosheet/CNT electrodes for DMSO-based Li-O2 and Li ion O2 batteries. Energy Storage Materials, 2017, 8, 110-118.	18.0	36
111	Facile Synthesis of Holothurianâ€Like γâ€MnS/Carbon Nanotube Nanocomposites for Flexible Allâ€Solidâ€State Supercapacitors. ChemNanoMat, 2017, 3, 551-559.	2.8	17
112	Dense graphene monolith oxygen cathodes for ultrahigh volumetric energy densities. Energy Storage Materials, 2017, 9, 134-139.	18.0	19
113	Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes. Energy Storage Materials, 2017, 9, 85-95.	18.0	85
114	Atomic scale, amorphous FeOx/carbon nanofiber anodes for Li-ion and Na-ion batteries. Energy Storage Materials, 2017, 8, 10-19.	18.0	78
115	Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Research, 2017, 10, 2570-2583.	10.4	100
116	A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Materials Horizons, 2017, 4, 477-486.	12.2	194
117	Recent progress in rational design of anode materials for high-performance Na-ion batteries. Energy Storage Materials, 2017, 7, 64-114.	18.0	211
118	Lithium–Sulfur Battery Cable Made from Ultralight, Flexible Graphene/Carbon Nanotube/Sulfur Composite Fibers. Advanced Functional Materials, 2017, 27, 1604815.	14.9	176
119	Discovering a First-Order Phase Transition in the Li–CeO ₂ System. Nano Letters, 2017, 17, 1282-1288.	9.1	27
120	Unveiling the Unique Phase Transformation Behavior and Sodiation Kinetics of 1D van der Waals Sb ₂ S ₃ Anodes for Sodium Ion Batteries. Advanced Energy Materials, 2017, 7, 1602149.	19.5	152
121	Growth of Carbon Nanotubes on Electrospun Cellulose Fibers for High Performance Supercapacitors. Journal of the Electrochemical Society, 2017, 164, A3220-A3228.	2.9	25
122	Ultrafast-Charging and Long-Life Li-Ion Battery Anodes of TiO ₂ -B and Anatase Dual-Phase Nanowires. ACS Applied Materials & Interfaces, 2017, 9, 35917-35926.	8.0	57
123	Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites as excellent sound absorber. Composites Part A: Applied Science and Manufacturing, 2017, 102, 391-399.	7.6	54
124	Facile Solution Synthesis of Tungsten Trioxide Doped with Nanocrystalline Molybdenum Trioxide for Electrochromic Devices. Scientific Reports, 2017, 7, 13258.	3.3	42
125	Positive role of oxygen vacancy in electrochemical performance of CoMn 2 O 4 cathodes for Li-O 2 batteries. Journal of Power Sources, 2017, 365, 134-147.	7.8	84
126	Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon, 2017, 123, 385-394.	10.3	114

#	Article	IF	CITATIONS
127	Nanosilicon anodes for high performance rechargeable batteries. Progress in Materials Science, 2017, 90, 1-44.	32.8	172
128	Encapsulation of Se/C into ultra-thin Ni(OH)2 nanosheets as cathode materials for lithium-selenium batteries. Journal of Solid State Electrochemistry, 2017, 21, 3611-3618.	2.5	14
129	A high-performance lithium ion oxygen battery consisting of Li2O2 cathode and lithiated aluminum anode with nafion membrane for reduced O2 crossover. Nano Energy, 2017, 40, 258-263.	16.0	35
130	Copper sulfide nanoneedles on CNT backbone composite electrodes for high-performance supercapacitors and Li-S batteries. Journal of Solid State Electrochemistry, 2017, 21, 349-359.	2.5	28
131	Reprint of Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Composites Part A: Applied Science and Manufacturing, 2017, 92, 190-197.	7.6	51
132	Monodisperse Copper Nanoparticles on Porphyrin-Derived Fe–N-Doped Carbon for Hydrogen Generation from Ammonia Borane. Science of Advanced Materials, 2017, 9, 1572-1577.	0.7	3
133	Multilayer Graphene Enables Higher Efficiency in Improving Thermal Conductivities of Graphene/Epoxy Composites. Nano Letters, 2016, 16, 3585-3593.	9.1	289
134	Ultralow Electrical Percolation in Graphene Aerogel/Epoxy Composites. Chemistry of Materials, 2016, 28, 6731-6741.	6.7	137
135	Anomalous Enhancement of Liâ€O ₂ Battery Performance with Li ₂ O ₂ Films Assisted by NiFeO <i>_x</i> Nanofiber Catalysts: Insights into Morphology Control. Advanced Functional Materials, 2016, 26, 8290-8299.	14.9	47
136	Three-Dimensional Porous Graphene Aerogel Cathode with High Sulfur Loading and Embedded TiO ₂ Nanoparticles for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 28663-28670.	8.0	100
137	Ultrafine TiO ₂ Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2016, 8, 23105-23113.	8.0	200
138	Effect of functionalization on thermal conductivities of graphene/epoxy composites. Carbon, 2016, 108, 412-422.	10.3	184
139	Enhanced conversion reaction kinetics in low crystallinity SnO ₂ /CNT anodes for Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10964-10973.	10.3	111
140	Study of lithiation mechanisms of high performance carbon-coated Si anodes by in-situ microscopy. Energy Storage Materials, 2016, 3, 45-54.	18.0	47
141	Electrospun graphitic carbon nanofibers with in-situ encapsulated Co–Ni nanoparticles as freestanding electrodes for Li–O2 batteries. Carbon, 2016, 100, 329-336.	10.3	79
142	Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Composites Part A: Applied Science and Manufacturing, 2016, 85, 199-206.	7.6	171
143	Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. Journal of Materials Chemistry A, 2016, 4, 6098-6106.	10.3	81
144	Effects of silane surfactant on Nano-ZnO and rheology properties of nano-ZnO/epoxy on the UV absorbability of nano-ZnO/epoxy/micron-HGF composite. Composites Part B: Engineering, 2016, 90, 378-385.	12.0	28

JANG-KYO KIM

#	Article	IF	CITATIONS
145	NiCo2O4/CNT nanocomposites as bi-functional electrodes for Li ion batteries and supercapacitors. Carbon, 2016, 102, 262-272.	10.3	127
146	Graphene Oxide Papers Simultaneously Doped with Mg ²⁺ and Cl [–] for Exceptional Mechanical, Electrical, and Dielectric Properties. ACS Applied Materials & Interfaces, 2016, 8, 2360-2371.	8.0	34
147	Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon, 2016, 99, 624-632.	10.3	246
148	Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Progress in Materials Science, 2016, 76, 319-380.	32.8	579
149	Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors. Scientific Reports, 2015, 5, 16584.	3.3	81
150	Ultrafine Amorphous SnO <i>_x</i> Embedded in Carbon Nanofiber/Carbon Nanotube Composites for Liâ€lon and Naâ€lon Batteries. Advanced Functional Materials, 2015, 25, 5222-5228.	14.9	104
151	Electrospun Carbon Nanofibers with in Situ Encapsulated Co ₃ O ₄ Nanoparticles as Electrodes for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 13503-13511.	8.0	199
152	Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium–sulfur batteries. Journal of Power Sources, 2015, 285, 43-50.	7.8	178
153	Mesoporous ZnCo ₂ O ₄ nanoflakes grown on nickel foam as electrodes for high performance supercapacitors. Physical Chemistry Chemical Physics, 2015, 17, 17016-17022.	2.8	104
154	Hierarchical porous CuO nanostructures with tunable properties for high performance supercapacitors. RSC Advances, 2015, 5, 10773-10781.	3.6	53
155	Graphene Aerogel/Epoxy Composites with Exceptional Anisotropic Structure and Properties. ACS Applied Materials & Interfaces, 2015, 7, 5538-5549.	8.0	235
156	Hierarchical Core/Shell NiCo2O4@NiCo2O4 Nanocactus Arrays with Dual-functionalities for High Performance Supercapacitors and Li-ion Batteries. Scientific Reports, 2015, 5, 12099.	3.3	98
157	Graphene for Transparent Conductors. , 2015, , .		38
158	Controlled synthesis of cobalt carbonate/graphene composites with excellent supercapacitive performance and pseudocapacitive characteristics. Journal of Materials Chemistry A, 2015, 3, 17827-17836.	10.3	48
159	Combining Fast Li-Ion Battery Cycling with Large Volumetric Energy Density: Grain Boundary Induced High Electronic and Ionic Conductivity in Li ₄ Ti ₅ O ₁₂ Spheres of Densely Packed Nanocrystallites. Chemistry of Materials, 2015, 27, 5647-5656.	6.7	142
160	Facile Synthesis of Graphene-Like Copper Oxide Nanofilms with Enhanced Electrochemical and Photocatalytic Properties in Energy and Environmental Applications. ACS Applied Materials & Interfaces, 2015, 7, 9682-9690.	8.0	89
161	Mesoporous CuCo ₂ O ₄ nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. Journal of Materials Chemistry A, 2015, 3, 9769-9776.	10.3	192
162	Exceptional dielectric properties of chlorine-doped graphene oxide/poly (vinylidene fluoride) nanocomposites. Carbon, 2015, 89, 102-112.	10.3	137

#	Article	IF	CITATIONS
163	In-situ TEM examination and exceptional long-term cyclic stability of ultrafine Fe3O4 nanocrystal/carbon nanofiber composite electrodes. Energy Storage Materials, 2015, 1, 25-34.	18.0	46
164	Introduction to Transparent Conductive Films. , 2015, , 1-27.		1
165	Fabrication of Graphene-Based Transparent Conducting Thin Films. , 2015, , 95-122.		4
166	Synthesis, Structure, and Properties of Graphene and Graphene Oxide. , 2015, , 29-94.		18
167	Application of Graphene-Based Transparent Conductors (TCs). , 2015, , 179-203.		2
168	3D network graphene interlayer for excellent interlaminar toughness and strength in fiber reinforced composites. Carbon, 2015, 95, 978-986.	10.3	76
169	Planar Porous Graphene Woven Fabric/Epoxy Composites with Exceptional Electrical, Mechanical Properties, and Fracture Toughness. ACS Applied Materials & Interfaces, 2015, 7, 21455-21464.	8.0	36
170	Detecting Arbitrary DNA Mutations Using Graphene Oxide and Ethidium Bromide. Analytical Chemistry, 2015, 87, 12254-12261.	6.5	30
171	Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy, 2015, 11, 687-696.	16.0	284
172	NiFe2O4/graphene nanocomposites with tunable magnetic properties. Journal of Magnetism and Magnetic Materials, 2015, 379, 95-101.	2.3	36
173	Improvement of Electrical Conductivity and Transparency. , 2015, , 123-178.		1
174	Thermal performance and flame retardancy studies of vinyl ester and glass fiber reinforced plastic composites containing nanoclay. Journal of Composite Materials, 2014, 48, 165-177.	2.4	7
175	Correlation Between Atomic Structure and Electrochemical Performance of Anodes Made from Electrospun Carbon Nanofiber Films. Advanced Energy Materials, 2014, 4, 1301448.	19.5	133
176	Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition. Journal of Materials Science, 2014, 49, 3225-3233.	3.7	63
177	Graphene oxide-based transparent conductive films. Progress in Materials Science, 2014, 64, 200-247.	32.8	263
178	Electrospun carbon nanofiber anodes containing monodispersed Si nanoparticles and graphene oxide with exceptional high rate capacities. Nano Energy, 2014, 6, 27-35.	16.0	125
179	Sandwich-structured graphene–NiFe2O4–carbon nanocomposite anodes with exceptional electrochemical performance for Li ion batteries. Journal of Materials Chemistry A, 2014, 2, 8314.	10.3	79
180	Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst. Nano Energy, 2014, 4, 88-96.	16.0	94

#	Article	IF	CITATIONS
181	Wrinkling in graphene sheets and graphene oxide papers. Carbon, 2014, 66, 84-92.	10.3	213
182	Nanocavity-engineered Si/multi-functional carbon nanofiber composite anodes with exceptional high-rate capacities. Journal of Materials Chemistry A, 2014, 2, 17944-17951.	10.3	42
183	Insitu grown graphitic carbon/Fe ₂ O ₃ /carbon nanofiber composites for high performance freestanding anodes in Li-ion batteries. RSC Advances, 2014, 4, 12298-12301.	3.6	29
184	Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 18971-18980.	8.0	135
185	Tunable thermal conductivities of graphene oxide by functionalization and tensile loading. Carbon, 2014, 80, 235-245.	10.3	53
186	Electrical and mechanical properties of carbon nanofiber/graphene oxide hybrid papers. Composites Science and Technology, 2014, 100, 166-173.	7.8	41
187	Highly Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for Highâ€Performance Electromagnetic Interference Shielding. Advanced Materials, 2014, 26, 5480-5487.	21.0	1,024
188	Cost-effective CuO nanotube electrodes for energy storage and non-enzymatic glucose detection. RSC Advances, 2014, 4, 46814-46822.	3.6	31
189	Carbon nanofibers containing Si nanoparticles and graphene-covered Ni for high performance anodes in Li ion batteries. RSC Advances, 2014, 4, 22359-22366.	3.6	37
190	Co ₃ O ₄ /porous electrospun carbon nanofibers as anodes for high performance Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16939-16944.	10.3	115
191	Free-standing Ni mesh with in-situ grown MnO2 nanoparticles as cathode for Li–air batteries. Solid State Ionics, 2014, 262, 197-201.	2.7	12
192	Graphene Oxide-Based Amplified Fluorescent Biosensor for Hg ²⁺ Detection through Hybridization Chain Reactions. Analytical Chemistry, 2014, 86, 3209-3215.	6.5	224
193	Tensile and tearing fracture properties of graphene oxide papers intercalated with carbon nanotubes. Carbon, 2014, 77, 481-491.	10.3	35
194	Effects of processing and material parameters on synthesis of monolayer ultralarge graphene oxide sheets. Carbon, 2014, 77, 244-254.	10.3	61
195	Exceptional Electrical Conductivity and Fracture Resistance of 3D Interconnected Graphene Foam/Epoxy Composites. ACS Nano, 2014, 8, 5774-5783.	14.6	298
196	Excellent optoelectrical properties of graphene oxide thin films deposited on a flexible substrate by Langmuir–Blodgett assembly. Journal of Materials Chemistry C, 2013, 1, 6869.	5.5	59
197	Experimental torsional shear properties of carbon fiber reinforced epoxy composites containing carbon nanotubes. Composite Structures, 2013, 104, 230-238.	5.8	47
198	Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries. Nanoscale, 2013, 5, 2100.	5.6	113

#	Article	IF	CITATIONS
199	Mechanisms of capacity degradation in reduced graphene oxide/α-MnO ₂ nanorod composite cathodes of Li–air batteries. Journal of Materials Chemistry A, 2013, 1, 1163-1170.	10.3	85
200	Evolution of flexible 3D graphene oxide/carbon nanotube/polyaniline composite papers and their supercapacitive performance. Composites Science and Technology, 2013, 88, 126-133.	7.8	45
201	A molecular beacon and graphene oxide-based fluorescent biosensor for Cu2+ detection. Biosensors and Bioelectronics, 2013, 43, 379-383.	10.1	72
202	Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability. Composites Part A: Applied Science and Manufacturing, 2013, 49, 42-50.	7.6	242
203	Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. Journal of Power Sources, 2013, 239, 269-276.	7.8	223
204	Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2013, 49, 26-34.	7.6	206
205	Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon, 2013, 59, 406-417.	10.3	238
206	Liâ€ion Reaction to Improve the Rate Performance of Nanoporous Anatase TiO ₂ Anodes. Energy Technology, 2013, 1, 668-674.	3.8	30
207	Addition of Silane-Functionalized Carbon Nanotubes for Improved Rate Capability of LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathodes for Lithium Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A2024-A2028.	2.9	20
208	Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir–Blodgett assembly. Journal of Materials Chemistry, 2012, 22, 25072.	6.7	151
209	Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers. Carbon, 2012, 50, 5265-5277.	10.3	149
210	Fabrication of Highly-Aligned, Conductive, and Strong Graphene Papers Using Ultralarge Graphene Oxide Sheets. ACS Nano, 2012, 6, 10708-10719.	14.6	344
211	Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. Journal of Materials Chemistry, 2012, 22, 3591.	6.7	177
212	Tensile properties degradation of GFRP composites containing nanoclay in three different environments. Journal of Composite Materials, 2012, 46, 2179-2192.	2.4	17
213	Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles. Energy and Environmental Science, 2012, 5, 9895.	30.8	165
214	Porous C–LiFePO4–C composite microspheres with a hierarchical conductive architecture as a high performance cathode for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 19643.	6.7	27
215	Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. Journal of Materials Chemistry, 2012, 22, 12709.	6.7	269
216	Transparent, electrically conductive, and flexible films made from multiwalled carbon nanotube/epoxy composites. Composites Part B: Engineering, 2012, 43, 2973-2979.	12.0	30

#	Article	IF	CITATIONS
217	Strain-sensitive Raman spectroscopy and electrical resistance of carbon nanotube-coated glass fibre sensors. Composites Science and Technology, 2012, 72, 1548-1555.	7.8	27
218	Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites. Composites Science and Technology, 2012, 72, 1968-1976.	7.8	74
219	Behavior of load transfer in functionalized carbon nanotube/epoxy nanocomposites. Polymer, 2012, 53, 6081-6088.	3.8	60
220	Urchin-like Li4Ti5O12–carbon nanofiber composites for high rate performance anodes in Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 12133.	6.7	133
221	Gassing in Li4Ti5O12-based batteries and its remedy. Scientific Reports, 2012, 2, 913.	3.3	284
222	Highly transparent conducting graphene films produced by langmuir blodgett assembly as flexible electrodes. , 2012, , .		2
223	Low temperature synthesis of graphene-wrapped LiFePO4 nanorod cathodes by the polyol method. Journal of Materials Chemistry, 2012, 22, 17215.	6.7	60
224	Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon, 2012, 50, 4239-4251.	10.3	109
225	Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review. Composites Science and Technology, 2012, 72, 121-144.	7.8	432
226	Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for Lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 10777.	6.7	190
227	Self-aligned Graphene Sheets-Polyurethane Nanocomposites. Materials Research Society Symposia Proceedings, 2011, 1344, 1.	0.1	2
228	Degradation of glass fiber-reinforced plastic composites containing nanoclay in alkaline environment. Journal of Composite Materials, 2011, 45, 2147-2156.	2.4	20
229	Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced by Langmuir–Blodgett Assembly. ACS Nano, 2011, 5, 6039-6051.	14.6	394
230	Glass fibers with clay nanocomposite coating: Improved barrier resistance in alkaline environment. Composites Part A: Applied Science and Manufacturing, 2011, 42, 2051-2059.	7.6	30
231	Quasi-static and impact fracture behaviors of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied Science and Manufacturing, 2011, 42, 253-264.	7.6	75
232	Manufacturing and characterization of carbon fibre/epoxy composite prepregs containing carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1412-1420.	7.6	92
233	Improved rate capability of carbon coated Li3.9Sn0.1Ti5O12 porous electrodes for Li-ion batteries. Journal of Power Sources, 2011, 196, 10692-10697.	7.8	95
234	LiNi1/3Co1/3Mn1/3O2 with a novel one-dimensional porous structure: A high-power cathode material for rechargeable Li-ion batteries. Scripta Materialia, 2011, 64, 122-125.	5.2	29

#	Article	IF	CITATIONS
235	Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes. Composites Science and Technology, 2011, 71, 1486-1494.	7.8	247
236	Correlation between electrokinetic potential, dispersibility, surface chemistry and energy of carbon nanotubes. Composites Science and Technology, 2011, 71, 1644-1651.	7.8	45
237	Elevated temperature nanoindentation behaviour of polyamide 6. Polymer International, 2011, 60, 1753-1761.	3.1	20
238	Spontaneous Formation of Liquid Crystals in Ultralarge Graphene Oxide Dispersions. Advanced Functional Materials, 2011, 21, 2978-2988.	14.9	362
239	Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments. Carbon, 2011, 49, 2905-2916.	10.3	88
240	SnO2–graphene–carbon nanotube mixture for anode material with improved rate capacities. Carbon, 2011, 49, 4524-4534.	10.3	206
241	Effects of Stage, Intercalant Species and Expansion Technique on Exfoliation of Graphite Intercalation Compound into Graphene Sheets. Journal of Nanoscience and Nanotechnology, 2011, 11, 1084-1091.	0.9	19
242	Impact and Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites: A Review. International Journal of Aeronautical and Space Sciences, 2011, 12, 115-133.	2.0	128
243	Molecular Dynamics Study of the Effect of Chemical Functionalization on the Elastic Properties of Graphene Sheets. Journal of Nanoscience and Nanotechnology, 2010, 10, 7070-7074.	0.9	19
244	Fatigue damage behaviors of carbon fiber-reinforced epoxy composites containing nanoclay. Composites Science and Technology, 2010, 70, 2077-2085.	7.8	106
245	Sol–gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. Journal of Power Sources, 2010, 195, 4290-4296.	7.8	108
246	Nanodiamond/poly (lactic acid) nanocomposites: Effect of nanodiamond on structure and properties of poly (lactic acid). Composites Part B: Engineering, 2010, 41, 646-653.	12.0	69
247	Fabrication of highly conducting and transparent graphene films. Carbon, 2010, 48, 1815-1823.	10.3	276
248	Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon, 2010, 48, 1824-1834.	10.3	493
249	Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon, 2010, 48, 4315-4322.	10.3	198
250	Molecular Dynamic Simulation on Mechanism of Ultrasonic Wire Bonding in Electronic Package. Advanced Materials Research, 2010, 97-101, 2639-2643.	0.3	3
251	Hydrothermal Synthesis of Layered Sodium Manganese Oxide Nanowires and Their Electrochemical Performance. Journal of Nanoscience and Nanotechnology, 2010, 10, 7378-7381.	0.9	4
252	Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating: Effects of CNT morphology and dispersion state. Composites Part A: Applied Science and Manufacturing, 2010, 41, 539-548.	7.6	86

#	Article	IF	CITATIONS
253	Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1345-1367.	7.6	2,787
254	Solvothermal synthesis and magnetic properties of magnetite nanoplatelets. Materials Letters, 2009, 63, 428-430.	2.6	43
255	Preparation of graphite nanoplatelets and graphene sheets. Journal of Colloid and Interface Science, 2009, 336, 592-598.	9.4	379
256	Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Composites Science and Technology, 2009, 69, 1949-1957.	7.8	182
257	Facile Polycyclotrimerization of "Simple―Arylene Bipropiolates: A Metal-Free, Regioselective Route to Functional Hyperbranched Polymers with High Optical Transparency, Tunable Refractive Index, Low Chromatic Aberration, and Photoresponsive Patternability. Macromolecules, 2009, 42, 4099-4109.	4.8	41
258	Tensile strength of glass fibres with carbon nanotube–epoxy nanocomposite coating. Composites Part A: Applied Science and Manufacturing, 2009, 40, 1606-1614.	7.6	129
259	Cleaning and Functionalization of Polymer Surfaces and Nanoscale Carbon Fillers by UV/Ozone Treatment: A Review. Journal of Composite Materials, 2009, 43, 1537-1564.	2.4	80
260	Enhanced Electrical Conductivity of Nanocomposites Containing Hybrid Fillers of Carbon Nanotubes and Carbon Black. ACS Applied Materials & Interfaces, 2009, 1, 1090-1096.	8.0	355
261	<i>In-Situ</i> Amino Functionalization of Carbon Nanotubes Using Ball Milling. Journal of Nanoscience and Nanotechnology, 2009, 9, 749-753.	0.9	58
262	Barrier performance of silane–clay nanocomposite coatings on concrete structure. Composites Science and Technology, 2008, 68, 2828-2836.	7.8	86
263	Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure: Part II residual mechanical properties. Composites Science and Technology, 2008, 68, 2149-2155.	7.8	78
264	Effects of bonding frequency on Au wedge wire bondability. Journal of Materials Science: Materials in Electronics, 2008, 19, 281-288.	2.2	3
265	The Electrical Conductivity of Graphite Nanoplatelet Filled Conjugated Polyacrylonitrile. Macromolecular Rapid Communications, 2008, 29, 1254-1258.	3.9	20
266	Conversion of semiconducting behavior of carbon nanotubes using ball milling. Chemical Physics Letters, 2008, 458, 166-169.	2.6	45
267	Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon, 2008, 46, 1497-1505.	10.3	399
268	Numerical analysis of ultrasonic wire bonding: Part 2. Effects of bonding parameters on temperature rise. Microelectronics Reliability, 2008, 48, 149-157.	1.7	24
269	Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 660-663.	5.6	172
270	Thermal performance of flip chip packages: Numerical study of thermo-mechanical interactions. Computational Materials Science, 2008, 43, 469-480.	3.0	16

JANG-KYO KIM

#	Article	IF	CITATIONS
271	Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1876-1883.	7.6	393
272	Use of Polymer/Organoclay Nanocomposite Surface Treatment as Water/Ion Barrier for Concrete. Journal of Materials in Civil Engineering, 2008, 20, 484-492.	2.9	41
273	Orientation and the extent of exfoliation of clay on scratch damage in polyamide 6 nanocomposites. Nanotechnology, 2008, 19, 055708.	2.6	22
274	Optical Dephasing of Triply Ionized Rare Earths in Transparent Glass Ceramics Containing LaF ₃ Nanocrystals. Journal of Nanoscience and Nanotechnology, 2008, 8, 1214-1217.	0.9	23
275	Electrical conducting behavior of hybrid nanocomposites containing carbon nanotubes and carbon black. , 2007, , .		2
276	Numerical analysis of plastic encapsulated electronic package reliability: Viscoelastic properties of underfill resin. Computational Materials Science, 2007, 40, 81-89.	3.0	37
277	Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied Science and Manufacturing, 2007, 38, 449-460.	7.6	266
278	Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes. Advanced Functional Materials, 2007, 17, 3207-3215.	14.9	913
279	Environmental degradation of epoxy–organoclay nanocomposites due to UV exposure. Part I: Photo-degradation. Composites Science and Technology, 2007, 67, 3448-3456.	7.8	144
280	Failure diagrams of FRP strengthened RC beams. Composite Structures, 2007, 77, 493-508.	5.8	31
281	Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites. Carbon, 2007, 45, 744-750.	10.3	158
282	Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Composites Science and Technology, 2007, 67, 296-305.	7.8	189
283	Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Composites Science and Technology, 2007, 67, 2114-2120.	7.8	403
284	Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Composites Science and Technology, 2007, 67, 2965-2972.	7.8	543
285	Effect of tapered FRP sheets on interlaminar fracture behaviour of FRP–concrete interface. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1605-1612.	7.6	12
286	Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments. Carbon, 2006, 44, 768-777.	10.3	272
287	Functionalization of carbon nanotubes using a silane coupling agent. Carbon, 2006, 44, 3232-3238.	10.3	524
288	Optimization of tapered end design for FRP strips bonded to RC beams. Composites Science and Technology, 2006, 66, 1266-1273.	7.8	9

#	Article	IF	CITATIONS
289	Strengthening efficiency of taper ended FRP strips bonded to RC beams. Composites Science and Technology, 2006, 66, 2257-2264.	7.8	9
290	Numerical analysis of ultrasonic wire bonding: Effects of bonding parameters on contact pressure and frictional energy. Mechanics of Materials, 2006, 38, 11-24.	3.2	46
291	Effects of bonding force on contact pressure and frictional energy in wire bonding. Microelectronics Reliability, 2006, 46, 1101-1112.	1.7	30
292	Adhesion performance of black oxide coated copper substrates: Effects of moisture sensitivity test. Surface and Coatings Technology, 2006, 201, 320-328.	4.8	18
293	Comparative performance of gold wire bonding on rigid and flexible substrates. Journal of Materials Science: Materials in Electronics, 2006, 17, 597-606.	2.2	12
294	Experiment and Numerical Analysis of the Residual Stresses in Underfill Resins for Flip Chip Package Applications. Journal of Electronic Packaging, Transactions of the ASME, 2005, 127, 47-51.	1.8	8
295	Prediction of concrete cover separation failure for RC beams strengthened with CFRP strips. Engineering Structures, 2005, 27, 177-189.	5.3	55
296	Moisture barrier characteristics of organoclay?epoxy nanocomposites. Composites Science and Technology, 2005, 65, 805-813.	7.8	291
297	Conductive graphite nanoplatelet/epoxy nanocomposites: Effects of exfoliation and UV/ozone treatment of graphite. Scripta Materialia, 2005, 53, 235-240.	5.2	146
298	Curing behavior and residual stresses in polymeric resins used for encapsulanting electronic packages. Journal of Applied Polymer Science, 2005, 96, 175-182.	2.6	14
299	New Nano-Scale Characterization Techniques for Interphases. , 2005, , 237-242.		0
300	Effects of epoxy treatment of organoclay on structure, thermo-mechanical and transport properties of poly(ethylene terephthalate-co-ethylene naphthalate)/organoclay nanocomposites. Polymer, 2005, 46, 4722-4734.	3.8	50
301	Thermo-structural analysis of space structures using Fourier tube elements. Computational Mechanics, 2005, 36, 289-297.	4.0	9
302	Effects of Fibre Surface Treatment on Dynamic Tensile Properties of Glass Woven Fabric Reinforced Vinylester Composites. Polymers and Polymer Composites, 2005, 13, 453-466.	1.9	2
303	Epoxy-organoclay nanocomposites: morphology, moisture absorption behavior and thermo-mechanical properties. Composite Interfaces, 2005, 12, 271-289.	2.3	13
304	Effect of plasma treatment of Au-Ni-Cu bond pads on process windows of Au wire bonding. IEEE Transactions on Advanced Packaging, 2005, 28, 674-684.	1.6	21
305	Effects of moisture and temperature ageing on reliability of interfacial adhesion with black copper oxide substrate. Journal of Adhesion Science and Technology, 2005, 19, 427-444.	2.6	15
306	Effects of hygrothermal ageing and thermal shock on reliability of interfacial adhesion between black oxide coated copper substrate and epoxy resin. Composite Interfaces, 2005, 12, 739-756.	2.3	11

JANG-KYO KIM

#	Article	IF	CITATIONS
307	Improved Underfill Adhesion in Flip-Chip Packages by Means of Ultraviolet Light/Ozone Treatment. IEEE Transactions on Advanced Packaging, 2004, 27, 179-187.	1.6	14
308	Surface characterization and adhesion of black-oxide-coated copper substrate: effect of surface hardening processes. Journal of Adhesion Science and Technology, 2004, 18, 983-1001.	2.6	5
309	Process windows for low-temperature Au wire bonding. Journal of Electronic Materials, 2004, 33, 146-155.	2.2	13
310	The effects of water aging on the interphase region and interlaminar fracture toughness in polymer–glass composites. Composites Science and Technology, 2004, 64, 2185-2195.	7.8	89
311	Experimental study on RC beams with FRP strips bonded with rubber modified resins. Composites Science and Technology, 2004, 64, 2557-2564.	7.8	74
312	Evolution of residual stresses in modified epoxy resins for electronic packaging applications. Composites Part A: Applied Science and Manufacturing, 2004, 35, 537-546.	7.6	43
313	Optimization of black oxide coating thickness as an adhesion promoter for copper substrate in plastic integrated-circuit packages. Journal of Electronic Materials, 2003, 32, 558-563.	2.2	44
314	Effects of dimple and metal coating on interfacial adhesion in plastic packages. Journal of Electronic Materials, 2003, 32, 564-573.	2.2	15
315	Effects of moisture and elevated temperature on reliability of interfacial adhesion in plastic packages. Journal of Electronic Materials, 2003, 32, 574-582.	2.2	27
316	Effect of rubber modifier on interlaminar fracture toughness of CFRP-concrete interface. Composites Science and Technology, 2003, 63, 883-892.	7.8	18
317	Surface characteristics and adhesion performance of black oxide coated copper substrates with epoxy resins. Journal of Adhesion Science and Technology, 2003, 17, 1543-1560.	2.6	11
318	Warpage in plastic packages: effects of process conditions, geometry and materials. IEEE Transactions on Electronics Packaging Manufacturing, 2003, 26, 245-252.	1.4	41
319	Nanoscale characterisation of thickness and properties of interphase in polymer matrix composites. Journal of Adhesion, 2003, 79, 383-414.	3.0	47
320	Numerical study of the single fibre push-out test: Part III. Singularity of interface stresses. Composite Interfaces, 2003, 10, 17-39.	2.3	1
321	Adhesion characteristics of underfill resins with flip chip package components. Journal of Adhesion Science and Technology, 2003, 17, 1923-1944.	2.6	13
322	Effects of surface treatment and weave structure on interlaminar fracture behaviour of plain glass woven fabric composites: Part II. Report of the 2nd round robin test results. Composite Interfaces, 2002, 9, 207-218.	2.3	4
323	Correlation among crystalline morphology of PEEK, interface bond strength, and in-plane mechanical properties of carbon/PEEK composites. Journal of Applied Polymer Science, 2002, 84, 1155-1167.	2.6	46
324	Nanoscale characterisation of interphase in silane treated glass fibre composites. Composites Part A: Applied Science and Manufacturing, 2001, 32, 607-618.	7.6	145

JANG-ΚΥΟ ΚΙΜ

#	Article	IF	CITATIONS
325	Cooling rate influences in carbon fibre/PEEK composites. Part II: interlaminar fracture toughness. Composites Part A: Applied Science and Manufacturing, 2001, 32, 763-774.	7.6	84
326	Cooling rate influences in carbon fibre/PEEK composites. Part III: impact damage performance. Composites Part A: Applied Science and Manufacturing, 2001, 32, 775-785.	7.6	70
327	An Analysis of Microdroplet Test: Effects of Specimen Geometry, Matrix Type, Fibre Treatment and Water Ageing. Polymers and Polymer Composites, 2001, 9, 499-508.	1.9	3
328	Impact Damage Resistance of Carbon Fibre/Epoxy Composite Laminates Containing Short Kevlar Fibres. Polymers and Polymer Composites, 2001, 9, 157-168.	1.9	9
329	Interlaminar Fracture Properties of Carbon Fibre/Epoxy Matrix Composites Interleaved with Polyethylene Terephthalate (Pet) Films. Polymers and Polymer Composites, 2001, 9, 141-145.	1.9	27
330	Characterization of nano-wear mechanisms of hard disk coatings. Journal of Electronic Materials, 2001, 30, 503-512.	2.2	6
331	Effects of metallization characteristics on gold wire bondability of organic printed circuit boards. Journal of Electronic Materials, 2001, 30, 1001-1011.	2.2	26
332	Residual properties of reformed bamboo/aluminium laminates after hygrothermal aging. Composites Science and Technology, 2001, 61, 1041-1048.	7.8	5
333	Nano-indentation and nano-scratch of polymer/glass interfaces. II: model of interphases in water aged composite materials. Polymer, 2001, 42, 5701-5710.	3.8	68
334	Title is missing!. Applied Composite Materials, 2001, 8, 361-369.	2.5	6
335	Application of nano-indentation, nano-scratch and single fibre tests in investigation of interphases in composite materials. Micron, 2001, 32, 765-775.	2.2	56
336	Effect of hybrid layers with different silane coupling agents on impact response of glass fabric reinforced vinylester matrix composites. Polymer, 2001, 42, 7455-7460.	3.8	24
337	Interlaminar fracture behaviour of re-formed bamboo/aluminium sheet laminates. Journal of Adhesion Science and Technology, 2001, 15, 535-552.	2.6	1
338	Effect of fiber pretreatment condition on the interfacial strength and mechanical properties of wood fiber/PP composites. Journal of Applied Polymer Science, 2000, 76, 1000-1010.	2.6	178
339	Nano-indentation of polymer–glass interfaces Part I. Experimental and mechanical analysis. Polymer, 2000, 41, 6895-6905.	3.8	143
340	Anisotropic tribological properties of the coating on a magnetic recording disk. Thin Solid Films, 2000, 360, 187-194.	1.8	16
341	Bonding strengths at plastic encapsulant–gold-plated copper leadframe interface. Microelectronics Reliability, 2000, 40, 1207-1214.	1.7	18
342	Static indentation and impact behaviour of reformed bamboo/aluminium laminated composites. Composite Structures, 2000, 50, 207-216.	5.8	22

#	Article	IF	CITATIONS
343	Impact and delamination failure of woven-fabric composites. Composites Science and Technology, 2000, 60, 745-761.	7.8	276
344	Impact damage characterisation of carbon fibre/epoxy composites with multi-layer reinforcement. Composites Part B: Engineering, 2000, 31, 681-691.	12.0	137
345	Mechanical behavior and failure modes of aluminum/bamboo sandwich plates under quasi-static loading. Journal of Materials Science, 2000, 35, 1445-1452.	3.7	13
346	Hardness of bi-layer films on a leadframe substrate. Journal of Materials Science, 2000, 35, 4185-4192.	3.7	13
347	The nano-scratch technique as a novel method for measurement of an interphase width. Journal of Materials Science Letters, 2000, 19, 1665-1667.	0.5	11
348	Effect of Interface Strength on MMC Properties. , 2000, , 117-138.		2
349	A failure criterion for debonding between encapsulants and leadframes in plastic IC packages. Journal of Adhesion Science and Technology, 2000, 14, 93-105.	2.6	18
350	Effect of surface treatment on mode I interlaminar fracture behaviour of plain glass woven fabric composites: Part I. Report of the 2nd round-robin test results. Composite Interfaces, 2000, 7, 227-242.	2.3	15
351	Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion. Composites Part A: Applied Science and Manufacturing, 2000, 31, 517-530.	7.6	238
352	Adhesion Strengths of Epoxy Molding Compounds to Gold-plated Copper Leadframes. Journal of Adhesion, 2000, 73, 1-17.	3.0	12
353	EFFECT OF COOLING RATE ON INTERPHASE PROPERTIES OF CARBON FIBRE/PEEK COMPOSITES. Zairyo/Journal of the Society of Materials Science, Japan, 1999, 48, 157-162.	0.2	1
354	CURVATURE GAUGES EMBEDDED IN COMPOSITES. Zairyo/Journal of the Society of Materials Science, Japan, 1999, 48, 210-215.	0.2	0
355	Low velocity impact and delamination buckling behavior of composite laminates with embedded optical fibers. Smart Materials and Structures, 1999, 8, 41-48.	3.5	12
356	Scanning acoustic microscopy as a tool for quantitative characterisation of damage in CFRPs. Composites Science and Technology, 1999, 59, 345-354.	7.8	43
357	Indentation properties of copper leadframe with hard coatings. Metals and Materials International, 1998, 4, 812-817.	0.2	4
358	Impact response of woven glass-fabric composites—I Composites Science and Technology, 1998, 58, 91-104.	7.8	139
359	Impact response of woven glass-fabric composites—II. Effect of temperature. Composites Science and Technology, 1998, 58, 119-128.	7.8	78
360	Surface treatments of fibers and effects on composite properties. , 1998, , 171-237.		5

#	Article	IF	CITATIONS
361	Numerical study of the single fibre push-out test: Part II. Influence of materials and test variables. Composite Interfaces, 1998, 6, 103-120.	2.3	0
362	Interface mechanics and fracture toughness theories. , 1998, , 239-277.		8
363	Improvement of transverse fracture toughness with interface control. , 1998, , 279-327.		1
364	Characterization of interfaces. , 1998, , 5-41.		10
365	Measurements of interface/interlaminar properties. , 1998, , 43-92.		15
366	Micromechanics of stress transfer across the interface. , 1998, , 93-169.		8
367	Improvement of interlaminar fracture toughness with interface control. , 1998, , 329-365.		0
368	Effect of embedded optical fibers on the interlaminar fracture toughness of composite laminates. Composite Interfaces, 1997, 5, 225-240.	2.3	9
369	Numerical study of the single fibre push-out test. Composite Interfaces, 1997, 5, 323-343.	2.3	0
370	Title is missing!. Journal of Materials Science, 1997, 32, 701-711.	3.7	5
371	Forming and failure behaviour of coated, laminated and sandwiched sheet metals: a review. Journal of Materials Processing Technology, 1997, 63, 33-42.	6.3	95
372	Improvement of adhesive bonding in aluminium alloys using a laser surface texturing process. Journal of Materials Processing Technology, 1997, 63, 579-584.	6.3	36
373	Damage Modes in Impact Loading of Glass Woven Fabric Composites. Advanced Composites Letters, 1996, 5, 096369359600500.	1.3	6
374	Modelling of stress transfer across the fibre—matrix interface. , 1996, , 287-326.		3
375	Stress transfer in the fibre fragmentation test. Journal of Materials Science, 1995, 30, 3024-3032.	3.7	13
376	losipescu Shear Test of Composite Joint Specimens in Tensile Loading. Advanced Composites Letters, 1995, 4, 096369359500400.	1.3	1
377	Fracture Mechanics Analysis of the Fibre Fragmentation Test. Journal of Composite Materials, 1995, 29, 881-902.	2.4	26
378	Interfacial debonding and fibre pull-out stresses. Journal of Materials Science, 1994, 29, 554-561.	3.7	36

JANG-ΚΥΟ ΚΙΜ

#	Article	IF	CITATIONS
379	Effects of fibre volume fraction on the stress transfer in fibre pull-out tests. Composites, 1994, 25, 470-475.	0.7	21
380	Fracture of CFRP containing impregnated fibre bundles. Composites Science and Technology, 1993, 49, 51-60.	7.8	15
381	Micromechanical characterisation of fibre/matrix interfaces. Composites Science and Technology, 1993, 48, 227-236.	7.8	48
382	Fracture toughness and failure mechanisms in silica-filled epoxy resin composites: effects of temperature and loading rate. Polymer, 1993, 34, 3446-3455.	3.8	51
383	Interfacial debonding and fibre pull-out stresses. Journal of Materials Science, 1993, 28, 3923-3930.	3.7	25
384	Stress transfer in the fibre fragmentation test. Journal of Materials Science, 1993, 28, 6233-6245.	3.7	26
385	Drop-weight impact damage tolerance of CFRP with rubber-modified epoxy matrix. Composites, 1993, 24, 485-494.	0.7	92
386	Surface analysis of carbon fibres modified with PVAL coating and the composite interfaces. Journal of Materials Science, 1992, 27, 6811-6816.	3.7	13
387	Interfacial debonding and fibre pull-out stresses. Journal of Materials Science, 1992, 27, 3143-3154.	3.7	127
388	Interfacial debonding and fibre pull-out stresses. Journal of Materials Science, 1992, 27, 3155-3166.	3.7	104
389	On the single fibre pull-out problem: effect of loading method. Composites Science and Technology, 1992, 45, 153-160.	7.8	51
390	Fracture toughness of CFRP with modified epoxy resin matrices. Composites Science and Technology, 1992, 43, 283-297.	7.8	110
391	THE EFFECT OF FIBRE PRE-TENSION ON RESIDUAL STRESSES IN FIBRE COMPOSITES. , 1992, , 11-16.		0
392	THE EFFECT OF IMPREGNATED FIBRE BUNDLES ON THE FRACTURE BEHAVIOURS OF CFRP. , 1992, , 17-22.		0
393	Instability of interfacial debonding during fibre pull-out. Scripta Metallurgica Et Materialia, 1991, 25, 315-320.	1.0	16
394	High strength, high fracture toughness fibre composites with interface control—A review. Composites Science and Technology, 1991, 41, 333-378.	7.8	458
395	Effects of interfacial coating and temperature on the fracture behaviours of unidirectional Kevlar and carbon fibre reinforced epoxy resin composites. Journal of Materials Science, 1991, 26, 4702-4720.	3.7	69
396	Friction and stress distribution in coated steel sheet during forming. Journal of Materials Processing Technology, 1990, 21, 29-42.	6.3	7

#	Article	IF	CITATIONS
397	Separation behaviour of sheet steel laminate during forming. Journal of Materials Processing Technology, 1990, 22, 147-161.	6.3	15
398	Forming behaviour of sheet steel laminate. Journal of Materials Processing Technology, 1990, 22, 45-64.	6.3	25
399	Springback and side-wall curl of galvanized and galvalume steel sheet. Journal of Mechanical Working Technology, 1989, 19, 223-238.	0.1	11
400	Effects of flux residue and thermomechanical stresses on delamination failure in flip chip packages. , 0, , .		4
401	Interface adhesion between copper lead frame and epoxy moulding compound: effects of surface finish, oxidation and dimples. , 0, , .		15
402	Optimization of black oxide coating thickness as adhesion promoter for copper substrate. , 0, , .		12
403	Measurement of residual stresses in flip chip underfill resins. , 0, , .		0
404	Adhesion characteristics of underfill material with various package components after plasma and UV/ozone treatments. , 0, , .		5
405	Feasibility and characterization study of Al and Au wire bonding on immersion Ag and Sn coatings. , 0, , .		0
406	Effects of moisture and temperature ageing on reliability of interfacial adhesion with black copper oxide surface. , 0, , .		3
407	Wire bondability of Au/Ni bond pads: effects of metallisation schemes and processing conditions. , 0, , .		1
408	Viscoelastic properties of underfill for numerical analysis of flip chip packages. , 0, , .		5
409	Effects of underfill adhesion on flip chip package reliability. , 0, , .		5
410	Improvements in Au wire bondability of rigid and flexible substrates using plasma cleaning. , 0, , .		2
411	Micromechanics of Fiber-Matrix Interface and Fracture of Advanced Composites with Engineered Interfaces. , 0, , 125-125-15.		2