
Yohann Guillaneuf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4976336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitroxide-mediated polymerization. Progress in Polymer Science, 2013, 38, 63-235.	24.7	1,167
2	Radical Ring-Opening Polymerization: Scope, Limitations, and Application to (Bio)Degradable Materials. Chemical Reviews, 2017, 117, 1319-1406.	47.7	254
3	Toward Nitroxide-Mediated Photopolymerization. Macromolecules, 2010, 43, 2204-2212.	4.8	180
4	Nitroxide-Mediated Polymerization:Â The Pivotal Role of thekdValue of the Initiating Alkoxyamine and the Importance of the Experimental Conditions. Macromolecules, 2006, 39, 5238-5250.	4.8	159
5	First Effective Nitroxide-Mediated Polymerization of Methyl Methacrylate. Macromolecules, 2007, 40, 3108-3114.	4.8	155
6	Controlled Radical Polymerization in Aqueous Dispersed Media. Australian Journal of Chemistry, 2006, 59, 693.	0.9	123
7	Nitroxide-Mediated Polymerization of Methyl Methacrylate Using an SG1-Based Alkoxyamine: How the Penultimate Effect Could Lead to Uncontrolled and Unliving Polymerization. Macromolecular Chemistry and Physics, 2006, 207, 1278-1288.	2.2	110
8	Degradable and Comb-Like PEG-Based Copolymers by Nitroxide-Mediated Radical Ring-Opening Polymerization. Biomacromolecules, 2013, 14, 3769-3779.	5.4	87
9	Photoredox catalysis using a new iridium complex as an efficient toolbox for radical, cationic and controlled polymerizations under soft blue to green lights. Polymer Chemistry, 2015, 6, 613-624.	3.9	87
10	First peptide/protein PEGylation with functional polymers designed by nitroxide-mediated polymerization. Polymer Chemistry, 2011, 2, 1523.	3.9	68
11	Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angewandte Chemie - International Edition, 2017, 56, 16515-16520.	13.8	65
12	Using apparent molecular weight from SEC in controlled/living polymerization and kinetics of polymerization. Journal of Polymer Science Part A, 2008, 46, 897-911.	2.3	63
13	Importance of the Position of the Chromophore Group on the Dissociation Process of Light Sensitive Alkoxyamines. Macromolecular Rapid Communications, 2010, 31, 1909-1913.	3.9	57
14	Nitroxideâ€Mediated Polymerization of Methacrylic Esters: Insights and Solutions to a Longâ€Standing Problem. Macromolecular Rapid Communications, 2015, 36, 1227-1247.	3.9	53
15	Simulation of radical polymerization of methyl methacrylate at room temperature using a tertiary amine/BPO initiating system. Polymer Chemistry, 2015, 6, 5719-5727.	3.9	47
16	Simulation of the Degradation of Cyclic Ketene Acetal and Vinylâ€Based Copolymers Synthesized via a Radical Process: Influence of the Reactivity Ratios on the Degradability Properties. Macromolecular Rapid Communications, 2018, 39, e1800193.	3.9	47
17	Hydrogenâ€transfer reaction in nitroxide mediated polymerization of methyl methacrylate: 2,2â€Diphenylâ€3â€phenyliminoâ€2,3â€dihydroindolâ€1â€yloxyl nitroxide (DPAIO) vs. TEMPO. Journal of Polyme Science Part A, 2008, 46, 6828-6842.	er 2.3	46
18	Synthesis of Highly Labile SG1-Based Alkoxyamines under Photochemical Conditions. Journal of Organic Chemistry, 2008, 73, 4728-4731.	3.2	45

YOHANN GUILLANEUF

#	Article	IF	CITATIONS
19	Kinetic Modeling of Nitroxideâ€Mediated Polymerization: Conditions for Living and Controlled Polymerization. Macromolecular Theory and Simulations, 2009, 18, 402-419.	1.4	45
20	Nitroxideâ€Mediated Radical Ringâ€Opening Copolymerization: Chainâ€End Investigation and Block Copolymer Synthesis. Macromolecular Rapid Communications, 2014, 35, 484-491.	3.9	45
21	Novel polymer synthesis methodologies using combinations of thermally- and photochemically-induced nitroxide mediated polymerization. Polymer Chemistry, 2015, 6, 754-763.	3.9	44
22	Toward a full characterization of native starch: Separation and detection by size-exclusion chromatography. Journal of Chromatography A, 2008, 1205, 60-70.	3.7	43
23	A ring to rule them all: a cyclic ketene acetal comonomer controls the nitroxide-mediated polymerization of methacrylates and confers tunable degradability. Chemical Communications, 2015, 51, 12847-12850.	4.1	43
24	Oneâ€5tep Synthesis of Degradable Vinylic Polymerâ€Based Latexes via Aqueous Radical Emulsion Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
25	Photosensitized alkoxyamines as bicomponent radical photoinitiators. Journal of Polymer Science Part A, 2010, 48, 2910-2915.	2.3	41
26	Radical Chain End Chemical Transformation of SG1-Based Polystyrenes. Macromolecules, 2010, 43, 91-100.	4.8	40
27	Kinetic study of Hâ€atom transfer in imidazolineâ€, imidazolidineâ€, and pyrrolidineâ€based alkoxyamines: Consequences for nitroxideâ€mediated polymerization. Journal of Polymer Science Part A, 2009, 47, 6579-6595.	2.3	39
28	Photodissociation Rate Constants of New Light Sensitive Alkoxyamines. Macromolecular Rapid Communications, 2010, 31, 1383-1388.	3.9	39
29	Scope and limitations of the nitroxide-mediated radical ring-opening polymerization of cyclic ketene acetals. Polymer Chemistry, 2013, 4, 4776.	3.9	38
30	New Experimental Procedure To Determine the Recombination Rate Constants between Nitroxides and Macroradicals. Macromolecules, 2005, 38, 4638-4646.	4.8	37
31	Synthesis of methacrylate derivatives oligomers by dithiobenzoateâ€RAFTâ€mediated polymerization. Journal of Polymer Science Part A, 2008, 46, 2277-2289.	2.3	37
32	Heterogeneous modification of chitosan via nitroxide-mediated polymerization. Polymer Chemistry, 2013, 4, 322-328.	3.9	36
33	Effect of the Penultimate Unit on the CON Bond Homolysis in SG1â€Based Alkoxyamines. Macromolecular Chemistry and Physics, 2008, 209, 220-224.	2.2	35
34	Structural effects on the photodissociation of alkoxyamines. Organic and Biomolecular Chemistry, 2011, 9, 2892.	2.8	33
35	Indolinic nitroxides: evaluation of their potential as universal control agents for nitroxide mediated polymerization. Polymer Chemistry, 2013, 4, 3694.	3.9	33
36	Intermolecular radical 1,2-addition of the BlocBuilder MA alkoxyamine onto activated olefins: a versatile tool for the synthesis of complex macromolecular architecture. Polymer Chemistry, 2011, 2, 1624.	3.9	32

#	Article	IF	CITATIONS
37	Nitroxide mediated polymerization of methacrylates at moderate temperature. Polymer Chemistry, 2014, 5, 335-340.	3.9	31
38	Kinetic study on the living/controlled cationic polymerization of <i>p</i> â€methoxystyrene coinitiated by tris(pentafluorophenyl)borane. Journal of Polymer Science Part A, 2008, 46, 6928-6939.	2.3	30
39	Understanding the Controlled Polymerization of Methyl Methacrylate with Low Concentrations of 9-(4-Vinylbenzyl)-9 <i>H</i> -carbazole Comonomer by Nitroxide-Mediated Polymerization: The Pivotal Role of Reactivity Ratios. Macromolecules, 2013, 46, 805-813.	4.8	30
40	A comprehensive kinetic study of the conventional free-radical polymerization of seven-membered cyclic ketene acetals. Polymer Chemistry, 2017, 8, 5139-5147.	3.9	30
41	Polyesters by a Radical Pathway: Rationalization of the Cyclic Ketene Acetal Efficiency. Angewandte Chemie - International Edition, 2020, 59, 14517-14526.	13.8	28
42	RAFT/MADIX copolymerization of vinyl acetate and 5,6â€benzoâ€2â€methyleneâ€1,3â€dioxepane. Journal of Poly Science Part A, 2014, 52, 104-111.	/meg	27
43	UV-Induced Micropatterning of Complex Functional Surfaces by Photopolymerization Controlled by Alkoxyamines. Langmuir, 2015, 31, 10026-10036.	3.5	27
44	Degradable Copolymer Nanoparticles from Radical Ring-Opening Copolymerization between Cyclic Ketene Acetals and Vinyl Ethers. Biomacromolecules, 2019, 20, 305-317.	5.4	27
45	Elaboration of antimicrobial polymeric materials by dispersion of well-defined amphiphilic methacrylic SG1-based copolymers. Polymer Chemistry, 2018, 9, 3127-3141.	3.9	26
46	Peculiar Behavior of Degenerative Chain Transfer Polymerization of a Phosphonated Methacrylate. Macromolecular Chemistry and Physics, 2009, 210, 631-639.	2.2	25
47	Nitroxide Mediated Photopolymerization: A Versatile Tool for the Fabrication of Complex Multilayer Polyfunctional Copolymer Nanostructures. Advanced Materials Interfaces, 2014, 1, 1400067.	3.7	25
48	Investigation of the End Group Fidelity at High Conversion during Nitroxide-Mediated Acrylate Polymerizations. Macromolecules, 2012, 45, 5371-5378.	4.8	23
49	Hâ€transfer reaction during decomposition of <i>N</i> â€(2â€methylpropyl)― <i>N</i> â€(1â€diethylphosphonoâ€2,2â€dimethylpropyl)â€ <i>N</i> â€oxyl (SG1)â€based alkoxyamines. Journal o Polymer Science Part A, 2013, 51, 1323-1336.	of2.3	23
50	A complete kinetic study of a versatile functional monomer: acetoacetoxyethyl methacrylate (AAEMA). Polymer Chemistry, 2016, 7, 5518-5525.	3.9	23
51	Mechanistic Investigation of ε-Thiono-Caprolactone Radical Polymerization: An Interesting Tool to Insert Weak Bonds into Poly(vinyl esters). ACS Applied Polymer Materials, 2021, 3, 3264-3271.	4.4	23
52	Random Copolymers with Pendant Cationic Mixed‣igand Terpyridineâ€Based Iridium (III) Complexes: Synthesis and Application in Lightâ€Emitting Devices. Macromolecular Chemistry and Physics, 2011, 212, 1616-1628.	2.2	22
53	Understanding and improving direct UV detection of monosaccharides and disaccharides in free solution capillary electrophoresis. Analytica Chimica Acta, 2014, 809, 183-193.	5.4	22
54	Light-Sensitive Alkoxyamines as Versatile Spatially- and Temporally- Controlled Precursors of Alkyl Radicals and Nitroxides. Journal of the American Chemical Society, 2018, 140, 3339-3344.	13.7	22

YOHANN GUILLANEUF

#	Article	IF	CITATIONS
55	A facile route to heterotelechelic polymer prodrug nanoparticles for imaging, drug delivery and combination therapy. Journal of Controlled Release, 2018, 286, 425-438.	9.9	22
56	DFT-calculation-assisted prediction of the copolymerization between cyclic ketene acetals and traditional vinyl monomers. Polymer Chemistry, 2020, 11, 7159-7169.	3.9	22
57	Thionolactone as a Resin Additive to Prepare (Bio)degradable 3D Objects via VAT Photopolymerization**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
58	Heterotelechelic polymer prodrug nanoparticles: Adaptability to different drug combinations and influence of the dual functionalization on the cytotoxicity. Journal of Controlled Release, 2019, 295, 223-236.	9.9	21
59	N-Acetoxy-phthalimide (NAPI) as a new H-abstracting agent at high temperature: application to the melt functionalization of polyethylene. Polymer Chemistry, 2013, 4, 2676.	3.9	20
60	Molecular Weight and Tacticity of Oligoacrylates by Capillary Electrophoresis - Mass Spectrometry. Australian Journal of Chemistry, 2010, 63, 1219.	0.9	17
61	Separation of poly(acrylic acid) salts according to topology using capillary electrophoresis in the critical conditions. Analytical and Bioanalytical Chemistry, 2013, 405, 9009-9020.	3.7	17
62	One-Step Synthesis of Azlactone-Functionalized SG1-Based Alkoxyamine for Nitroxide-Mediated Polymerization and Bioconjugation. Macromolecules, 2015, 48, 2087-2097.	4.8	16
63	Light-active azaphenalene alkoxyamines: fast and efficient mediators of a photo-induced persistent radical effect. RSC Advances, 2016, 6, 80328-80333.	3.6	16
64	A Step Towards Highâ€Molecularâ€Weight Living/Controlled Polystyrene Using SG1â€Mediated Polymerization. Macromolecular Reaction Engineering, 2010, 4, 403-414.	1.5	15
65	Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angewandte Chemie, 2017, 129, 16742-16747.	2.0	15
66	Crowded Phosphonylated Alkoxyamines with Low Dissociation Temperatures: A Milestone in Nitroxide-Mediated Polymerization. ACS Symposium Series, 2006, , 326-341.	0.5	14
67	Characterization of Functional Poly(ethylene oxide)s and Their Corresponding Polystyrene Block Copolymers by Liquid Chromatography under Critical Conditions in Organic Solvents. Macromolecules, 2012, 45, 7171-7178.	4.8	14
68	Enhanced Spin Capturing Polymerization of Ethylene. Macromolecules, 2013, 46, 29-36.	4.8	13
69	Effect of nitroxyl-based radicals on the melt radical grafting of maleic anhydride onto polyethylene in presence of a peroxide. European Polymer Journal, 2015, 66, 342-351.	5.4	13
70	On the structure–control relationship of amide-functionalized SG1-based alkoxyamines for nitroxide-mediated polymerization and conjugation. Polymer Chemistry, 2015, 6, 5693-5704.	3.9	13
71	Laser Direct Writing of Arbitrary Complex Polymer Microstructures by Nitroxide-Mediated Photopolymerization. ACS Applied Materials & Interfaces, 2020, 12, 30779-30786.	8.0	13
72	SG1 Nitroxide Analogues: a Comparative Study. Australian Journal of Chemistry, 2010, 63, 1237.	0.9	10

YOHANN GUILLANEUF

#	Article	IF	CITATIONS
73	Preparation of PVDF-grafted-PS involving nitroxides. European Polymer Journal, 2018, 109, 55-63.	5.4	10
74	Degree of branching in poly(acrylic acid) prepared by controlled and conventional radical polymerization. Polymer Chemistry, 2019, 10, 2469-2476.	3.9	10
75	Chemically Induced Dynamic Nuclear Polarization during the Thermolysis of Alkoxyamines: A New Approach to Detect the Occurrence of H-Transfer Reactions. Polymers, 2010, 2, 364-377.	4.5	9
76	Acyloxyimide derivatives as efficient promoters of polyolefin C–H functionalization: application in the melt grafting of maleic anhydride onto polyethylene. Polymer Chemistry, 2019, 10, 4336-4345.	3.9	8
77	Mesolytic Versus Homolytic Cleavage in Photochemical Nitroxide-Mediated Polymerization. Macromolecules, 2020, 53, 1567-1572.	4.8	8
78	Cellular Response to Linear and Branched Poly(acrylic acid). Macromolecular Bioscience, 2015, 15, 1724-1734.	4.1	7
79	Improving the control of styrene polymerization at 60 °C using a dialkylated αâ€hydrogenated nitroxide. Journal of Polymer Science Part A, 2012, 50, 3750-3757.	2.3	6
80	Stability of SG1 nitroxide towards unprotected sugar and lithium salts: a preamble to cellulose modification by nitroxide-mediated graft polymerization. Beilstein Journal of Organic Chemistry, 2013, 9, 1589-1600.	2.2	6
81	Chemical modification of poly(lactic acid) induced by thermal decomposition of N â€acetoxyâ€phthalimide during extrusion. Journal of Polymer Science Part A, 2019, 57, 120-129.	2.3	6
82	Polyesters by a Radical Pathway: Rationalization of the Cyclic Ketene Acetal Efficiency. Angewandte Chemie, 2020, 132, 14625-14634.	2.0	6
83	Elucidation of a side reaction occurring during nitroxide-mediated polymerization of cyclic ketene acetals by tandem mass spectrometric end-group analysis of aliphatic polyesters. Rapid Communications in Mass Spectrometry, 2015, 29, 2302-2308.	1.5	5
84	Peptide ligation from alkoxyamine based radical addition. Chemical Communications, 2014, 50, 2744-2747.	4.1	4
85	One‣tep Synthesis of Degradable Vinylic Polymerâ€Based Latexes via Aqueous Radical Emulsion Polymerization. Angewandte Chemie, 2022, 134, .	2.0	4
86	Functionalization of poly(lactide) with <i>N</i> â€phenyl maleimide using <i>N</i> â€acetoxyâ€phthalimide during reactive extrusion. Journal of Polymer Science Part A, 2019, 57, 917-928.	2.3	3
87	A versatile and straightforward process to turn plastics into antibacterial materials. Polymer Chemistry, 2021, 13, 69-79.	3.9	3
88	Catalyst―and Initiatorâ€Free Radical Addition under Mild Conditions: A Macromolecular Conjugation Tool. Chemistry - A European Journal, 2018, 24, 3699-3702.	3.3	2
89	Melt radical grafting of diethylmaleate and maleic anhydride onto oligoamide-11 (OA11) and polyamide-11 (PA11) in presence of acyloxyimide derivatives: Toward the compatibilization of PA11/EVOH blends. Materials Today Communications, 2019, 19, 271-276.	1.9	2
90	Chapter 7. NMP of Methacrylic Esters: How to Circumvent a Long-time Obstacle. RSC Polymer Chemistry Series, 2015, , 305-348.	0.2	2

#	Article	IF	CITATIONS
91	Thionolactone as a Resin Additive to Prepare (Bio)degradable 3D Objects via VAT Photopolymerization**. Angewandte Chemie, 2022, 134, .	2.0	2
92	Living Radical Polymerization: Nitroxide-Mediated Polymerization. , 2015, , 1133-1148.		0
93	Reducing the Hydrogen Atom Abstraction Efficiencies of Benzophenone-Based Photosensitive Alkoxyamines. ACS Symposium Series, 2018, , 105-133.	0.5	0
94	Living Radical Polymerization: Nitroxide-Mediated Polymerization. , 2014, , 1-16.		0