
Susanne Wegmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4975416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorylation but Not Oligomerization Drives the Accumulation of Tau with Nucleoporin Nup98. International Journal of Molecular Sciences, 2022, 23, 3495.	4.1	6
2	Molecular crowding and RNA synergize to promote phase separation, microtubule interaction, and seeding of Tau condensates. EMBO Journal, 2022, 41, e108882.	7.8	33
3	Isoform-selective decrease of glycogen synthase kinase-3-beta (GSK-3β) reduces synaptic tau phosphorylation, transcellular spreading, and aggregation. IScience, 2021, 24, 102058.	4.1	16
4	TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proceedings of the United States of America, 2021, 118, .	7.1	72
5	Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. Science Advances, 2021, 7, .	10.3	31
6	Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nature Communications, 2021, 12, 2238.	12.8	101
7	A current view on Tau protein phosphorylation in Alzheimer's disease. Current Opinion in Neurobiology, 2021, 69, 131-138.	4.2	167
8	Biomolecular condensation of the microtubule-associated protein tau. Seminars in Cell and Developmental Biology, 2020, 99, 202-214.	5.0	27
9	Nuclear Transport Deficits in Tau-Related Neurodegenerative Diseases. Frontiers in Neurology, 2020, 11, 1056.	2.4	23
10	LRP1 is a master regulator of tau uptake and spread. Nature, 2020, 580, 381-385.	27.8	326
11	Experimental evidence for the age dependence of tau protein spread in the brain. Science Advances, 2019, 5, eaaw6404.	10.3	103
12	Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nature Neuroscience, 2019, 22, 57-64.	14.8	278
13	Liquid-Liquid Phase Separation of Tau Protein in Neurobiology and Pathology. Advances in Experimental Medicine and Biology, 2019, 1184, 341-357.	1.6	13
14	Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO Journal, 2018, 37, .	7.8	696
15	Reversible Cation-Selective Attachment and Self-Assembly of Human Tau on Supported Brain Lipid Membranes. Nano Letters, 2018, 18, 3271-3281.	9.1	31
16	Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron, 2018, 99, 925-940.e7.	8.1	302
17	A flow cytometry–based in vitro assay reveals that formation of apolipoprotein E (ApoE)–amyloid beta complexes depends on ApoE isoform and cell type. Journal of Biological Chemistry, 2018, 293, 13247-13256.	3.4	11
18	Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau inÂVitro. American Journal of Pathology, 2017, 187, 1399-1412.	3.8	92

SUSANNE WEGMANN

#	Article	IF	CITATIONS
19	Local Nucleation of Microtubule Bundles through Tubulin Concentration into a Condensed Tau Phase. Cell Reports, 2017, 20, 2304-2312.	6.4	278
20	lsoform- and cell type-specific structure of apolipoprotein E lipoparticles as revealed by a novel Forster resonance energy transfer assay. Journal of Biological Chemistry, 2017, 292, 14720-14729.	3.4	20
21	Studying tau protein propagation and pathology in the mouse brain using adeno-associated viruses. Methods in Cell Biology, 2017, 141, 307-322.	1.1	23
22	Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathologica Communications, 2017, 5, 91.	5.2	157
23	Characterization of TauC3 antibody and demonstration of its potential to block tau propagation. PLoS ONE, 2017, 12, e0177914.	2.5	36
24	ECâ€03â€03: Tau Spreading and Toxicity. Alzheimer's and Dementia, 2016, 12, P269.	0.8	0
25	Formation, release, and internalization of stable tau oligomers in cells. Journal of Neurochemistry, 2016, 139, 1163-1174.	3.9	49
26	Seedâ€competent highâ€molecularâ€weight tau species accumulates in the cerebrospinal fluid of Alzheimer's disease mouse model and human patients. Annals of Neurology, 2016, 80, 355-367.	5.3	89
27	Structural studies on the mechanism of protein aggregation in age related neurodegenerative diseases. Mechanisms of Ageing and Development, 2016, 156, 1-13.	4.6	31
28	3D Visualization of the Temporal and Spatial Spread of Tau Pathology Reveals Extensive Sites of Tau Accumulation Associated with Neuronal Loss and Recognition Memory Deficit in Aged Tau Transgenic Mice. PLoS ONE, 2016, 11, e0159463.	2.5	27
29	P3-071: A unique high-molecular-weight tau species is involved in propagation and accumulates in the cerebrospinal fluid of Alzheimer's disease patients. , 2015, 11, P644-P644.		0
30	Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity. EMBO Journal, 2015, 34, 3028-3041.	7.8	112
31	O2-06-01: Lack of endogenous tau permits tau spreading and protects against tau toxicity in transgenic mice. , 2015, 11, P186-P186.		0
32	Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nature Communications, 2015, 6, 8490.	12.8	283
33	Stages and Conformations of the Tau Repeat Domain during Aggregation and Its Effect on Neuronal Toxicity. Journal of Biological Chemistry, 2014, 289, 20318-20332.	3.4	77
34	Oligomer Formation of Tau Protein Hyperphosphorylated in Cells. Journal of Biological Chemistry, 2014, 289, 34389-34407.	3.4	132
35	Multiparametric high-resolution imaging of native proteins by force-distance curve–based AFM. Nature Protocols, 2014, 9, 1113-1130.	12.0	95
36	O4-09-04: UNRAVELING THE ROLE OF APOLIPOPROTEIN E IN AGE- AND ABETA-RELATED NEURONAL DYSFUNCTION. , 2014, 10, P269-P269.		0

SUSANNE WEGMANN

#	Article	IF	CITATIONS
37	The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush. Proceedings of the United States of America, 2013, 110, E313-21.	7.1	148
38	O2-01-01: Neurofibrillary tangles remain functionally integrated in cortical networks. , 2013, 9, P314-P314.		0
39	Propagation of tau pathology in Alzheimer's disease: identification of novel therapeutic targets. Alzheimer's Research and Therapy, 2013, 5, 49.	6.2	84
40	Tau Causes Synapse Loss without Disrupting Calcium Homeostasis in the rTg4510 Model of Tauopathy. PLoS ONE, 2013, 8, e80834.	2.5	38
41	Investigating Fibrillar Aggregates of Tau Protein by Atomic Force Microscopy. Methods in Molecular Biology, 2012, 849, 169-183.	0.9	7
42	Competing Interactions Stabilize Pro- and Anti-aggregant Conformations of Human Tau. Journal of Biological Chemistry, 2011, 286, 20512-20524.	3.4	44
43	Human Tau Isoforms Assemble into Ribbon-like Fibrils That Display Polymorphic Structure and Stability. Journal of Biological Chemistry, 2010, 285, 27302-27313.	3.4	96