
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4972158/publications.pdf Version: 2024-02-01

FRIC | HUANC

#	Article	IF	CITATIONS
1	Prenatal presentation of multiple anomalies associated with haploinsufficiency for ARID1A. European Journal of Medical Genetics, 2022, 65, 104407.	0.7	7
2	Nests of dividing neuroblasts sustain interneuron production for the developing human brain. Science, 2022, 375, eabk2346.	6.0	13
3	Comment on "Impact of neurodegenerative diseases on human adult hippocampal neurogenesis― Science, 2022, 376, eabn8861.	6.0	13
4	Secretory autophagy maintains proteostasis upon lysosome inhibition. Journal of Cell Biology, 2022, 221, .	2.3	51
5	Right temporal degeneration and socioemotional semantics: semantic behavioural variant frontotemporal dementia. Brain, 2022, 145, 4080-4096.	3.7	34
6	Neuroimmune dysfunction in frontotemporal dementia: Insights from progranulin and C9orf72 deficiency. Current Opinion in Neurobiology, 2022, 76, 102599.	2.0	4
7	Diagnostic Accuracy of Amyloid versus ¹⁸ Fâ€Fluorodeoxyglucose Positron Emission Tomography in <scp>Autopsyâ€Confirmed</scp> Dementia. Annals of Neurology, 2021, 89, 389-401.	2.8	34
8	Comorbid neuropathological diagnoses in early versus late-onset Alzheimer's disease. Brain, 2021, 144, 2186-2198.	3.7	100
9	Positive Controls in Adults and Children Support That Very Few, If Any, New Neurons Are Born in the Adult Human Hippocampus. Journal of Neuroscience, 2021, 41, 2554-2565.	1.7	90
10	Label-retention expansion microscopy. Journal of Cell Biology, 2021, 220, .	2.3	31
11	Longitudinal tracking of neuronal mitochondria delineates PINK1/Parkin-dependent mechanisms of mitochondrial recycling and degradation. Science Advances, 2021, 7, .	4.7	13
12	Processing of progranulin into granulins involves multiple lysosomal proteases and is affected in frontotemporal lobar degeneration. Molecular Neurodegeneration, 2021, 16, 51.	4.4	23
13	Gearing up for the future: Exploring facilitators and barriers to inform clinical trial design in frontotemporal lobar degeneration. Alzheimer's and Dementia, 2021, 17, e052495.	0.4	0
14	Demographic and psychosocial factors associated with the decision to learn mutation status in familial frontotemporal dementia and the impact of disclosure on mood. Alzheimer's and Dementia, 2021, 17, e050692.	0.4	0
15	Clinical value of CSF tau, pâ€ŧau181, neurogranin and neurofilaments in familial frontotemporal lobar degeneration. Alzheimer's and Dementia, 2021, 17, .	0.4	0
16	Diagnostic value of plasma Pâ€ŧau217 in frontotemporal dementia spectrum disorders. Alzheimer's and Dementia, 2021, 17, .	0.4	0
17	Copathologies in early- vs late-onset Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e056436.	0.4	0
18	Frontotemporal dementia non-sense mutation of progranulin rescued by aminoglycosides. Human Molecular Genetics, 2020, 29, 624-634.	1.4	11

#	Article	IF	CITATIONS
19	Loss of HIPK2 Protects Neurons from Mitochondrial Toxins by Regulating Parkin Protein Turnover. Journal of Neuroscience, 2020, 40, 557-568.	1.7	6
20	Wnt-Dependent Oligodendroglial-Endothelial Interactions Regulate White Matter Vascularization and Attenuate Injury. Neuron, 2020, 108, 1130-1145.e5.	3.8	52
21	Reciprocal Interaction between Vascular Filopodia and Neural Stem Cells Shapes Neurogenesis in the Ventral Telencephalon. Cell Reports, 2020, 33, 108256.	2.9	26
22	A Developmental Analysis of Juxtavascular Microglia Dynamics and Interactions with the Vasculature. Journal of Neuroscience, 2020, 40, 6503-6521.	1.7	82
23	Neurotoxic microglia promote TDP-43 proteinopathy in progranulin deficiency. Nature, 2020, 588, 459-465.	13.7	98
24	Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nature Neuroscience, 2020, 23, 500-509.	7.1	290
25	The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nature Cell Biology, 2020, 22, 187-199.	4.6	300
26	Inhibition of sphingolipid synthesis improves outcomes and survival in GARP mutant <i>wobbler</i> mice, a model of motor neuron degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10565-10574.	3.3	33
27	Astrocytic Tau Deposition Is Frequent in Typical and Atypical Alzheimer Disease Presentations. Journal of Neuropathology and Experimental Neurology, 2019, 78, 1112-1123.	0.9	34
28	C9orf72-specific phenomena associated with frontotemporal dementia and gastrointestinal symptoms in the absence of TDP-43 aggregation. Acta Neuropathologica, 2019, 138, 1093-1097.	3.9	3
29	Novel and lethal case of cardiac involvement in <i>DNM1L</i> mitochondrial encephalopathy. American Journal of Medical Genetics, Part A, 2019, 179, 2486-2489.	0.7	18
30	Cortical developmental abnormalities in logopenic variant primary progressive aphasia with dyslexia. Brain Communications, 2019, 1, fcz027.	1.5	11
31	Immature excitatory neurons develop during adolescence in the human amygdala. Nature Communications, 2019, 10, 2748.	5.8	95
32	Neuropathological correlates of structural and functional imaging biomarkers in 4-repeat tauopathies. Brain, 2019, 142, 2068-2081.	3.7	30
33	Impaired αVβ8 and TGFβ signaling lead to microglial dysmaturation and neuromotor dysfunction. Journal of Experimental Medicine, 2019, 216, 900-915.	4.2	35
34	Multisite study of the relationships between <i>antemortem</i> [¹¹ C]PIBâ€PET Centiloid values and <i>postmortem</i> measures of Alzheimer's disease neuropathology. Alzheimer's and Dementia, 2019, 15, 205-216.	0.4	155
35	RNA Binding Proteins and the Pathogenesis of Frontotemporal Lobar Degeneration. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 469-495.	9.6	32
36	Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathologica, 2019, 137, 27-46.	3.9	87

#	Article	IF	CITATIONS
37	Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 2018, 555, 377-381.	13.7	1,074
38	Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2849-E2858.	3.3	47
39	Early vs late age at onset frontotemporal dementia and frontotemporal lobar degeneration. Neurology, 2018, 90, e1047-e1056.	1.5	36
40	HIPK2-Mediated Transcriptional Control of NMDA Receptor Subunit Expression Regulates Neuronal Survival and Cell Death. Journal of Neuroscience, 2018, 38, 4006-4019.	1.7	28
41	O1â€01â€02: A NOVEL MURINE KNOCKâ€IN MODEL FOR PROGRANULINâ€DEFICIENT FRONTOTEMPORAL DEM WITH NONSENSEâ€MEDIATED MRNA DECAY. Alzheimer's and Dementia, 2018, 14, P212.	ENȚIA 0.4	0
42	Does Adult Neurogenesis Persist in the Human Hippocampus?. Cell Stem Cell, 2018, 23, 780-781.	5.2	95
43	Progranulin in the hematopoietic compartment protects mice from atherosclerosis. Atherosclerosis, 2018, 277, 145-154.	0.4	20
44	A Novel Murine Knockâ€in Model for Progranulinâ€deficient Frontotemporal Dementia with Nonsenseâ€mediated mRNA Decay. FASEB Journal, 2018, 32, 807.8.	0.2	0
45	Modeling ALS and FTD with iPSC-derived neurons. Brain Research, 2017, 1656, 88-97.	1.1	56
46	Typical and atypical pathology in primary progressive aphasia variants. Annals of Neurology, 2017, 81, 430-443.	2.8	288
47	Testing the Amyloid Hypothesis with a Humanized AD Mouse Model. Neuron, 2017, 93, 987-989.	3.8	8
48	Precipitous Deterioration of Motor Function, Cognition, and Behavior. JAMA Neurology, 2017, 74, 591.	4.5	0
49	Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Science Translational Medicine, 2017, 9, .	5.8	147
50	Progranulin, lysosomal regulation and neurodegenerative disease. Nature Reviews Neuroscience, 2017, 18, 325-333.	4.9	201
51	Experimental Demonstration of Localized Plasmonic Structured Illumination Microscopy. ACS Nano, 2017, 11, 5344-5350.	7.3	76
52	Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease. Neurochemistry International, 2017, 109, 106-116.	1.9	39
53	Fibrinogen Activates BMP Signaling in Oligodendrocyte Progenitor Cells and Inhibits Remyelination after Vascular Damage. Neuron, 2017, 96, 1003-1012.e7.	3.8	131
54	Self-Organized Cerebral Organoids with Human-Specific Features Predict Effective Drugs to Combat Zika Virus Infection. Cell Reports, 2017, 21, 517-532.	2.9	305

#	Article	IF	CITATIONS
55	Clinicopathological correlations in behavioural variant frontotemporal dementia. Brain, 2017, 140, 3329-3345.	3.7	226
56	An RNA interference screen identifies druggable regulators of MeCP2 stability. Science Translational Medicine, 2017, 9, .	5.8	25
57	Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes and Development, 2017, 31, 1243-1256.	2.7	97
58	Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Science Translational Medicine, 2017, 9, .	5.8	108
59	Afadin controls cell polarization and mitotic spindle orientation in developing cortical radial glia. Neural Development, 2017, 12, 7.	1.1	16
60	Suppression of C9orf72 RNA repeat-induced neurotoxicity by the ALS-associated RNA-binding protein Zfp106. ELife, 2017, 6, .	2.8	44
61	TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning. Cell Reports, 2016, 17, 3233-3245.	2.9	56
62	Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Research, 2016, 1647, 65-78.	1.1	124
63	Progranulin Deficiency Promotes Circuit-Specific Synaptic Pruning by Microglia via Complement Activation. Cell, 2016, 165, 921-935.	13.5	558
64	Mechanisms of Dendrite Degeneration in Amyotrophic Lateral Sclerosis. , 2016, , 545-579.		0
65	Extensive migration of young neurons into the infant human frontal lobe. Science, 2016, 354, .	6.0	293
66	Activation of HIPK2 Promotes ER Stress-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis. Neuron, 2016, 91, 41-55.	3.8	75
67	Dopaminergic Neurons and Brain Reward Pathways. American Journal of Pathology, 2016, 186, 478-488.	1.9	93
68	Dysregulation of locus coeruleus development in congenital central hypoventilation syndrome. Acta Neuropathologica, 2015, 130, 171-183.	3.9	45
69	Amelioration of toxicity in neuronal models of amyotrophic lateral sclerosis by hUPF1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7821-7826.	3.3	114
70	Ventral midbrain dopaminergic neurons: From neurogenesis to neurodegeneration. FEBS Letters, 2015, 589, 3691-3692.	1.3	3
71	Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain, 2015, 138, 2020-2033.	3.7	319
72	ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP. Nature Communications, 2015, 6, 6171.	5.8	205

#	Article	IF	CITATIONS
73	The behavioural/dysexecutive variant of Alzheimer's disease: clinical, neuroimaging and pathological features. Brain, 2015, 138, 2732-2749.	3.7	397
74	Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science, 2015, 350, 102-106.	6.0	182
75	Clinico-pathological correlation in adenylate kinase 5 autoimmune limbic encephalitis. Journal of Neuroimmunology, 2015, 287, 31-35.	1.1	25
76	Evaluating and treating neurobehavioral symptoms in professional American football players. Neurology: Clinical Practice, 2015, 5, 285-295.	0.8	24
77	Postnatal growth of the human pons: A morphometric and immunohistochemical analysis. Journal of Comparative Neurology, 2015, 523, 449-462.	0.9	39
78	Activity-dependent FUS dysregulation disrupts synaptic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4769-78.	3.3	116
79	Massive CNS monocytic infiltration at autopsy in an alemtuzumab-treated patient with NMO. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e34.	3.1	61
80	Axons take a dive. Neurogenesis (Austin, Tex), 2014, 1, e29341.	1.5	3
81	In vivo signatures of nonfluent/agrammatic primary progressive aphasia caused by FTLD pathology. Neurology, 2014, 82, 239-247.	1.5	61
82	Practical utility of amyloid and FDG-PET in an academic dementia center. Neurology, 2014, 82, 230-238.	1.5	74
83	Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice. Development (Cambridge), 2014, 141, 3782-3792.	1.2	46
84	Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nature Neuroscience, 2014, 17, 506-512.	7.1	98
85	CCR2 Deficiency Impairs Macrophage Infiltration and Improves Cognitive Function after Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 1677-1688.	1.7	137
86	Loss of Mitochondrial Fission Depletes Axonal Mitochondria in Midbrain Dopamine Neurons. Journal of Neuroscience, 2014, 34, 14304-14317.	1.7	165
87	Wide Field Super-Resolution Surface Imaging through Plasmonic Structured Illumination Microscopy. Nano Letters, 2014, 14, 4634-4639.	4.5	130
88	ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. Journal of Clinical Investigation, 2014, 124, 981-999.	3.9	225
89	Temporal and spatial requirements of Smoothened in ventral midbrain neuronal development. Neural Development, 2013, 8, 8.	1.1	20
90	A Dramatic Increase of C1q Protein in the CNS during Normal Aging. Journal of Neuroscience, 2013, 33, 13460-13474.	1.7	361

#	Article	IF	CITATIONS
91	Argyrophilic grain disease differs from other tauopathies by lacking tau acetylation. Acta Neuropathologica, 2013, 125, 581-593.	3.9	90
92	Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nature Neuroscience, 2013, 16, 1383-1391.	7.1	330
93	ApoE and TDP-43 neuropathology in two siblings with familial FTLD-motor neuron disease. Neurocase, 2013, 19, 295-301.	0.2	11
94	Conceptual developments in the causes of Cockayne syndrome. Mechanisms of Ageing and Development, 2013, 134, 284-290.	2.2	21
95	Foxc1 is required by pericytes during fetal brain angiogenesis. Biology Open, 2013, 2, 647-659.	0.6	64
96	Transcriptional Corepressors HIPK1 and HIPK2 Control Angiogenesis Via TGF-β–TAK1–Dependent Mechanism. PLoS Biology, 2013, 11, e1001527.	2.6	50
97	Overexpression of Vascular Endothelial Growth Factor in the Germinal Matrix Induces Neurovascular Proteases and Intraventricular Hemorrhage. Science Translational Medicine, 2013, 5, 193ra90.	5.8	38
98	Dissociation of Frontotemporal Dementia–Related Deficits and Neuroinflammation in Progranulin Haploinsufficient Mice. Journal of Neuroscience, 2013, 33, 5352-5361.	1.7	132
99	Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model. Journal of Clinical Investigation, 2013, 123, 2719-2729.	3.9	68
100	Nonfluent/Agrammatic PPA with In-Vivo Cortical Amyloidosis and Pick's Disease Pathology. Behavioural Neurology, 2013, 26, 95-106.	1.1	17
101	Nonfluent/agrammatic PPA with in-vivo cortical amyloidosis and Pick's disease pathology. Behavioural Neurology, 2013, 26, 95-106.	1.1	19
102	Defective Retinal Vascular Endothelial Cell Development As a Consequence of Impaired Integrin αVβ8-Mediated Activation of Transforming Growth Factor-β. Journal of Neuroscience, 2012, 32, 1197-1206.	1.7	66
103	Hipk2 cooperates with p53 to suppress Î ³ -ray radiation-induced mouse thymic lymphoma. Oncogene, 2012, 31, 1176-1180.	2.6	36
104	Dysmyelination not demyelination causes neurological symptoms in preweaned mice in a murine model of Cockayne syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4627-4632.	3.3	20
105	Replication of Hepatitis C Virus RNA on Autophagosomal Membranes. Journal of Biological Chemistry, 2012, 287, 18036-18043.	1.6	156
106	The Scaffolding Protein Synapse-Associated Protein 97 Is Required for Enhanced Signaling Through Isotype-Switched IgG Memory B Cell Receptors. Science Signaling, 2012, 5, ra54.	1.6	54
107	Selective Frontoinsular von Economo Neuron and Fork Cell Loss in Early Behavioral Variant Frontotemporal Dementia. Cerebral Cortex, 2012, 22, 251-259.	1.6	169
108	A role for C1q in normal brain aging. Immunobiology, 2012, 217, 1133.	0.8	0

#	Article	lF	CITATIONS
109	Species-Dependent Posttranscriptional Regulation of NOS1 by FMRP in the Developing Cerebral Cortex. Cell, 2012, 149, 899-911.	13.5	115
110	STAT3â€Mediated astrogliosis protects myelin development in neonatal brain injury. Annals of Neurology, 2012, 72, 750-765.	2.8	81
111	Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. Journal of Clinical Investigation, 2012, 122, 3955-3959.	3.9	248
112	Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis. Nature Immunology, 2011, 12, 1184-1193.	7.0	210
113	Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 2011, 478, 382-386.	13.7	741
114	Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nature Neuroscience, 2011, 14, 1009-1016.	7.1	307
115	Comparative Healing of Rat Fascia Following Incision with Three Surgical Instruments. Journal of Surgical Research, 2011, 167, e47-e54.	0.8	22
116	Comparative Healing of Human Cutaneous Surgical Incisions Created by the PEAK PlasmaBlade, Conventional Electrosurgery, and a Standard Scalpel. Plastic and Reconstructive Surgery, 2011, 128, 104-111.	0.7	80
117	Clinicopathological correlations in corticobasal degeneration. Annals of Neurology, 2011, 70, 327-340.	2.8	367
118	Krüppel-like factor 15 activates hepatitis B virus gene expression and replication. Hepatology, 2011, 54, 109-121.	3.6	25
119	Loss of nuclear factor E2-related factor 1 in the brain leads to dysregulation of proteasome gene expression and neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8408-8413.	3.3	142
120	Homeodomain Interacting Protein Kinase 2 Regulates Postnatal Development of Enteric Dopaminergic Neurons and Glia via BMP Signaling. Journal of Neuroscience, 2011, 31, 13746-13757.	1.7	54
121	Transgenic Expression of Entire Hepatitis B Virus in Mice Induces Hepatocarcinogenesis Independent of Chronic Liver Injury. PLoS ONE, 2011, 6, e26240.	1.1	36
122	Sporadic corticobasal syndrome due to FTLD-TDP. Acta Neuropathologica, 2010, 119, 365-374.	3.9	59
123	Extensive FUSâ€Immunoreactive Pathology in Juvenile Amyotrophic Lateral Sclerosis with Basophilic Inclusions. Brain Pathology, 2010, 20, 1069-1076.	2.1	116
124	Interactions of Wnt/Â-Catenin Signaling and Sonic Hedgehog Regulate the Neurogenesis of Ventral Midbrain Dopamine Neurons. Journal of Neuroscience, 2010, 30, 9280-9291.	1.7	119
125	Towards improved animal models of neonatal white matter injury associated with cerebral palsy. DMM Disease Models and Mechanisms, 2010, 3, 678-688.	1.2	106
126	Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. Neuroscience Research, 2010, 67, 181-191.	1.0	176

#	Article	IF	CITATIONS
127	Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy. Neuron, 2010, 67, 953-966.	3.8	772
128	Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy. Neuron, 2010, 68, 801.	3.8	7
129	Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. Journal of Clinical Investigation, 2010, 120, 3673-3679.	3.9	92
130	Safety Evaluation of AAV2-GDNF Gene Transfer into the Dopaminergic Nigrostriatal Pathway in Aged and Parkinsonian Rhesus Monkeys. Human Gene Therapy, 2009, 20, 1627-1640.	1.4	102
131	Multiple roles of β-catenin in controlling the neurogenic niche for midbrain dopamine neurons. Development (Cambridge), 2009, 136, 2027-2038.	1.2	85
132	Comparative Healing of Surgical Incisions Created by the PEAK PlasmaBlade, Conventional Electrosurgery, and a Scalpel. Plastic and Reconstructive Surgery, 2009, 124, 1849-1859.	0.7	98
133	A Î ³ -secretase inhibitor and quinacrine reduce prions and prevent dendritic degeneration in murine brains. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10595-10600.	3.3	42
134	TGFbâ€HIPK2 Signaling Pathway in the Survival of Dopamine Neurons During Toxinâ€induced Degeneration. FASEB Journal, 2008, 22, 58.11.	0.2	0
135	HIPK2 represses beta-catenin-mediated transcription, epidermal stem cell expansion, and skin tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13040-13045.	3.3	122
136	Increased apoptosis, p53 up-regulation, and cerebellar neuronal degeneration in repair-deficient Cockayne syndrome mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1389-1394.	3.3	74
137	Essential function of HIPK2 in TGFβ-dependent survival of midbrain dopamine neurons. Nature Neuroscience, 2007, 10, 77-86.	7.1	126
138	Comparative healing of surgical incisions created by a standard bovie, PEAK electrosurgical cutting tool, and standard scalpel blade. Journal of the American College of Surgeons, 2007, 205, S54.	0.2	0
139	Dynamic expression of neurotrophic factor receptors in postnatal spinal motoneurons and in mouse model of ALS. Journal of Neurobiology, 2006, 66, 882-895.	3.7	29
140	Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7136-7141.	3.3	194
141	Selective neuronal vulnerability and inadequate stress response in superoxide dismutase mutant mice. Free Radical Biology and Medicine, 2005, 38, 817-828.	1.3	31
142	Notch-1 activation and dendritic atrophy in prion disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 886-891.	3.3	88
143	Targeted deletion of numb and numblike in sensory neurons reveals their essential functions in axon arborization. Genes and Development, 2005, 19, 138-151.	2.7	50
144	Interaction of Brn3a and HIPK2 mediates transcriptional repression of sensory neuron survival. Journal of Cell Biology, 2004, 167, 257-267.	2.3	93

#	Article	IF	CITATIONS
145	Expression and Activation of Signal Regulatory Protein $\hat{I}\pm$ on Astrocytomas. Cancer Research, 2004, 64, 117-127.	0.4	18
146	Homeodomain-Interacting Protein Kinase-2 Regulates Apoptosis in Developing Sensory and Sympathetic Neurons. Current Biology, 2004, 14, 1761-1765.	1.8	38
147	Trk Receptors: Roles in Neuronal Signal Transduction. Annual Review of Biochemistry, 2003, 72, 609-642.	5.0	2,177
148	Morphological Correlates of Intrinsic Electrical Excitability in Neurons of the Deep Cerebellar Nuclei. Journal of Neurophysiology, 2003, 89, 1738-1747.	0.9	77
149	Neurotrophins: Roles in Neuronal Development and Function. Annual Review of Neuroscience, 2001, 24, 677-736.	5.0	3,712
150	Spatial Shaping of Cochlear Innervation by Temporally Regulated Neurotrophin Expression. Journal of Neuroscience, 2001, 21, 6170-6180.	1.7	279
151	Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development (Cambridge), 2001, 128, 2421-2432.	1.2	134
152	Formation of a full complement of cranial proprioceptors requires multiple neurotrophins. , 2000, 218, 359-370.		33
153	An optical coherence microscope for 3-dimensional imaging in developmental biology. Optics Express, 2000, 6, 136.	1.7	100
154	Role of Dimerization of the Membrane-associated Growth Factor Kit Ligand in Juxtacrine Signaling: The Sl17H Mutation Affects Dimerization and Stability—Phenotypes in Hematopoiesis. Journal of Experimental Medicine, 1998, 187, 1451-1461.	4.2	32
155	NEUROTROPHIN-3 MODULATES EXPRESSION OF THE POU DOMAIN FACTOR BRN-3A IN EARLY SENSORY GANGLIOGENESIS. Journal of Neuropathology and Experimental Neurology, 1998, 57, 517.	0.9	0
156	Hepatitis B and C coinfections and persistent hepatitis B infections: Clinical outcome and liver pathology after transplantation. Hepatology, 1996, 23, 396-404.	3.6	57
157	The Expression Pattern of the c-kit Ligand in Gonads of Mice Supports a Role for the c-kit Receptor in Oocyte Growth and in Proliferation of Spermatogonia. Developmental Biology, 1993, 157, 85-99.	0.9	276
158	The Murine Steel Panda Mutation Affects Kit Ligand Expression and Growth of Early Ovarian Follicles. Developmental Biology, 1993, 157, 100-109.	0.9	213
159	c-kit receptor and ligand expression in postnatal development of the mouse cerebellum suggests a function for c-kit in inhibitory interneurons. Journal of Neuroscience, 1992, 12, 4663-4676.	1.7	75
160	κ3 opiate receptor binding in the mouse and rat. European Journal of Pharmacology, 1992, 226, 15-20.	2.7	32
161	Cleavage of membrane-anchored growth factors involves distinct protease activities regulated through common mechanisms. Journal of Biological Chemistry, 1992, 267, 24028-33.	1.6	89
162	The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell, 1990, 63, 225-233.	13.5	1,169