Alexandros Goulas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4971990/publications.pdf

Version: 2024-02-01

32 3,208 22 32 32 papers citations h-index g-index

36 36 36 36 3376

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Disentangling cortical functional connectivity strength and topography reveals divergent roles of genes and environment. Neurolmage, 2022, 247, 118770.	4.2	9
2	Bringing Anatomical Information into Neuronal Network Models. Advances in Experimental Medicine and Biology, 2022, 1359, 201-234.	1.6	12
3	A natural cortical axis connecting the outside and inside of the human brain. Network Neuroscience, 2022, 6, 950-959.	2.6	17
4	The natural axis of transmitter receptor distribution in the human cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	66
5	An architectonic type principle in the development of laminar patterns of cortico-cortical connections. Brain Structure and Function, 2021, 226, 979-987.	2.3	1
6	Imaging evolution of the primate brain: the next frontier?. NeuroImage, 2021, 228, 117685.	4.2	43
7	Bio-instantiated recurrent neural networks: Integrating neurobiology-based network topology in artificial networks. Neural Networks, 2021, 142, 608-618.	5.9	25
8	A Connectomic Hypothesis for the Hominization of the Brain. Cerebral Cortex, 2021, 31, 2425-2449.	2.9	47
9	Cross-species functional alignment reveals evolutionary hierarchy within the connectome. Neurolmage, 2020, 223, 117346.	4.2	136
10	Shaping brain structure: Genetic and phylogenetic axes of macroscale organization of cortical thickness. Science Advances, 2020, 6, .	10.3	97
11	â€~Hierarchy' in the organization of brain networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190319.	4.0	115
12	An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Network Neuroscience, 2019, 3, 905-923.	2.6	45
13	Spatiotemporal ontogeny of brain wiring. Science Advances, 2019, 5, eaav9694.	10.3	47
14	A blueprint of mammalian cortical connectomes. PLoS Biology, 2019, 17, e2005346.	5 . 6	64
15	The architecture of mammalian cortical connectomes in light of the theory of the dual origin of the cerebral cortex. Cortex, 2019, 118, 244-261.	2.4	38
16	Exploring the limits of network topology estimation using diffusion-based tractography and tracer studies in the macaque cortex. Neurolmage, 2019, 191, 81-92.	4.2	28
17	Functional connectivity of task context representations in prefrontal nodes of the multiple demand network. Brain Structure and Function, 2018, 223, 2455-2473.	2.3	6
18	Comprehensive computational modelling of the development of mammalian cortical connectivity underlying an architectonic type principle. PLoS Computational Biology, 2018, 14, e1006550.	3.2	20

#	Article	IF	CITATION
19	Cortical Gradients and Laminar Projections in Mammals. Trends in Neurosciences, 2018, 41, 775-788.	8.6	114
20	Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse. Brain Structure and Function, 2017, 222, 1281-1295.	2.3	81
21	Intrinsic functional architecture of the macaque dorsal and ventral lateral frontal cortex. Journal of Neurophysiology, 2017, 117, 1084-1099.	1.8	22
22	Human orbital and anterior medial prefrontal cortex: Intrinsic connectivity parcellation and functional organization. Brain Structure and Function, 2017, 222, 2941-2960.	2.3	28
23	A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex. Cerebral Cortex, 2017, 27, 981-997.	2.9	233
24	Situating the default-mode network along a principal gradient of macroscale cortical organization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12574-12579.	7.1	1,481
25	Is the brain really a small-world network?. Brain Structure and Function, 2016, 221, 2361-2366.	2.3	98
26	Reverse inference of memory retrieval processes underlying metacognitive monitoring of learning using multivariate pattern analysis. NeuroImage, 2016, 132, 11-23.	4.2	6
27	The strength of weak connections in the macaque cortico-cortical network. Brain Structure and Function, 2015, 220, 2939-2951.	2.3	55
28	Mapping the Hierarchical Layout of the Structural Network of the Macaque Prefrontal Cortex. Cerebral Cortex, 2014, 24, 1178-1194.	2.9	59
29	Comparative Analysis of the Macroscale Structural Connectivity in the Macaque and Human Brain. PLoS Computational Biology, 2014, 10, e1003529.	3.2	68
30	Methylphenidate reduces functional connectivity of nucleus accumbens in brain reward circuit. Psychopharmacology, 2013, 229, 219-226.	3.1	46
31	Unravelling the Intrinsic Functional Organization of the Human Lateral Frontal Cortex: A Parcellation Scheme Based on Resting State fMRI. Journal of Neuroscience, 2012, 32, 10238-10252.	3.6	66
32	Maturation of task-induced brain activation and long range functional connectivity in adolescence	4.2	14