
Wen-Jun Xin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4971928/publications.pdf Version: 2024-02-01

WEN-LIN XIN

#	Article	IF	CITATIONS
1	TNF-α Differentially Regulates Synaptic Plasticity in the Hippocampus and Spinal Cord by Microglia-Dependent Mechanisms after Peripheral Nerve Injury. Journal of Neuroscience, 2017, 37, 871-881.	3.6	268
2	The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain, 2006, 123, 306-321.	4.2	200
3	Peripheral Nerve Injury Leads to Working Memory Deficits and Dysfunction of the Hippocampus by Upregulation of TNF-α in Rodents. Neuropsychopharmacology, 2011, 36, 979-992.	5.4	195
4	Interleukin-1β overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Molecular Pain, 2016, 12, 174480691664678.	2.1	146
5	TNF-α contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury. Pain, 2010, 151, 266-279.	4.2	145
6	Microglia Are Indispensable for Synaptic Plasticity in the Spinal Dorsal Horn and Chronic Pain. Cell Reports, 2019, 27, 3844-3859.e6.	6.4	143
7	Prevention of Paclitaxel-Induced Allodynia by Minocycline: Effect on Loss of Peripheral Nerve Fibers and Infiltration of Macrophages in Rats. Molecular Pain, 2010, 6, 1744-8069-6-76.	2.1	106
8	p38 activation in uninjured primary afferent neurons and in spinal microglia contributes to the development of neuropathic pain induced by selective motor fiber injury. Experimental Neurology, 2007, 204, 355-365.	4.1	102
9	Plasticity in Expression of the Glutamate Transporters GLT-1 and GLAST in Spinal Dorsal Horn Glial Cells following Partial Sciatic Nerve Ligation. Molecular Pain, 2009, 5, 1744-8069-5-15.	2.1	102
10	CX3CL1-mediated macrophage activation contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. Brain, Behavior, and Immunity, 2014, 40, 155-165.	4.1	102
11	Peri-sciatic administration of recombinant rat TNF-α induces mechanical allodynia via upregulation of TNF-α in dorsal root ganglia and in spinal dorsal horn: The role of NF-kappa B pathway. Experimental Neurology, 2007, 205, 471-484.	4.1	97
12	CircAnks1a in the spinal cord regulates hypersensitivity in a rodent model of neuropathic pain. Nature Communications, 2019, 10, 4119.	12.8	89
13	The direction of synaptic plasticity mediated by C-fibers in spinal dorsal horn is decided by Src-family kinases in microglia: The role of tumor necrosis factor-α. Brain, Behavior, and Immunity, 2010, 24, 874-880.	4.1	87
14	The Upregulation of Translocator Protein (18 kDa) Promotes Recovery from Neuropathic Pain in Rats. Journal of Neuroscience, 2013, 33, 1540-1551.	3.6	79
15	ATP induces longâ€ŧerm potentiation of Câ€fiberâ€evoked field potentials in spinal dorsal horn: The roles of P2X ₄ receptors and p38 MAPK in microglia. Clia, 2009, 57, 583-591.	4.9	75
16	Up-regulation of CX3CL1 <i>via</i> Nuclear Factor-κB–dependent Histone Acetylation Is Involved in Paclitaxel-induced Peripheral Neuropathy. Anesthesiology, 2015, 122, 1142-1151.	2.5	69
17	Activation of p38 signaling in the microglia in the nucleus accumbens contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Brain, Behavior, and Immunity, 2012, 26, 318-325.	4.1	66
18	Upregulation of NLRP3 via STAT3-dependent histone acetylation contributes to painful neuropathy induced by bortezomib. Experimental Neurology, 2018, 302, 104-111.	4.1	64

Wen-Jun Xin

#	Article	IF	CITATIONS
19	Epigenetic upregulation of CXCL12 expression mediates antitubulin chemotherapeutics–induced neuropathic pain. Pain, 2017, 158, 637-648.	4.2	54
20	TNF-α/STAT3 pathway epigenetically upregulates Nav1.6 expression in DRG and contributes to neuropathic pain induced by L5-VRT. Journal of Neuroinflammation, 2019, 16, 29.	7.2	49
21	Limited BDNF contributes to the failure of injury to skin afferents to produce a neuropathic pain condition. Pain, 2010, 148, 148-157.	4.2	38
22	mir-500-Mediated GAD67 Downregulation Contributes to Neuropathic Pain. Journal of Neuroscience, 2016, 36, 6321-6331.	3.6	38
23	Cerebrospinal Fluid Oxaliplatin Contributes to the Acute Pain Induced by Systemic Administration of Oxaliplatin. Anesthesiology, 2016, 124, 1109-1121.	2.5	37
24	TNF-α Differentially Regulates Synaptic Plasticity in the Hippocampus and Spinal Cord by Microglia-Dependent Mechanisms after Peripheral Nerve Injury. Journal of Neuroscience, 2017, 37, 871-881.	3.6	36
25	TNF-α-mediated JNK activation in the dorsal root ganglion neurons contributes to Bortezomib-induced peripheral neuropathy. Brain, Behavior, and Immunity, 2014, 38, 185-191.	4.1	35
26	Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons. Brain, Behavior, and Immunity, 2015, 44, 37-47.	4.1	32
27	Orexin A-mediated AKT signaling in the dentate gyrus contributes to the acquisition, expression and reinstatement of morphine-induced conditioned place preference. Addiction Biology, 2016, 21, 547-559.	2.6	31
28	Activation of TLR4/STAT3 signaling in VTA contributes to the acquisition and maintenance of morphine-induced conditioned place preference. Behavioural Brain Research, 2017, 335, 151-157.	2.2	31
29	Palmitoylation of Î'-catenin promotes kinesin-mediated membrane trafficking of Na _v 1.6 in sensory neurons to promote neuropathic pain. Science Signaling, 2018, 11, .	3.6	31
30	Reduction of SIRT1 epigenetically upregulates NALP1 expression and contributes to neuropathic pain induced by chemotherapeutic drug bortezomib. Journal of Neuroinflammation, 2018, 15, 292.	7.2	31
31	Activation of RAGE/STAT3 pathway by methylglyoxal contributes to spinal central sensitization and persistent pain induced by bortezomib. Experimental Neurology, 2017, 296, 74-82.	4.1	27
32	The possible involvement of JNK activation in the spinal dorsal horn in bortezomib-induced allodynia: the role of TNF-α and IL-1β. Journal of Anesthesia, 2016, 30, 55-63.	1.7	24
33	The inhibition of spinal synaptic plasticity mediated by activation of AMP-activated protein kinase signaling alleviates the acute pain induced by oxaliplatin. Experimental Neurology, 2017, 288, 85-93.	4.1	23
34	The role of CA3‣Sâ€VTA loop in the formation of conditioned place preference induced by contextâ€associated reward memory for morphine. Addiction Biology, 2018, 23, 41-54.	2.6	19
35	Upregulation of tumor necrosis factor-alpha in the anterior cingulate cortex contributes to neuropathic pain and pain-associated aversion. Neurobiology of Disease, 2019, 130, 104456.	4.4	19
36	NFATc2-dependent epigenetic upregulation of CXCL14 is involved in the development of neuropathic pain induced by paclitaxel. Journal of Neuroinflammation, 2020, 17, 310.	7.2	15

Wen-Jun Xin

#	Article	IF	CITATIONS
37	Oxaliplatinâ€induced neuropathic pain involves <scp>HOXA6</scp> via a <scp>TET1</scp> â€dependent demethylation of the <scp>SOX10</scp> promoter. International Journal of Cancer, 2020, 147, 2503-2514.	5.1	10
38	Adaptation of prelimbic cortex mediated by IL-6/STAT3/Acp5 pathway contributes to the comorbidity of neuropathic pain and depression in rats. Journal of Neuroinflammation, 2022, 19, .	7.2	10
39	Upregulation of TRPC6 Mediated by PAX6 Hypomethylation Is Involved in the Mechanical Allodynia Induced by Chemotherapeutics in Dorsal Root Ganglion. International Journal of Neuropsychopharmacology, 2020, 23, 257-267.	2.1	8
40	ZEB1 Induces Ddr1ÂPromoter Hypermethylation and Contributes to the Chronic Pain in Spinal Cord in Rats Following Oxaliplatin Treatment. Neurochemical Research, 2021, 46, 2181-2191.	3.3	8
41	Metformin Relieves Bortezomib-Induced Neuropathic Pain by Regulating AMPKa2-Mediated Autophagy in the Spinal Dorsal Horn. Neurochemical Research, 2022, 47, 1878-1887.	3.3	6
42	Epigenetic upregulation of hippocampal CXCL12 contributes to context spatial memory-associated morphine conditioning. Brain, Behavior, and Immunity, 2020, 84, 72-79.	4.1	5
43	On the Role of Microglia in Trigeminal Neuropathic Pain. Neuroscience, 2019, 414, 297-298.	2.3	2
44	The epigenetic mechanisms involved in chronic pain in rodents: A mini-review. Current Neuropharmacology, 2021, 19, .	2.9	2