Irep Gözen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4971197/publications.pdf Version: 2024-02-01

IDED CöZEN

#	Article	IF	CITATIONS
1	Manipulation of Lipid Membranes with Thermal Stimuli. Methods in Molecular Biology, 2022, 2402, 209-225.	0.9	1
2	Spontaneous Formation of Prebiotic Compartment Colonies on Hadean Earth and Preâ€Noachian Mars**. ChemSystemsChem, 2022, 4, .	2.6	3
3	Protocells: Milestones and Recent Advances. Small, 2022, 18, e2106624.	10.0	45
4	Spontaneous Formation of Prebiotic Compartment Colonies on Hadean Earth and Preâ€Noachian Mars. ChemSystemsChem, 2022, 4, .	2.6	0
5	Protocells: Milestones and Recent Advances (Small 18/2022). Small, 2022, 18, .	10.0	0
6	Transport among protocells <i>via</i> tunneling nanotubes. Nanoscale, 2022, 14, 10418-10427.	5.6	2
7	Subcompartmentalization and Pseudoâ€Division of Model Protocells. Small, 2021, 17, e2005320.	10.0	20
8	Did Solid Surfaces Enable the Origin of Life?. Life, 2021, 11, 795.	2.4	5
9	Protocells: Subcompartmentalization and Pseudoâ€Đivision of Model Protocells (Small 2/2021). Small, 2021, 17, 2170007.	10.0	0
10	Mixed fatty acid-phospholipid protocell networks. Physical Chemistry Chemical Physics, 2021, 23, 26948-26954.	2.8	3
11	Protocells: Rapid Growth and Fusion of Protocells in Surfaceâ€Adhered Membrane Networks (Small) Tj ETQq1 1	0.784314 10.0	rgBT /Overlo
12	Biological lipid nanotubes and their potential role in evolution. European Physical Journal: Special Topics, 2020, 229, 2843-2862.	2.6	8
13	Rapid Growth and Fusion of Protocells in Surfaceâ€Adhered Membrane Networks. Small, 2020, 16, e2002529.	10.0	11
14	Molecular Lipid Films on Microengineering Materials. Langmuir, 2019, 35, 10286-10298.	3.5	11
15	A microfluidics-integrated impedance/surface acoustic resonance tandem sensor. Sensing and Bio-Sensing Research, 2019, 25, 100291.	4.2	8
16	Microfluidic technology for investigation of protein function in single adherent cells. Methods in Enzymology, 2019, 628, 145-172.	1.0	1
17	A Hypothesis for Protocell Division on the Early Earth. ACS Nano, 2019, 13, 10869-10871.	14.6	13
18	Nanotube-Mediated Path to Protocell Formation. ACS Nano, 2019, 13, 6867-6878.	14.6	26

Irep Gözen

#	Article	IF	CITATIONS
19	A cellular automaton for modeling non-trivial biomembrane ruptures. Soft Matter, 2019, 15, 4178-4186.	2.7	3
20	Active colloidal particles in emulsion droplets: a model system for the cytoplasm. European Physical Journal: Special Topics, 2019, 227, 2413-2424.	2.6	2
21	Spontaneous Formation and Rearrangement of Artificial Lipid Nanotube Networks as a Bottom-Up Model for Endoplasmic Reticulum. Journal of Visualized Experiments, 2019, , .	0.3	4
22	Styrene maleic acid copolymer induces pores in biomembranes. Soft Matter, 2019, 15, 7934-7944.	2.7	14
23	Single-Cell Analysis with the BioPen. , 2018, , 187-219.		0
24	The Multifunctional Pipette. , 2018, , 155-185.		0
25	Formation and dynamics of endoplasmic reticulum-like lipid nanotube networks. Biomaterials Science, 2017, 5, 1256-1264.	5.4	16
26	Peridynamic Modeling of Ruptures in Biomembranes. PLoS ONE, 2016, 11, e0165947.	2.5	22
27	Lipid nanotube networks: Biomimetic Cell-to-Cell Communication and Soft-Matter Technology. Nanofabrication, 2015, 2, .	1.1	3
28	Deformation of a single mouse oocyte in a constricted microfluidic channel. Microfluidics and Nanofluidics, 2015, 19, 883-890.	2.2	44
29	Bioâ€Inspired Cryoâ€Ink Preserves Red Blood Cell Phenotype and Function During Nanoliter Vitrification. Advanced Materials, 2014, 26, 5815-5822.	21.0	39
30	Thermal migration of molecular lipid films as a contactless fabrication strategy for lipid nanotube networks. Lab on A Chip, 2013, 13, 3822.	6.0	12
31	Repair of large area pores in supported double bilayers. Soft Matter, 2013, 9, 2787.	2.7	11
32	Lab on a Biomembrane: Rapid prototyping and manipulation of 2D fluidic lipid bilayer circuits. Scientific Reports, 2013, 3, 2743.	3.3	24
33	Evidence for membrane flow through pores in stacked phospholipid membranes. Soft Matter, 2012, 8, 6220.	2.7	9
34	Instrumental Methods to Characterize Molecular Phospholipid Films on Solid Supports. Analytical Chemistry, 2012, 84, 822-838.	6.5	32
35	Calcium-ion-controlled nanoparticle-induced tubulation in supported flat phospholipid vesicles. Soft Matter, 2011, 7, 9706.	2.7	18
36	Fractal avalanche ruptures in biological membranes. Nature Materials, 2010, 9, 908-912.	27.5	48

Irep Gözen

#	Article	IF	CITATIONS
37	Effect of daylight on regrowth of bacteria in anaerobically digested sludge. Water Science and Technology, 2010, 62, 364-369.	2.5	2
38	Protrusive growth and periodic contractile motion in surface-adhered vesicles induced by Ca2+-gradients. Soft Matter, 2010, 6, 268-272.	2.7	48
39	A Microfluidic Diluter Based on Pulse Width Flow Modulation. Analytical Chemistry, 2009, 81, 5549-5556.	6.5	30