
Joseph A Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4971128/publications.pdf Version: 2024-02-01

Ιοςέρη Δ.Ηπ

#	Article	IF	CITATIONS
1	Celebrating The Next Generation of Cardiovascular Investigators. Circulation, 2022, 145, 91-93.	1.6	Ο
2	Recognized Outstanding Reviewers for <i>Circulation</i> in 2021. Circulation, 2022, 145, 4-4.	1.6	33
3	Sixth Annual Go Red for Women Issue. Circulation, 2022, 145, 489-490.	1.6	3
4	Immunometabolic mechanisms of heart failure with preserved ejection fraction. , 2022, 1, 211-222.		27
5	Cardiovascular scholarly challenges following the Russian invasion of Ukraine. Minerva Cardiology and Angiology, 2022, 70, .	0.4	3
6	<i>Circulation</i> Best Papers 2021. Circulation, 2022, 145, 1441-1442.	1.6	0
7	ATF4 Protects the Heart From Failure by Antagonizing Oxidative Stress. Circulation Research, 2022, 131, 91-105.	2.0	26
8	Heart Failure With Preserved Ejection Fraction: Heterogeneous Syndrome, Diverse Preclinical Models. Circulation Research, 2022, 130, 1906-1925.	2.0	45
9	Impaired AMP-Activated Protein Kinase Signaling in Heart Failure With Preserved Ejection Fraction–Associated Atrial Fibrillation. Circulation, 2022, 146, 73-76.	1.6	4
10	PKD2/polycystin-2 induces autophagy by forming a complex with BECN1. Autophagy, 2021, 17, 1714-1728.	4.3	21
11	Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovascular Research, 2021, 117, 423-434.	1.8	102
12	James T. Willerson, MD. Circulation, 2021, 143, 1537-1538.	1.6	0
13	High-sugar feeding and increasing cholesterol levels in infants. European Heart Journal, 2021, 42, 1132-1135.	1.0	7
14	Fifth Annual Go Red for Women Issue. Circulation, 2021, 143, 613-614.	1.6	1
15	Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction. Nature Communications, 2021, 12, 1684.	5.8	59
16	Metabolism and Inflammation in Cardiovascular Health and Diseases: Mechanisms to Therapies. Journal of Molecular and Cellular Cardiology, 2021, 157, 113-114.	0.9	3
17	A call to action for new global approaches to cardiovascular disease drug solutions. European Heart Journal, 2021, 42, 1464-1475.	1.0	29
18	Cooperative Binding of ETS2 and NFAT Links Erk1/2 and Calcineurin Signaling in the Pathogenesis of Cardiac Hypertrophy. Circulation, 2021, 144, 34-51.	1.6	30

#	Article	IF	CITATIONS
19	NAD ⁺ Repletion Reverses Heart Failure With Preserved Ejection Fraction. Circulation Research, 2021, 128, 1629-1641.	2.0	96
20	Activation of Autophagic Flux Blunts Cardiac Ischemia/Reperfusion Injury. Circulation Research, 2021, 129, 435-450.	2.0	28
21	A Call to Action for New Global Approaches to Cardiovascular Disease Drug Solutions. Circulation, 2021, 144, 159-169.	1.6	18
22	Fli1 Promotes Vascular Morphogenesis by Regulating Endothelial Potential of Multipotent Myogenic Progenitors. Circulation Research, 2021, 129, 949-964.	2.0	5
23	Cardiometabolic HFpEF: Mechanisms and Therapies. Cardiometabolic Syndrome Journal, 2021, 1, 117.	1.0	1
24	Matricellular Protein Cilp1 Promotes Myocardial Fibrosis in Response to Myocardial Infarction. Circulation Research, 2021, 129, 1021-1035.	2.0	23
25	Abstract 8914: Selective Phosphodiesterase-9 Inhibition With IMR-687 Mitigates Cardiac Hypertrophy and Renal Injury in Preclinical Mouse Models of Heart Failure With Preserved Ejection Fraction. Circulation, 2021, 144, .	1.6	Ο
26	Molecular Basis of Heart Failure. , 2020, , 1-27.e3.		0
27	Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury. Theranostics, 2020, 10, 11754-11774.	4.6	37
28	Recognized Outstanding Reviewers for Circulation in 2020. Circulation, 2020, 142, 1885-1886.	1.6	0
29	Epigenetic Reader BRD4 (Bromodomain-Containing Protein 4) Governs Nucleus-Encoded Mitochondrial Transcriptome to Regulate Cardiac Function. Circulation, 2020, 142, 2356-2370.	1.6	47
30	Disparities in Cardiovascular Medicine: Circulation's Response. Circulation, 2020, 142, 1127-1128.	1.6	3
31	Role of FoxO3a as a negative regulator of the cardiac myofibroblast conversion induced by TGF-β1. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118695.	1.9	12
32	Science in a Time of Crisis. Circulation, 2020, 141, 1277-1278.	1.6	1
33	Can HFpEF and HFrEF Coexist?. Circulation, 2020, 141, 709-711.	1.6	11
34	Fourth Annual Go Red for Women Issue. Circulation, 2020, 141, 499-500.	1.6	3
35	Mitochondrial substrate utilization regulates cardiomyocyte cell-cycle progression. Nature Metabolism, 2020, 2, 167-178.	5.1	131
36	Cardiovascular Science India Tour. Circulation, 2020, 141, 159-160.	1.6	1

#	Article	IF	CITATIONS
37	A calcineurin–Hoxb13 axis regulates growth mode of mammalian cardiomyocytes. Nature, 2020, 582, 271-276.	13.7	77
38	Mechanism of Eccentric Cardiomyocyte Hypertrophy Secondary to Severe Mitral Regurgitation. Circulation, 2020, 141, 1787-1799.	1.6	10
39	FoxO1–Dio2 signaling axis governs cardiomyocyte thyroid hormone metabolism and hypertrophic growth. Nature Communications, 2020, 11, 2551.	5.8	26
40	Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression. Nature Metabolism, 2020, 2, 167-178.	5.1	49
41	Abstract 14412: Activation of Autophagic Flux Maintains Mitochondrial Homeostasis During Cardiac Ischemia/reperfusion Injury. Circulation, 2020, 142, .	1.6	0
42	Guidelines for evaluating myocardial cell death. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H891-H922.	1.5	135
43	Medical Misinformation: Vet the Message!. Cardiovascular Drugs and Therapy, 2019, 33, 275-276.	1.3	2
44	Polycystin-1 Assembles With Kv Channels to Govern Cardiomyocyte Repolarization and Contractility. Circulation, 2019, 140, 921-936.	1.6	28
45	Medical Misinformation: Vet the Message!. Cardiology, 2019, 142, 63-65.	0.6	3
46	Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy, 2019, 15, 2142-2162.	4.3	157
47	Medical misinformation: vet the message!. Journal of Interventional Cardiac Electrophysiology, 2019, 55, 1-3.	0.6	3
48	Third Annual Go Red for Women Issue. Circulation, 2019, 139, 999-1000.	1.6	1
49	Fibroblast Primary Cilia Are Required for Cardiac Fibrosis. Circulation, 2019, 139, 2342-2357.	1.6	101
50	Medical misinformation: vet the message!. European Journal of Heart Failure, 2019, 21, 264-265.	2.9	0
51	Nitrosative stress drives heart failure with preserved ejection fraction. Nature, 2019, 568, 351-356.	13.7	492
52	Medical misinformation: vet the message!. PACE - Pacing and Clinical Electrophysiology, 2019, 42, 299-300.	0.5	1
53	Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Scientific Reports, 2019, 9, 2002.	1.6	115
54	Medical Misinformation: Vet the Message!. European Heart Journal: Acute Cardiovascular Care, 2019, 8, 5-7.	0.4	2

#	Article	IF	CITATIONS
55	Medical Misinformation. Thoracic and Cardiovascular Surgeon, 2019, 67, 080-082.	0.4	2
56	HDAC inhibition as a therapeutic strategy in myocardial ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 129, 188-192.	0.9	19
57	Female Sex Is Protective in a Preclinical Model of Heart Failure With Preserved Ejection Fraction. Circulation, 2019, 140, 1769-1771.	1.6	43
58	When the CAR Targets Scar. New England Journal of Medicine, 2019, 381, 2475-2476.	13.9	3
59	Recognized Outstanding Reviewers for Circulation in 2019. Circulation, 2019, 140, 2047-2047.	1.6	0
60	Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER–mitochondria communication during the early phase of ER stress. Cell Death and Differentiation, 2019, 26, 1195-1212.	5.0	46
61	Publications Simultaneous With Meeting Presentation. Circulation, 2019, 139, 307-309.	1.6	3
62	Medical Misinformation: Vet the Message!. Anatolian Journal of Cardiology, 2019, 21, 58-59.	0.5	0
63	Polycystin-2-dependent control of cardiomyocyte autophagy. Journal of Molecular and Cellular Cardiology, 2018, 118, 110-121.	0.9	32
64	Epigenetic control of lipid metabolism: implications for lifespan and healthspan. Cardiovascular Research, 2018, 114, e33-e35.	1.8	0
65	Endoplasmic Reticulum Chaperone GRP78 Protects Heart From Ischemia/Reperfusion Injury Through Akt Activation. Circulation Research, 2018, 122, 1545-1554.	2.0	113
66	Response by Nallamothu and Hill to Letter Regarding Article, "Preprints and Cardiovascular Science: Prescient or Premature?― Circulation, 2018, 137, 1643-1644.	1.6	1
67	Second Annual Go Red for Women Issue. Circulation, 2018, 137, 761-762.	1.6	2
68	Cytosolic DNA Sensing Promotes Macrophage Transformation and Governs Myocardial Ischemic Injury. Circulation, 2018, 137, 2613-2634.	1.6	136
69	Down Syndrome Critical Region 1 Gene, <i>Rcan1</i> , Helps Maintain a More Fused Mitochondrial Network. Circulation Research, 2018, 122, e20-e33.	2.0	47
70	Ischemic Stroke Mandates Cross-Disciplinary Collaboration. Circulation, 2018, 137, 103-105.	1.6	4
71	Ischemic Stroke Mandates Cross-Disciplinary Collaboration. Stroke, 2018, 49, 273-274.	1.0	3
72	Adipocyte Xbp1s overexpression drives uridine production and reduces obesity. Molecular Metabolism, 2018, 11, 1-17.	3.0	34

#	Article	IF	CITATIONS
73	Histone lysine dimethyl-demethylase KDM3A controls pathological cardiac hypertrophy and fibrosis. Nature Communications, 2018, 9, 5230.	5.8	79
74	Beclin-1-Dependent Autophagy Protects the Heart During Sepsis. Circulation, 2018, 138, 2247-2262.	1.6	255
75	Circulation Global Rounds. Circulation, 2018, 138, 10-11.	1.6	2
76	Metabolic control and oxidative stress in pathological cardiac remodelling. European Heart Journal, 2017, 38, ehw199.	1.0	11
77	Inaugural Go Red for Women Issue. Circulation, 2017, 135, 493-494.	1.6	4
78	Spermidine Promotes Cardioprotective Autophagy. Circulation Research, 2017, 120, 1229-1231.	2.0	27
79	"Pound-Years― Circulation Research, 2017, 120, 1533-1534.	2.0	2
80	Bridging Disciplines. Circulation, 2017, 135, 1277-1278.	1.6	0
81	Ischemia and No Obstructive Coronary Artery Disease (INOCA). Circulation, 2017, 135, 1075-1092.	1.6	527
82	The Academic Medical System. Journal of the American College of Cardiology, 2017, 69, 1305-1312.	1.2	27
83	An adipo-biliary-uridine axis that regulates energy homeostasis. Science, 2017, 355, .	6.0	90
84	Is Load-Induced Ventricular Hypertrophy Ever Compensatory?. Circulation, 2017, 136, 1273-1275.	1.6	28
85	Status of Early-Career Academic Cardiology. Journal of the American College of Cardiology, 2017, 70, 2290-2303.	1.2	27
86	Preprints and Cardiovascular Science. Circulation, 2017, 136, 1177-1179.	1.6	8
87	Reflections of the Editor-in-Chief. Circulation, 2017, 136, 613-614.	1.6	3
88	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
89	Hypoxia induces heart regeneration in adult mice. Nature, 2017, 541, 222-227.	13.7	566
90	The 4th Report of the Working Group on ECG diagnosis of Left Ventricular Hypertrophy. Journal of Electrocardiology, 2017, 50, 11-15.	0.4	15

#	Article	IF	CITATIONS
91	Preprints and Cardiovascular Science. Circulation: Cardiovascular Quality and Outcomes, 2017, 10, .	0.9	4
92	Epigenetic regulation in heart failure. Current Opinion in Cardiology, 2016, 31, 255-265.	0.8	39
93	Mitochondrial dynamics, mitophagy and cardiovascular disease. Journal of Physiology, 2016, 594, 509-525.	1.3	441
94	Endolysosomal twoâ€pore channels regulate autophagy in cardiomyocytes. Journal of Physiology, 2016, 594, 3061-3077.	1.3	70
95	Notes From the Incoming Editor. Circulation, 2016, 133, 1300-1301.	1.6	4
96	Obesity, Diabetes, and Cardiovascular Diseases. Circulation Research, 2016, 118, 1703-1705.	2.0	164
97	Regulation of cardiomyocyte autophagy by calcium. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E587-E596.	1.8	9
98	Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction. Autophagy, 2016, 12, 976-998.	4.3	187
99	Notes from the Incoming Editor. Circulation, 2016, 133, 1713-1714.	1.6	3
100	Circulation 's Vision for Cardiac Surgery. Circulation, 2016, 134, 1203-1204.	1.6	0
101	Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression. Science Signaling, 2016, 9, ra34.	1.6	69
102	Notes From the Incoming Editor. Circulation, 2016, 133, 2215-2216.	1.6	1
103	Pharmacological Priming of Adipose-Derived Stem Cells Promotes Myocardial Repair. Journal of Investigative Medicine, 2016, 64, 50-62.	0.7	9
104	Chronic heart failure: Ca 2+ , catabolism, and catastrophic cell death. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 763-777.	1.8	21
105	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
106	Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation, 2016, 133, 1668-1687.	1.6	316
107	Notes From the Incoming Editor. Circulation, 2016, 133, 768-769.	1.6	4
108	How to Review a Manuscript. Journal of Electrocardiology, 2016, 49, 109-111.	0.4	17

#	Article	IF	CITATIONS
109	Therapeutic targeting of autophagy in cardiovascular disease. Journal of Molecular and Cellular Cardiology, 2016, 95, 86-93.	0.9	137
110	SF-1 expression in the hypothalamus is required for beneficial metabolic effects of exercise. ELife, 2016, 5, .	2.8	37
111	Cardiac Autophagy and Its Regulation by Reversible Protein Acetylation. Cardiac and Vascular Biology, 2016, , 231-262.	0.2	1
112	Vision for the New <i>Circulation</i> . Circulation, 2016, 134, 3-5.	1.6	1
113	Cardioprotection in ischaemia–reperfusion injury: novel mechanisms and clinical translation. Journal of Physiology, 2015, 593, 3773-3788.	1.3	35
114	Autophagy in cardiovascular biology. Journal of Clinical Investigation, 2015, 125, 55-64.	3.9	294
115	MuRF2 regulates PPARγ1 activity to protect against diabetic cardiomyopathy and enhance weight gain induced by a high fat diet. Cardiovascular Diabetology, 2015, 14, 97.	2.7	40
116	Braking Bad Hypertrophy. New England Journal of Medicine, 2015, 372, 2160-2162.	13.9	19
117	Parkin Gone Wild. Circulation Research, 2015, 117, 311-313.	2.0	3
118	Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1113-1118.	1.9	50
119	Protein Quality Control and Metabolism: Bidirectional Control in the Heart. Cell Metabolism, 2015, 21, 215-226.	7.2	69
120	Diabetic Cardiomyopathy. Circulation, 2015, 131, 771-773.	1.6	31
121	Guidelines for Translational Research in Heart Failure. Journal of Cardiovascular Translational Research, 2015, 8, 3-22.	1.1	28
122	Funny and Late: Targeting Currents Governing Heart Rate in Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 2015, 26, 336-338.	0.8	4
123	Inhibition of Hypertrophy Is a Good Therapeutic Strategy in Ventricular Pressure Overload. Circulation, 2015, 131, 1435-1447.	1.6	188
124	Constitutive Phosphorylation of Cardiac Myosin Regulatory Light Chain in Vivo. Journal of Biological Chemistry, 2015, 290, 10703-10716.	1.6	52
125	Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca ²⁺ Channel Protein Stability. Circulation, 2015, 131, 2131-2142.	1.6	71
126	Readers, Writers, and Erasers. Circulation Research, 2015, 116, 1245-1253.	2.0	183

#	Article	IF	CITATIONS
127	Fibrosis — A Common Pathway to Organ Injury and Failure. New England Journal of Medicine, 2015, 372, 1138-1149.	13.9	942
128	Muscle ring finger-3 protects against diabetic cardiomyopathy induced by a high fat diet. BMC Endocrine Disorders, 2015, 15, 36.	0.9	18
129	FoxO4 Promotes Early Inflammatory Response Upon Myocardial Infarction via Endothelial Arg1. Circulation Research, 2015, 117, 967-977.	2.0	64
130	Muscle‧pecific Ubiquitin Ligase MuRF1 Regulates Myocardial Autophagic Flux in vivo. FASEB Journal, 2015, 29, 148.8.	0.2	2
131	Seeing is believing. Autophagy, 2014, 10, 691-693.	4.3	14
132	Ca ²⁺ in the Cleft. Circulation Research, 2014, 115, 326-328.	2.0	1
133	Dimethyl α-ketoglutarate inhibits maladaptive autophagy in pressure overload-induced cardiomyopathy. Autophagy, 2014, 10, 930-932.	4.3	45
134	Overexpression of Smooth Muscle Myosin Heavy Chain Leads to Activation of the Unfolded Protein Response and Autophagic Turnover of Thick Filament-associated Proteins in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2014, 289, 14075-14088.	1.6	34
135	Organelle communication: Signaling crossroads between homeostasis and disease. International Journal of Biochemistry and Cell Biology, 2014, 50, 55-59.	1.2	46
136	Regulation of Autophagy by Cytosolic Acetyl-Coenzyme A. Molecular Cell, 2014, 53, 710-725.	4.5	412
137	Spliced X-Box Binding Protein 1 Couples the Unfolded Protein Response to Hexosamine Biosynthetic Pathway. Cell, 2014, 156, 1179-1192.	13.5	317
138	Histone Deacetylase Inhibition Blunts Ischemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy. Circulation, 2014, 129, 1139-1151.	1.6	291
139	An integrated mechanism of cardiomyocyte nuclear Ca2+ signaling. Journal of Molecular and Cellular Cardiology, 2014, 75, 40-48.	0.9	15
140	Copper Futures. Circulation Research, 2014, 114, 1678-1680.	2.0	10
141	Calcineurin-dependent ion channel regulation in heart. Trends in Cardiovascular Medicine, 2014, 24, 14-22.	2.3	29
142	Challenges Facing Early Career Academic Cardiologists. Journal of the American College of Cardiology, 2014, 63, 2199-2208.	1.2	51
143	Cardiomyocyte autophagy and cancer chemotherapy. Journal of Molecular and Cellular Cardiology, 2014, 71, 54-61.	0.9	50
144	Oxidative Stress and Autophagy in Cardiovascular Homeostasis. Antioxidants and Redox Signaling, 2014, 20, 507-518.	2.5	63

#	Article	IF	CITATIONS
145	RalGDS-dependent cardiomyocyte autophagy is required for load-induced ventricular hypertrophy. Journal of Molecular and Cellular Cardiology, 2013, 59, 128-138.	0.9	18
146	Pathological Ventricular Remodeling. Circulation, 2013, 128, 1021-1030.	1.6	126
147	Endoplasmic Reticulum and the Unfolded Protein Response. International Review of Cell and Molecular Biology, 2013, 301, 215-290.	1.6	440
148	Ca2+ Leak in Atrial Fibrillation. Journal of the American College of Cardiology, 2013, 62, 2020-2022.	1.2	3
149	HDAC-dependent ventricular remodeling. Trends in Cardiovascular Medicine, 2013, 23, 229-235.	2.3	87
150	Diabetic cardiomyopathy and metabolic remodeling of the heart. Life Sciences, 2013, 92, 609-615.	2.0	70
151	Cardiomyocyte autophagy: metabolic profit and loss. Heart Failure Reviews, 2013, 18, 585-594.	1.7	34
152	Cardiomyocyte ryanodine receptor degradation by chaperone-mediated autophagy. Cardiovascular Research, 2013, 98, 277-285.	1.8	78
153	Mechanical Unloading Activates FoxO3 to Trigger Bnip3â€Dependent Cardiomyocyte Atrophy. Journal of the American Heart Association, 2013, 2, e000016.	1.6	90
154	Pathological Ventricular Remodeling. Circulation, 2013, 128, 388-400.	1.6	607
155	Cardiovascular autophagy. Autophagy, 2013, 9, 1455-1466.	4.3	162
156	The Xbp1s/GalE axis links ER stress to postprandial hepatic metabolism. Journal of Clinical Investigation, 2013, 123, 455-468.	3.9	115
157	Enhanced autophagy ameliorates cardiac proteinopathy. Journal of Clinical Investigation, 2013, 123, 5284-5297.	3.9	260
158	FoxO1 in embryonic development. Transcription, 2012, 3, 221-225.	1.7	7
159	Metabolic stress–induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. Journal of Clinical Investigation, 2012, 122, 1109-1118.	3.9	274
160	Cardiac Autophagy. Journal of Cardiovascular Pharmacology, 2012, 60, 248-252.	0.8	50
161	Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovascular Research, 2012, 93, 320-329.	1.8	124
162	STIM1-dependent store-operated Ca2+ entry is required for pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2012, 52, 136-147.	0.9	133

#	Article	IF	CITATIONS
163	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
164	Cardiac Plasticity in Health and Disease. , 2012, , 185-250.		1
165	Hypertrophic reprogramming of the left ventricle: translation to the ECG. Journal of Electrocardiology, 2012, 45, 624-629.	0.4	19
166	Ionic Fluxes and Genesis of the Cardiac Action Potential. , 2012, , 67-85.		2
167	Autophagy in Cardiac Physiology and Disease. , 2012, , 405-422.		0
168	Mechanisms of Stress-Induced Cardiac Hypertrophy. , 2012, , 481-494.		1
169	Impaired Autophagosome Clearance Contributes to Cardiomyocyte Death in Ischemia/Reperfusion Injury. Circulation, 2012, 125, 3170-3181.	1.6	413
170	FHL2 Binds Calcineurin and Represses Pathological Cardiac Growth. Molecular and Cellular Biology, 2012, 32, 4025-4034.	1.1	55
171	Transient Regenerative Potential of the Neonatal Mouse Heart. Science, 2011, 331, 1078-1080.	6.0	2,117
172	Autophagy as a therapeutic target in cardiovascular disease. Journal of Molecular and Cellular Cardiology, 2011, 51, 584-593.	0.9	165
173	Tuning flux: autophagy as a target of heart disease therapy. Current Opinion in Cardiology, 2011, 26, 216-222.	0.8	81
174	Spironolactone Therapy is Associated with Reduced Ventricular Tachycardia Rate in Patients with Cardiomyopathy. PACE - Pacing and Clinical Electrophysiology, 2011, 34, 309-314.	0.5	11
175	Second statement of the Working Group on Electrocardiographic Diagnosis of Left Ventricular Hypertrophy. Journal of Electrocardiology, 2011, 44, 568-570.	0.4	44
176	Autophagy in Cardiac Plasticity and Disease. Pediatric Cardiology, 2011, 32, 282-289.	0.6	29
177	HDACs and Hypertrophy, Kinases and Cancer. Circulation, 2011, 123, 2341-2343.	1.6	2
178	Reversibility of Adverse, Calcineurin-Dependent Cardiac Remodeling. Circulation Research, 2011, 109, 407-417.	2.0	51
179	Titrating autophagy in cardiac plasticity. Autophagy, 2011, 7, 1078-1079.	4.3	16
180	Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4123-4128.	3.3	360

#	Article	IF	CITATIONS
181	Forkhead factor FoxO1 is essential for placental morphogenesis in the developing embryo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16307-16312.	3.3	52
182	The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. Journal of Clinical Investigation, 2011, 121, 2447-2456.	3.9	185
183	FoxO, Autophagy, and Cardiac Remodeling. Journal of Cardiovascular Translational Research, 2010, 3, 355-364.	1.1	79
184	Pathogenesis of Myocardial Ischemia-Reperfusion Injury and Rationale for Therapy. American Journal of Cardiology, 2010, 106, 360-368.	0.7	517
185	Diminished Cardiac Fibrosis in Heart Failure is Associated with Altered Ventricular Arrhythmia Phenotype. Journal of Cardiovascular Electrophysiology, 2010, 21, 1031-1037.	0.8	32
186	The CCAAT/Enhancer Binding Protein β (C/EBPβ) Cooperates with NFAT to Control Expression of the Calcineurin Regulatory Protein RCAN1–4. Journal of Biological Chemistry, 2010, 285, 16623-16631.	1.6	29
187	Cardiac Myosin Light Chain Kinase Is Necessary for Myosin Regulatory Light Chain Phosphorylation and Cardiac Performance in Vivo. Journal of Biological Chemistry, 2010, 285, 40819-40829.	1.6	103
188	NEMO Nuances NF-κB. Circulation Research, 2010, 106, 10-12.	2.0	6
189	Autophagy in Hypertensive Heart Disease. Journal of Biological Chemistry, 2010, 285, 8509-8514.	1.6	105
190	Diabetic cardiomyopathy: mechanisms and therapeutic targets. Drug Discovery Today Disease Mechanisms, 2010, 7, e135-e143.	0.8	116
191	Electrophysiological remodeling in heart failure. Journal of Molecular and Cellular Cardiology, 2010, 48, 619-632.	0.9	104
192	Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. Journal of Clinical Investigation, 2010, 120, 3912-3916.	3.9	325
193	Chapter 17 Autophagy in Loadâ€Induced Heart Disease. Methods in Enzymology, 2009, 453, 343-363.	0.4	15
194	Physical and Functional Interaction Between Calcineurin and the Cardiac L-Type Ca ²⁺ Channel. Circulation Research, 2009, 105, 51-60.	2.0	101
195	Cardiomyocyte autophagy: Remodeling, repairing, and reconstructing the heart. Current Hypertension Reports, 2009, 11, 406-411.	1.5	59
196	Cardiac Plasticity. New England Journal of Medicine, 2008, 358, 1370-1380.	13.9	995
197	Histone deacetylase inhibition in the treatment of heart disease. Expert Opinion on Drug Safety, 2008, 7, 53-67.	1.0	46
198	Autophagy is an adaptive response in desmin-related cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9745-9750.	3.3	209

#	Article	IF	CITATIONS
199	Ca2+/Calmodulin-dependent Protein Kinase II-dependent Remodeling of Ca2+ Current in Pressure Overload Heart Failure. Journal of Biological Chemistry, 2008, 283, 25524-25532.	1.6	53
200	Autophagy in Load-Induced Heart Disease. Circulation Research, 2008, 103, 1363-1369.	2.0	179
201	Intracellular Protein Aggregation Is a Proximal Trigger of Cardiomyocyte Autophagy. Circulation, 2008, 117, 3070-3078.	1.6	218
202	The heart of autophagy: Deconstructing cardiac proteotoxicity. Autophagy, 2008, 4, 932-935.	4.3	15
203	Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes and Development, 2007, 21, 1790-1802.	2.7	619
204	FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20517-20522.	3.3	227
205	Myocyte Autophagy in Heart Disease: Friend or Foe?. Autophagy, 2007, 3, 632-634.	4.3	64
206	Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA. Science, 2007, 316, 575-579.	6.0	1,504
207	Remodeling of Outward K+Currents in Pressure-Overload Heart Failure. Journal of Cardiovascular Electrophysiology, 2007, 18, 869-875.	0.8	35
208	Cardiac autophagy is a maladaptive response to hemodynamic stress. Journal of Clinical Investigation, 2007, 117, 1782-1793.	3.9	672
209	Transient-Outward K+ Channel Inhibition Facilitates L-Type Ca2+ Current in Heart. Journal of Cardiovascular Electrophysiology, 2006, 17, 298-304.	0.8	18
210	Remodeling of Early-Phase Repolarization. Circulation, 2006, 113, 1849-1856.	1.6	51
211	Foxo Transcription Factors Blunt Cardiac Hypertrophy by Inhibiting Calcineurin Signaling. Circulation, 2006, 114, 1159-1168.	1.6	278
212	Molecular Mechanisms of Cardiac Hypertrophy and Failure. Circulation, 2006, 113, .	1.6	0
213	Suppression of Class I and II Histone Deacetylases Blunts Pressure-Overload Cardiac Hypertrophy. Circulation, 2006, 113, 2579-2588.	1.6	328
214	In Vino Veritas: Alcohol and Heart Disease. American Journal of the Medical Sciences, 2005, 329, 124-135.	0.4	33
215	Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure. Physiological Genomics, 2005, 23, 18-27.	1.0	59
216	Does load-induced ventricular hypertrophy progress to systolic heart failure?. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H8-H16.	1.5	176

#	Article	IF	CITATIONS
217	Calcineurin Is Necessary for the Maintenance but Not Embryonic Development of Slow Muscle Fibers. Molecular and Cellular Biology, 2005, 25, 6629-6638.	1.1	88
218	Hypertrophy of the Heart. Circulation, 2004, 109, 1580-1589.	1.6	763
219	Histone Deacetylases 5 and 9 Govern Responsiveness of the Heart to a Subset of Stress Signals and Play Redundant Roles in Heart Development. Molecular and Cellular Biology, 2004, 24, 8467-8476.	1.1	548
220	Electrical Remodeling in Cardiac Hypertrophy. Trends in Cardiovascular Medicine, 2003, 13, 316-322.	2.3	61
221	Targeted Inhibition of Calcineurin in Pressure-overload Cardiac Hypertrophy. Journal of Biological Chemistry, 2002, 277, 10251-10255.	1.6	104
222	Activated glycogen synthase-3Â suppresses cardiac hypertrophy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 907-912.	3.3	446
223	Class II Histone Deacetylases Act as Signal-Responsive Repressors of Cardiac Hypertrophy. Cell, 2002, 110, 479-488.	13.5	878
224	Na+-Ca2+ Exchanger Remodeling in Pressure Overload Cardiac Hypertrophy. Journal of Biological Chemistry, 2001, 276, 17706-17711.	1.6	77
225	Electrical Remodeling in Pressure-Overload Cardiac Hypertrophy. Circulation, 2001, 104, 1657-1663.	1.6	67
226	Cardiac Hypertrophy Is Not a Required Compensatory Response to Short-Term Pressure Overload. Circulation, 2000, 101, 2863-2869.	1.6	288