Charles Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4971125/publications.pdf

Version: 2024-02-01

30070 10,728 173 54 citations h-index papers

g-index 178 178 178 3060 docs citations times ranked citing authors all docs

33894

99

#	Article	IF	CITATIONS
1	Three-dimensional Hybrid Simulation Results of a Variable Magnetic Helicity Signature at Proton Kinetic Scales. Astrophysical Journal, 2022, 924, 41.	4.5	O
2	Flux Enhancements of Fieldâ€Aligned Lowâ€Energy O ⁺ Ion (FALEO) in the Inner Magnetosphere: A Possible Source of Warm Plasma Cloak and Oxygen Torus. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
3	High-latitude Observations of Inertial-range Turbulence by the Ulysses Spacecraft During the Solar Minimum of 1993–96. Astrophysical Journal, 2022, 927, 43.	4.5	4
4	Interstellar Neutrals, Pickup Ions, and Energetic Neutral Atoms Throughout the Heliosphere: Present Theory and Modeling Overview. Space Science Reviews, 2022, 218, 1.	8.1	13
5	Magnetic Waves Excited by Newborn Pickup H ⁺ Near Jupiter: Neutral Hydrogen Loss by the Planetary System. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	1
6	Driving and Dissipation of Solar-Wind Turbulence: What is the Evidence?. Frontiers in Astronomy and Space Sciences, 2021, 7, .	2.8	14
7	Multiâ€Event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere During Nonâ€Stormâ€Time Substorms. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029081.	2.4	7
8	Simultaneous Observation of Two Isolated Proton Auroras at Subauroral Latitudes by a Highly Sensitive Allâ€6ky Camera and Van Allen Probes. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029078.	2.4	7
9	Fieldâ€Aligned Electron Density Distribution of the Inner Magnetosphere Inferred From Coordinated Observations of Arase and Van Allen Probes. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029073.	2.4	3
10	Low-frequency Waves due to Newborn Interstellar Pickup He ⁺ Observed by the Ulysses Spacecraft. Astrophysical Journal, 2021, 923, 185.	4.5	4
11	Galactic Cosmic Radiation in the Interplanetary Space Through a Modern Secular Minimum. Space Weather, 2020, 18, e2019SW002428.	3.7	6
12	Oxygen torus and its coincidence with EMIC wave in the deep inner magnetosphere: Van Allen Probe B and Arase observations. Earth, Planets and Space, 2020, 72, 111.	2.5	17
13	Solar Wind Turbulence from 1 to 45 au. II. Analysis of Inertial-range Fluctuations Using Voyager and ACE Observations. Astrophysical Journal, 2020, 900, 92.	4.5	14
14	Solar Wind Turbulence from 1 to 45 au. I. Evidence for Dissipation of Magnetic Fluctuations Using Voyager and ACE Observations. Astrophysical Journal, 2020, 900, 91.	4.5	18
15	Solar Wind Turbulence from 1 to 45 au. III. Anisotropy of Magnetic Fluctuations in the Inertial Range Using Voyager and ACE Observations. Astrophysical Journal, 2020, 900, 93.	4.5	20
16	Solar Wind Turbulence from 1 to 45 au. IV. Turbulent Transport and Heating of the Solar Wind Using Voyager Observations. Astrophysical Journal, 2020, 900, 94.	4.5	22
17	Flight Calibration of the Van Allen Probe Magnetometers. Astrophysical Journal, Supplement Series, 2020, 250, 4.	7.7	1
18	Solar Wind Turbulence from 1 to 45 au. V. Data Intervals from the Voyager Observations. Astrophysical Journal, Supplement Series, 2020, 250, 14.	7.7	2

#	Article	IF	CITATIONS
19	Advanced Composition Explorer Observations of Turbulence from 1998 through 2002: Data Intervals. Astrophysical Journal, Supplement Series, 2020, 250, 15.	7.7	4
20	Some Properties of the Solar Wind Turbulence at 1 AU Statistically Examined in the Different Types of Solar Wind Plasma. Journal of Geophysical Research: Space Physics, 2019, 124, 2406-2424.	2.4	27
21	Slowing of the Solar Wind in the Outer Heliosphere. Astrophysical Journal, 2019, 885, 156.	4.5	47
22	Eastward Propagating Second Harmonic Poloidal Waves Triggered by Temporary Outward Gradient of Proton Phase Space Density: Van Allen Probe A Observation. Journal of Geophysical Research: Space Physics, 2019, 124, 9904-9923.	2.4	19
23	Update on the Worsening Particle Radiation Environment Observed by CRaTER and Implications for Future Human Deepâ€Space Exploration. Space Weather, 2018, 16, 289-303.	3.7	44
24	Correlation Scales of the Turbulent Cascade at 1 AU. Journal of Physics: Conference Series, 2018, 1100, 012023.	0.4	0
25	The Turbulent Cascade for High Cross-helicity States at 1 au. II. Minor Energy. Astrophysical Journal, 2018, 867, 156.	4.5	6
26	Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A. Geophysical Research Letters, 2018, 45, 10,177.	4.0	18
27	Roles of Flow Braking, Plasmaspheric Virtual Resonances, and Ionospheric Currents in Producing Ground Pi2 Pulsations. Journal of Geophysical Research: Space Physics, 2018, 123, 9187-9203.	2.4	12
28	Magnetic Waves Excited by Newborn Interstellar Pickup Ions Measured by the <i>Voyager</i> Spacecraft from 1 to 45 au. III. Observation Times. Astrophysical Journal, Supplement Series, 2018, 237, 34.	7.7	16
29	Van Allen Probes Observation of a Fundamental Poloidal Standing Alfvén Wave Event Related to Giant Pulsations. Journal of Geophysical Research: Space Physics, 2018, 123, 4574-4593.	2.4	24
30	Correlation Scales of the Turbulent Cascade at 1 au. Astrophysical Journal, 2018, 858, 21.	4.5	15
31	Magnetic Waves Excited by Newborn Interstellar Pickup Ions Measured by the Voyager Spacecraft from 1 to 45 au. II. Instability and Turbulence Analyses. Astrophysical Journal, 2018, 863, 76.	4.5	22
32	Magnetic Waves Excited by Newborn Interstellar Pickup Ions Measured by the Voyager Spacecraft from 1 to 45 au. I. Wave Properties. Astrophysical Journal, 2018, 863, 75.	4.5	21
33	Observation and Numerical Simulation of Cavity Mode Oscillations Excited by an Interplanetary Shock. Journal of Geophysical Research: Space Physics, 2018, 123, 1969-1988.	2.4	21
34	The Turbulence Magnetic Helicity Signature in the Interplanetary Medium: A Blackman–Tukey and Morlet Wavelet Analysis. Astrophysical Journal, 2018, 855, 121.	4.5	9
35	Van Allen Probes Observations of Driftâ€Bounce Resonance and Energy Transfer Between Energetic Ring Current Protons and Poloidal Pc4 Wave. Journal of Geophysical Research: Space Physics, 2018, 123, 3421-3435.	2.4	22
36	In situ statistical observations of Pc1 pearl pulsations and unstructured EMIC waves by the Van Allen Probes. Journal of Geophysical Research: Space Physics, 2017, 122, 105-119.	2.4	25

#	Article	IF	CITATIONS
37	Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 2017, 122, 4064-4088.	2.4	45
38	Listing of 502 Times When the Ulysses Magnetic Fields Instrument Observed Waves Due to Newborn Interstellar Pickup Protons. Astrophysical Journal, 2017, 840, 13.	4.5	13
39	Inferring the Heliospheric Magnetic Field Back through Maunder Minimum. Astrophysical Journal, 2017, 837, 165.	4.5	14
40	Observation of Magnetic Waves Excited by Newborn Interstellar Pickup He+ Observed by the Voyager 2 Spacecraft at 30 au. Astrophysical Journal, 2017, 849, 61.	4.5	15
41	Observations of Low-Frequency Magnetic Waves due to Newborn Interstellar Pickup Ions Using ACE, Ulysses, and Voyager Data. Journal of Physics: Conference Series, 2017, 900, 012018.	0.4	13
42	THE EFFECT OF ELECTRON THERMAL PRESSURE ON THE OBSERVED MAGNETIC HELICITY IN THE SOLAR WIND. Astrophysical Journal, 2016, 833, 212.	4.5	7
43	A SURVEY OF MAGNETIC WAVES EXCITED BY NEWBORN INTERSTELLAR He ⁺ OBSERVED BY THE ACE SPACECRAFT AT 1 au. Astrophysical Journal, 2016, 830, 47.	4.5	22
44	The dependence on geomagnetic conditions and solar wind dynamic pressure of the spatial distributions of EMIC waves observed by the Van Allen Probes. Journal of Geophysical Research: Space Physics, 2016, 121, 4362-4377.	2.4	76
45	SPECTRAL PROPERTIES OF LARGE GRADUAL SOLAR ENERGETIC PARTICLE EVENTS. II. SYSTEMATIC Q/M DEPENDENCE OF HEAVY ION SPECTRAL BREAKS. Astrophysical Journal, 2016, 828, 106.	4.5	34
46	EMIC waves and associated relativistic electron precipitation on 25–26 January 2013. Journal of Geophysical Research: Space Physics, 2016, 121, 11,086.	2.4	36
47	SPECTRAL PROPERTIES OF LARGE GRADUAL SOLAR ENERGETIC PARTICLE EVENTS. I. FE, O, AND SEED MATERIAL. Astrophysical Journal, 2016, 816, 68.	4.5	29
48	Van Allen Probes observations of magnetic field dipolarization and its associated O $<$ sup $>+sup> flux variations in the inner magnetosphere at <i>Li>â<%<â<%6.6. Journal of Geophysical Research: Space Physics, 2016, 121, 7572-7589.$	2.4	28
49	Propagation of ULF waves from the upstream region to the midnight sector of the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2016, 121, 8428-8447.	2.4	17
50	VOYAGER OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS: 2–6 au. Astrophysical Journal, 2016, 822, 94.	4.5	29
51	Extreme ionospheric ion energization and electron heating in Alfv \tilde{A} ©n waves in the storm time inner magnetosphere. Geophysical Research Letters, 2015, 42, 10,531.	4.0	38
52	The occurrence and wave properties of H ⁺ â€, He ⁺ â€, and O ⁺ â€band EMIC waves observed by the Van Allen Probes. Journal of Geophysical Research: Space Physics, 2015, 120, 7477-7492.	2.4	184
53	Storm time occurrence and spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes statistical study. Journal of Geophysical Research: Space Physics, 2015, 120, 4748-4762.	2.4	66
54	Lowâ€harmonic magnetosonic waves observed by the Van Allen Probes. Journal of Geophysical Research: Space Physics, 2015, 120, 6230-6257.	2.4	44

#	Article	IF	CITATIONS
55	ACE observations of magnetic waves arising from newborn interstellar pickup helium ions. Geophysical Research Letters, 2015, 42, 9617-9623.	4.0	16
56	Externally driven plasmaspheric ULF waves observed by the Van Allen Probes. Journal of Geophysical Research: Space Physics, 2015, 120, 526-552.	2.4	44
57	Multifrequency compressional magnetic field oscillations and their relation to multiharmonic toroidal mode standing Alfvén waves. Journal of Geophysical Research: Space Physics, 2015, 120, 10,384.	2.4	9
58	Broadband lowâ€frequency electromagnetic waves in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 8603-8615.	2.4	56
59	Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event extending over 12 h in magnetic local time. Journal of Geophysical Research: Space Physics, 2015, 120, 5465-5488.	2.4	127
60	Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 2015, 120, 1182-1196.	2.4	46
61	Shocks inside CMEs: A survey of properties from 1997 to 2006. Journal of Geophysical Research: Space Physics, 2015, 120, 2409-2427.	2.4	60
62	STATISTICAL ANALYSIS OF THE MAGNETIC HELICITY SIGNATURE OF THE SOLAR WIND TURBULENCE AT 1 AU. Astrophysical Journal, 2015, 806, 78.	4.5	19
63	Third-moment descriptions of the interplanetary turbulent cascade, intermittency and back transfer. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140150.	3.4	60
64	Proton temperature change with heliocentric distance from 0.3 to 1 AU according to relative temperatures. Journal of Geophysical Research: Space Physics, 2014, 119, 3267-3280.	2.4	14
65	VARIABLE CASCADE DYNAMICS AND INTERMITTENCY IN THE SOLAR WIND AT 1 AU. Astrophysical Journal, 2014, 786, 52.	4. 5	29
66	Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration?. Space Weather, 2014, 12, 622-632.	3.7	55
67	<i>ULYSSES</i> OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS. I. NEW OBSERVATIONS AND LINEAR ANALYSIS. Astrophysical Journal, 2014, 784, 150.	4. 5	34
68	<i>ULYSSES</i> OBSERVATIONS OF MAGNETIC WAVES DUE TO NEWBORN INTERSTELLAR PICKUP IONS. II. APPLICATION OF TURBULENCE CONCEPTS TO LIMITING WAVE ENERGY AND OBSERVABILITY. Astrophysical Journal, 2014, 787, 133.	4.5	33
69	Coronal electron temperature in the protracted solar minimum, the cycle 24 mini maximum, and over centuries. Journal of Geophysical Research: Space Physics, 2014, 119, 1486-1492.	2.4	19
70	Technique for measuring and correcting the Taylor microscale. Journal of Geophysical Research: Space Physics, 2014, 119, 4256-4265.	2.4	7
71	The heliospheric magnetic flux, solar wind proton flux, and cosmic ray intensity during the coming solar minimum. Space Weather, 2014, 12, 499-507.	3.7	14
72	An analysis of Alfv \tilde{A} ©n radius based on sunspot number from 1749 to today. Journal of Geophysical Research: Space Physics, 2014, 119, 115-120.	2.4	29

#	Article	IF	Citations
73	Observations of kinetic scale field line resonances. Geophysical Research Letters, 2014, 41, 209-215.	4.0	69
74	Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013. Geophysical Research Letters, 2014, 41, 4101-4108.	4.0	55
7 5	In situ observations of Pc1 pearl pulsations by the Van Allen Probes. Geophysical Research Letters, 2014, 41, 1823-1829.	4.0	28
76	Excitation of poloidal standing Alfvén waves through drift resonance waveâ€particle interaction. Geophysical Research Letters, 2013, 40, 4127-4132.	4.0	134
77	The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Science Reviews, 2013, 179, 127-181.	8.1	932
78	Van Allen Probes observation of localized drift resonance between poloidal mode ultra″ow frequency waves and 60 keV electrons. Geophysical Research Letters, 2013, 40, 4491-4497.	4.0	127
79	WEAKEST SOLAR WIND OF THE SPACE AGE AND THE CURRENT â€∞MINI―SOLAR MAXIMUM. Astrophysical Journal, 2013, 779, 2.	4.5	166
80	Analysis of multi-dimensional correlation functions in the solar wind. AIP Conference Proceedings, 2013, , .	0.4	3
81	Solar wind magnetic field discontinuities and turbulence generated current layers. AIP Conference Proceedings, 2013, , .	0.4	5
82	DECLINE AND RECOVERY OF THE INTERPLANETARY MAGNETIC FIELD DURING THE PROTRACTED SOLAR MINIMUM. Astrophysical Journal, 2013, 775, 59.	4.5	23
83	An analysis of heliospheric magnetic field flux based on sunspot number from 1749 to today and prediction for the coming solar minimum. Journal of Geophysical Research: Space Physics, 2013, 118, 7525-7531.	2.4	25
84	Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER. Journal of Geophysical Research, $2012,117,.$	3.3	54
85	Temporal and radial variation of the solar wind temperatureâ€speed relationship. Journal of Geophysical Research, 2012, 117, .	3.3	54
86	Advance warning of highâ€speed ejecta based on realâ€time shock analyses: When fastâ€moving ejecta appear to be overtaking slowâ€moving shocks. Space Weather, 2012, 10, .	3.7	5
87	OBSERVATION OF BERNSTEIN WAVES EXCITED BY NEWBORN INTERSTELLAR PICKUP IONS IN THE SOLAR WIND. Astrophysical Journal, 2012, 745, 112.	4.5	25
88	THE TURBULENT CASCADE AND PROTON HEATING IN THE SOLAR WIND DURING SOLAR MINIMUM. Astrophysical Journal, 2012, 754, 93.	4.5	45
89	OBSERVATIONAL CONSTRAINTS ON THE ROLE OF CYCLOTRON DAMPING AND KINETIC ALFVÉN WAVES IN THE SOLAR WIND. Astrophysical Journal, 2012, 745, 8.	4.5	73
90	"Crater―flux transfer events: Highroad to the X line?. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	16

#	Article	IF	Citations
91	Transport of solar wind fluctuations: A two-component model. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	84
92	Use of singleâ€component wind speed in Rankineâ€Hugoniot analysis of interplanetary shocks. Space Weather, 2011, 9, .	3.7	9
93	Turbulence associated with corotating interaction regions at 1AU: Inertial range cross-helicity spectra. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	11
94	Turbulence associated with corotating interaction regions at 1 AU: Inertial and dissipation range magnetic field spectra. Journal of Geophysical Research, 2011, 116, $n/a-n/a$.	3.3	15
95	INTERPLANETARY MAGNETIC FLUX DEPLETION DURING PROTRACTED SOLAR MINIMA. Astrophysical Journal, 2011, 727, 8.	4.5	27
96	THIRD MOMENTS AND THE ROLE OF ANISOTROPY FROM VELOCITY SHEAR IN THE SOLAR WIND. Astrophysical Journal, 2011, 736, 44.	4.5	31
97	CORONAL ELECTRON TEMPERATURE FROM THE SOLAR WIND SCALING LAW THROUGHOUT THE SPACE AGE. Astrophysical Journal, 2011, 739, 9.	4.5	29
98	THE TURBULENT CASCADE FOR HIGH CROSS-HELICITY STATES AT 1 AU. Astrophysical Journal, 2010, 713, 920-934.	4.5	46
99	TURBULENT HEATING OF THE DISTANT SOLAR WIND BY INTERSTELLAR PICKUP PROTONS IN A DECELERATING FLOW. Astrophysical Journal, 2010, 719, 716-721.	4.5	57
100	EXCITATION OF LOW-FREQUENCY WAVES IN THE SOLAR WIND BY NEWBORN INTERSTELLAR PICKUP IONS H ⁺ AND He ⁺ AS SEEN BY VOYAGER AT 4.5 AU. Astrophysical Journal, 2010, 724, 1256-1261.	4.5	33
101	Comment on "Scaling Laws of Turbulence and Heating of Fast Solar Wind: The Role of Density Fluctuations― Physical Review Letters, 2010, 104, 189001; author reply 189002.	7.8	15
102	Smith <i>etÂal.</i> Reply:. Physical Review Letters, 2010, 104, .	7.8	6
103	The Effect of Magnetic Turbulence Energy Spectra and Pickup Ions on the Heating of the Solar Wind. AIP Conference Proceedings, 2010, , .	0.4	1
104	Kolmogorov versus Iroshnikovâ€Kraichnan spectra: Consequences for ion heating in the solar wind. Journal of Geophysical Research, 2010, 115, .	3.3	55
105	Inertial $\hat{a}\in \mathbb{R}$ ange anisotropies in the solar wind from 0.3 to 1 AU: Helios 1 observations. Journal of Geophysical Research, 2010, 115, .	3.3	34
106	Magnetosheath for almostâ \in aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at X = $\hat{a}^{-1}12$ Re. Journal of Geophysical Research, 2010, 115, .	3.3	11
107	Timing of changes in the solar wind energy input in relation to ionospheric response. Journal of Geophysical Research, 2010, 115 , .	3.3	6
108	THE TURBULENT CASCADE AND PROTON HEATING IN THE SOLAR WIND AT 1 AU. Astrophysical Journal, 2009, 697, 1119-1127.	4.5	114

#	Article	IF	Citations
109	THE FLUX OF OPEN AND TOROIDAL INTERPLANETARY MAGNETIC FIELD AS A FUNCTION OF HELIOLATITUDE AND SOLAR CYCLE. Astrophysical Journal, 2009, 695, 357-362.	4.5	13
110	Turbulence in space plasmas. , 2009, , 163-194.		10
111	SPECTRAL INDICES FOR MULTI-DIMENSIONAL INTERPLANETARY TURBULENCE AT 1 AU. Astrophysical Journal, 2009, 692, 684-693.	4.5	89
112	Accurate estimation of third-order moments from turbulence measurements. Nonlinear Processes in Geophysics, 2009, 16, 99-110.	1.3	34
113	Turbulent Cascade at 1ÂAU in High Cross-Helicity Flows. Physical Review Letters, 2009, 103, 201101.	7.8	62
114	Shortâ€wavelength turbulence in the solar wind: Linear theory of whistler and kinetic Alfvén fluctuations. Journal of Geophysical Research, 2009, 114, .	3.3	113
115	Anisotropies and helicities in the solar wind inertial and dissipation ranges at 1 AU. Journal of Geophysical Research, 2008, 113 , .	3.3	97
116	Turbulence transport throughout the heliosphere. Journal of Geophysical Research, 2008, 113, .	3.3	174
117	Twoâ cs tage oscillatory response of the magnetopause to a tangential discontinuity/vortex sheet followed by northward IMF: Cluster observations. Journal of Geophysical Research, 2008, 113, .	3.3	14
118	A slow mode transition region adjoining the front boundary of a magnetic cloud as a relic of a convected solar wind feature: Observations and MHD simulation. Journal of Geophysical Research, $2008, 113, \ldots$	3.3	11
119	Automated shock detection and analysis algorithm for space weather application. Space Weather, 2008, 6, .	3.7	21
120	Preliminary Results from SEP and ESP Studies. AIP Conference Proceedings, 2008, , .	0.4	1
121	The Turbulent Cascade at 1 AU: Energy Transfer and the Thirdâ€Order Scaling for MHD. Astrophysical Journal, 2008, 679, 1644-1660.	4.5	180
122	Statistical Analysis of the Highâ€Frequency Spectral Break of the Solar Wind Turbulence at 1 AU. Astrophysical Journal, 2008, 675, 1576-1583.	4.5	91
123	Anisotropic form of third-order moments and relationship to the cascade rate in axisymmetric magnetohydrodynamic turbulence. Physics of Plasmas, 2007, 14, .	1.9	30
124	Turbulence spectrum of interplanetary magnetic fluctuations and the rate of energy cascade. AIP Conference Proceedings, 2007, , .	0.4	4
125	Solar wind–magnetosphere coupling efficiency for solar wind pressure impulses. Geophysical Research Letters, 2007, 34, .	4.0	16
126	Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU. Journal of Geophysical Research, 2007, 112 , .	3.3	149

#	Article	IF	CITATIONS
127	Numerous small magnetic field discontinuities of Bartels rotation 2286 and the potential role of Alfv \tilde{A} ©nic turbulence. Journal of Geophysical Research, 2007, 112, .	3.3	111
128	Suprathermal electron $90 \hat{A}^\circ$ pitch angle depletions at reverse shocks in the solar wind. Journal of Geophysical Research, 2006, 111, .	3.3	20
129	Space weather drivers in the ACE era. Space Weather, 2006, 4, n/a-n/a.	3.7	4
130	Interplanetary magnetic fluctuation anisotropy in the inertial range. Journal of Geophysical Research, 2006, 111, .	3.3	84
131	Turbulent Heating of the Solar Wind by Newborn Interstellar Pickup Protons. Astrophysical Journal, 2006, 638, 508-517.	4.5	144
132	Dependence of the Dissipation Range Spectrum of Interplanetary Magnetic Fluctuationson the Rate of Energy Cascade. Astrophysical Journal, 2006, 645, L85-L88.	4.5	289
133	The Energetic Storm Particle Event on 2003 October 24: A Test of Diffusive Shock Acceleration Theory. AIP Conference Proceedings, 2005, , .	0.4	2
134	Learning about coronal heating from solar wind observations. Physics of Plasmas, 2005, 12, 056501.	1.9	13
135	Spatial Correlation of Solar-Wind Turbulence from Two-Point Measurements. Physical Review Letters, 2005, 95, 231101.	7.8	187
136	Anisotropy in Fast and Slow Solar Wind Fluctuations. Astrophysical Journal, 2005, 635, L181-L184.	4.5	220
137	Signatures of Alfv $ ilde{A}$ @n-cyclotron wave-ion scattering: Advanced Composition Explorer (ACE) solar wind observations. Journal of Geophysical Research, 2005, 110, .	3.3	24
138	Magnetic disconnection from the Sun: Observations of a reconnection exhaust in the solar wind at the heliospheric current sheet. Geophysical Research Letters, 2005, 32, .	4.0	81
139	Heating the Outer Heliosphere by Pickup Protons. AIP Conference Proceedings, 2004, , .	0.4	4
140	Multiple flux rope magnetic ejecta in the solar wind. Journal of Geophysical Research, 2004, 109, .	3.3	65
141	Further evidence of wave refraction associated with extended rarefaction events in the solar wind. Journal of Geophysical Research, 2004, 109, .	3.3	15
142	On the fast coronal mass ejections in October/November 2003: ACE-SWICS results. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	42
143	Hydromagnetic Wave Excitation Upstream of an Interplanetary Traveling Shock. Astrophysical Journal, 2004, 601, L99-L102.	4.5	52
144	Spectral Properties of Heavy Ions Associated with the Passage of Interplanetary Shocks at 1 AU. Astrophysical Journal, 2004, 611, 1156-1174.	4.5	96

#	Article	IF	Citations
145	The radial temperature profile of the solar wind. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	71
146	Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique. Journal of Geophysical Research, 2003, 108 , .	3.3	229
147	Evidence for a Suprathermal Seed Population of Heavy Ions Accelerated by Interplanetary Shocks near 1 AU. Astrophysical Journal, 2003, 588, 1149-1162.	4.5	170
148	Turbulent Heating of the Distant Solar Wind by Interstellar Pickup Protons. Astrophysical Journal, 2003, 592, 564-573.	4.5	104
149	Heating of the low-latitude solar wind by dissipation of turbulent magnetic fluctuations. Journal of Geophysical Research, 2001, 106, 8253-8272.	3.3	256
150	Day the solar wind almost disappeared: Magnetic field fluctuations, wave refraction and dissipation. Journal of Geophysical Research, 2001, 106, 18625-18634.	3.3	77
151	MHDâ€driven Kinetic Dissipation in the Solar Wind and Corona. Astrophysical Journal, 2000, 537, 1054-1062.	4.5	224
152	Solar wind electron characteristics inside and outside coronal mass ejections. Journal of Geophysical Research, 2000, 105, 23069-23084.	3.3	48
153	Dissipation range dynamics: Kinetic Alfv \tilde{A} ©n waves and the importance of \hat{I}^2 e. Journal of Geophysical Research, 1999, 104, 22331-22344.	3.3	308
154	Turbulence, Spatial Transport, and Heating of the Solar Wind. Physical Review Letters, 1999, 82, 3444-3447.	7.8	212
155	Correlation lengths, the Ultrascale, and the spatial structure of interplanetary turbulence. , 1999, , .		17
156	Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. Journal of Geophysical Research, 1998, 103, 4775-4787.	3.3	658
157	Characteristics of magnetic fluctuations within coronal mass ejections: The January 1997 event. Geophysical Research Letters, 1998, 25, 2505-2508.	4.0	46
158	Contribution of Cyclotron-resonant Damping to Kinetic Dissipation of Interplanetary Turbulence. Astrophysical Journal, 1998, 507, L181-L184.	4.5	144
159	The role of coronal mass ejections and interplanetary shocks in interplanetary magnetic field statistics and solar magnetic flux ejection. Journal of Geophysical Research, 1997, 102, 249-261.	3.3	32
160	Heating of the solar wind by pickup ion driven Alfv $\tilde{\mathbb{A}}$ \mathbb{O} n ion cyclotron instability. Geophysical Research Letters, 1996, 23, 113-116.	4.0	23
161	Thermal anisotropies in the solar wind: Evidence of heating by interstellar pickup ions?. Geophysical Research Letters, 1996, 23, 3259-3262.	4.0	25
162	Evolution of turbulent magnetic fluctuation power with heliospheric distance. Journal of Geophysical Research, 1996, 101, 17093-17107.	3.3	315

#	Article	lF	CITATION
163	Longâ€term variations of interplanetary magnetic field spectra with implications for cosmic ray modulation. Journal of Geophysical Research, 1993, 98, 3585-3603.	3.3	76
164	lon cyclotron harmonic resonances driven by ion ringâ€beam distributions. Journal of Geophysical Research, 1991, 96, 285-288.	3.3	13
165	Whistler waves associated with the Uranian bow shock: Outbound observations. Journal of Geophysical Research, 1991, 96, 15841-15852.	3.3	20
166	Anisotropy of shockâ€accelerated ion distributions in interplanetary space. Journal of Geophysical Research, 1989, 94, 5474-5478.	3.3	5
167	Whistler wave bursts upstream of the Uranian bow shock. Journal of Geophysical Research, 1989, 94, 17035-17048.	3.3	14
168	Largeâ€amplitude MHD waves upstream of the Jovian bow shock: Reinterpretation. Journal of Geophysical Research, 1985, 90, 302-310.	3.3	68
169	Electromagnetic ion beam instabilities. Physics of Fluids, 1984, 27, 1852.	1.4	231
170	Turbulence analysis of the Jovian upstream â€~wave' phenomenon. Journal of Geophysical Research, 1983, 88, 5581-5593.	3.3	85
171	Large amplitude MHD waves upstream of the Jovian bow shock. Journal of Geophysical Research, 1983, 88, 9989-9999.	3.3	52
172	Evaluation of Magnetic Helicity in Homogeneous Turbulence. Physical Review Letters, 1982, 48, 1256-1259.	7.8	177
173	Structure of correlation tensors in homogeneous anisotropic turbulence. Physical Review A, 1981, 24, 2135-2144.	2.5	80