
Jessica O Winter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4966804/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanomaterials for Neural Interfaces. Advanced Materials, 2009, 21, 3970-4004.	21.0	460
2	Recognition Molecule Directed Interfacing Between Semiconductor Quantum Dots and Nerve Cells. Advanced Materials, 2001, 13, 1673-1677.	21.0	199
3	Glioblastoma Behaviors in Three-Dimensional Collagen-Hyaluronan Composite Hydrogels. ACS Applied Materials & Interfaces, 2013, 5, 9276-9284.	8.0	129
4	Variation of cadmium sulfide nanoparticle size and photoluminescence intensity with altered aqueous synthesis conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 254, 147-157.	4.7	118
5	Mimicking white matter tract topography using core–shell electrospun nanofibers to examine migration of malignant brain tumors. Biomaterials, 2013, 34, 5181-5190.	11.4	102
6	Simultaneous Magnetic Manipulation and Fluorescent Tracking of Multiple Individual Hybrid Nanostructures. Nano Letters, 2010, 10, 2220-2224.	9.1	97
7	Retinal prostheses: current challenges and future outlook. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1031-1055.	3.5	93
8	Neurotrophin-eluting hydrogel coatings for neural stimulating electrodes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 81B, 551-563.	3.4	88
9	Adhesion molecule-modified biomaterials for neural tissue engineering. Frontiers in Neuroengineering, 2009, 2, 6.	4.8	88
10	Hydrogel–electrospun fiber composite materials for hydrophilic protein release. Journal of Controlled Release, 2012, 158, 165-170.	9.9	75
11	Hydrogels that allow and facilitate bone repair, remodeling, and regeneration. Journal of Materials Chemistry B, 2015, 3, 7818-7830.	5.8	69
12	Preferential, enhanced breast cancer cell migration on biomimetic electrospun nanofiber â€~cell highways'. BMC Cancer, 2014, 14, 825.	2.6	61
13	Challenges in quantum dot-neuron active interfacing. Talanta, 2005, 67, 462-471.	5.5	59
14	Inherent Interfacial Mechanical Gradients in 3D Hydrogels Influence Tumor Cell Behaviors. PLoS ONE, 2012, 7, e35852.	2.5	56
15	Toward 3D Biomimetic Models to Understand the Behavior of Glioblastoma Multiforme Cells. Tissue Engineering - Part B: Reviews, 2014, 20, 314-327.	4.8	49
16	Scalable, Semicontinuous Production of Micelles Encapsulating Nanoparticles via Electrospray. Langmuir, 2014, 30, 3939-3948.	3.5	45
17	Polylysine-Modified PEG-Based Hydrogels to Enhance the Neuro–Electrode Interface. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 611-625.	3.5	44
18	Surface topography during neural stem cell differentiation regulates cell migration and cell morphology. Journal of Comparative Neurology, 2016, 524, 3485-3502.	1.6	37

JESSICA O WINTER

#	Article	lF	CITATIONS
19	Alternating-Color Quantum Dot Nanocomposites for Particle Tracking. Nano Letters, 2011, 11, 941-945.	9.1	35
20	Cell Attachment to Hydrogel-Electrospun Fiber Mat Composite Materials. Journal of Functional Biomaterials, 2012, 3, 497-513.	4.4	31
21	Reciprocal Control of Hierarchical DNA Origami-Nanoparticle Assemblies. Nano Letters, 2019, 19, 8469-8475.	9.1	30
22	Hydrogel–Electrospun Fiber Mat Composite Coatings for Neural Prostheses. Frontiers in Neuroengineering, 2011, 4, 2.	4.8	29
23	Magnetic quantum dots in biotechnology – synthesis and applications. Biotechnology Journal, 2013, 8, 1424-1434.	3.5	29
24	Automated fluorescent miscroscopic image analysis of PTBP1 expression in glioma. PLoS ONE, 2017, 12, e0170991.	2.5	28
25	Simultaneous, single particle, magnetization and size measurements of micron sized, magnetic particles. Journal of Magnetism and Magnetic Materials, 2012, 324, 4189-4199.	2.3	26
26	Tissue engineering applied to the retinal prosthesis: Neurotrophin-eluting polymeric hydrogel coatings. Materials Science and Engineering C, 2008, 28, 448-453.	7.3	25
27	Glioma-astrocyte interactions on white matter tract-mimetic aligned electrospun nanofibers. Biotechnology Progress, 2015, 31, 1406-1415.	2.6	24
28	Beyond Linear Elastic Modulus: Viscoelastic Models for Brain and Brain Mimetic Hydrogels. ACS Biomaterials Science and Engineering, 2019, 5, 3964-3973.	5.2	19
29	Imaging Cell–Matrix Interactions in 3D Collagen Hydrogel Culture Systems. Macromolecular Bioscience, 2017, 17, 1600478.	4.1	18
30	Interactions in fluorescent-magnetic heterodimer nanocomposites. Nanotechnology, 2010, 21, 145605.	2.6	17
31	Electrohydrodynamic Mixing-Mediated Nanoprecipitation for Polymer Nanoparticle Synthesis. ACS Applied Polymer Materials, 2019, 1, 691-700.	4.4	17
32	Quantum dots for electrical stimulation of neural cells. , 2005, , .		16
33	pH sensitive CdS–iron oxide fluorescent–magnetic nanocomposites. Nanotechnology, 2009, 20, 485601.	2.6	16
34	Ceramic nanopatterned surfaces to explore the effects of nanotopography on cell attachment. Materials Science and Engineering C, 2012, 32, 2469-2475.	7.3	16
35	CHARACTERIZATION AND TOXICITY OF CARBON DOT-POLY(LACTIC-CO-GLYCOLIC ACID) NANOCOMPOSITES FOR BIOMEDICAL IMAGING. Nano LIFE, 2013, 03, 1340002.	0.9	16
36	Micelle-templated, poly(lactic- co -glycolic acid) nanoparticles for hydrophobic drug delivery. International Journal of Nanomedicine, 2018, Volume 13, 351-366.	6.7	16

JESSICA O WINTER

#	Article	IF	CITATIONS
37	Nanoparticle packing within block copolymer micelles prepared by the interfacial instability method. Soft Matter, 2018, 14, 3324-3335.	2.7	15
38	The path towards functional nanoparticle-DNA origami composites. Materials Science and Engineering Reports, 2019, 138, 153-209.	31.8	15
39	Effects of hydrophobicity and mat thickness on release from hydrogel-electrospun fiber mat composites. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 2018-2030.	3.5	14
40	Microparticles and Nanoparticles. , 2013, , 360-388.		14
41	Mechanotransduction Effects on Endothelial Cell Proliferation via CD31 and VEGFR2: Implications for Immunomagnetic Separation. Biotechnology Journal, 2017, 12, 1600750.	3.5	14
42	Effect of Electrospun Fiber Mat Thickness and Support Method on Cell Morphology. Nanomaterials, 2019, 9, 644.	4.1	12
43	Hyaluronic acid induces ROCK-dependent amoeboid migration in glioblastoma cells. Biomaterials Science, 2020, 8, 4821-4831.	5.4	12
44	Self-assembly and sedimentation of 5Ânm SPIONs using horizontal, high magnetic fields and gradients. Separation and Purification Technology, 2020, 248, 117012.	7.9	12
45	MicroRNA-mRNA Interactions at Low Levels of Compressive Solid Stress Implicate mir-548 in Increased Glioblastoma Cell Motility. Scientific Reports, 2020, 10, 311.	3.3	12
46	Steering microtubule shuttle transport with dynamically controlled magnetic fields. Nanoscale, 2016, 8, 8641-8649.	5.6	11
47	Biomolecular detection, tracking, and manipulation using a magnetic nanoparticle-quantum dot platform. Journal of Materials Chemistry B, 2020, 8, 3534-3541.	5.8	11
48	Micelle-templated composite quantum dots for super-resolution imaging. Nanotechnology, 2014, 25, 195601.	2.6	10
49	Nanoparticles caged with DNA nanostructures. Current Opinion in Biotechnology, 2022, 74, 278-284.	6.6	10
50	Morphology of block copolymer micelles formed via electrospray enabled interfacial instability. Journal of Colloid and Interface Science, 2018, 512, 411-418.	9.4	9
51	Polymer Concentration Maximizes Encapsulation Efficiency in Electrohydrodynamic Mixing Nanoprecipitation. Frontiers in Nanotechnology, 2021, 3, .	4.8	9
52	<p>Comparative Encapsulation Efficiency of Lutein in Micelles Synthesized via Batch and High Throughput Methods</p> . International Journal of Nanomedicine, 2020, Volume 15, 8217-8230.	6.7	8
53	Compact quantum dot surface modification to enable emergent behaviors in quantum dot-DNA composites. Journal of Chemical Physics, 2019, 151, 144706.	3.0	7
54	Synthesis of polymer nanoparticles via electrohydrodynamic emulsification-mediated self-assembly. Journal of Colloid and Interface Science, 2021, 586, 445-456.	9.4	7

JESSICA O WINTER

#	Article	IF	CITATIONS
55	Fluorescence loss of commercial aqueous quantum dots during preparation for bioimaging. MRS Communications, 2019, 9, 702-709.	1.8	5
56	Effect of Micelle Encapsulation on Toxicity of CdSe/ZnS and Mn-Doped ZnSe Quantum Dots. Coatings, 2021, 11, 895.	2.6	5
57	Hybrid nanoparticle composites. Journal of Materials Chemistry B, 2020, 8, 4713-4714.	5.8	4
58	A MagDot-Nanoconveyor Assay Detects and Isolates Molecular Biomarkers. Chemical Engineering Progress, 2012, 108, 41-46.	0.0	4
59	Photo-switchable quantum dots based on reversible FRET. Proceedings of SPIE, 2014, , .	0.8	3
60	Deterministic and Stochastic Trajectories of Magnetic Particles: Mapping Energy Landscapes for Technology And Biology. IEEE Transactions on Magnetics, 2014, 50, 1-7.	2.1	3
61	Adhesion molecules promote chronic neural interfaces following neurotrophin withdrawal. , 2009, 2009, 7151-4.		2
62	Fluorescent–magnetic nanoparticles for imaging and cell manipulation. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2009, 223, 81-86.	0.1	2
63	Synthesis and manipulation of multifunctional, fluorescent-magnetic nanoparticles for single molecule tracking. Proceedings of SPIE, 2010, , .	0.8	2
64	Cell penetrating peptide mediated quantum dot delivery and release in live mammalian cells. , 2014, 2014, 4260-3.		2
65	Magnetic Quantum Dots Steer and Detach Microtubules From Kinesin oated Surfaces. Biotechnology Journal, 2018, 13, 1700402.	3.5	2
66	Optimization of Quantum Dot – Nerve Cell Interfaces. Materials Research Society Symposia Proceedings, 2003, 789, 318.	0.1	1
67	Surface topography during neural stem cell differentiation regulates cell migration and cell morphology. Journal of Comparative Neurology, 2016, 524, Spc1-Spc1.	1.6	1
68	Towards Single Cell Pathway Component Analysis in Diagnostic Pathology: Digitized Image Analysis. FASEB Journal, 2015, 29, 762.3.	0.5	0