Helen E Townley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4966669/publications.pdf

Version: 2024-02-01

30	887	18	29
papers	citations	h-index	g-index
30	30	30	1609
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Characterization and Comparison of Mesoporous Silica Particles for Optimized Drug Delivery. Nanomaterials and Nanotechnology, 2014, 4, 2.	3.0	86
2	Species-specific antimicrobial activity of essential oils and enhancement by encapsulation in mesoporous silica nanoparticles. Industrial Crops and Products, 2018, 122, 582-590.	5.2	78
3	Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen. Photodiagnosis and Photodynamic Therapy, 2019, 26, 162-178.	2.6	72
4	In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles. Nanoscale, 2012, 4, 5043.	5.6	69
5	Enhancing cinnamon essential oil activity by nanoparticle encapsulation to control seed pathogens. Industrial Crops and Products, 2018, 124, 755-764.	5.2	57
6	Effects of mesoporous silica nanoparticles upon the function of mammalian sperm in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 859-870.	3.3	51
7	Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations. Applied Physics Reviews, 2019, 6, .	11.3	43
8	An evaluation of the activity of biologically synthesized silver nanoparticles against bacteria, fungi and mammalian cell lines. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111156.	5.0	43
9	Nanoparticle augmented radiation treatment decreases cancer cell proliferation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 526-536.	3.3	36
10	Chromosome-free bacterial cells are safe and programmable platforms for synthetic biology. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6752-6761.	7.1	32
11	Surface engineered Amphora subtropica frustules using chitosan as a drug delivery platform for anticancer therapy. Materials Science and Engineering C, 2019, 94, 56-64.	7. 3	29
12	Nanoparticle Activation Methods in Cancer Treatment. Biomolecules, 2019, 9, 202.	4.0	28
13	Bioink: a 3D-bioprinting tool for anticancer drug discovery and cancer management. Drug Discovery Today, 2021, 26, 1574-1590.	6.4	27
14	Functionalization of mesoporous silica nanoparticles with a cell-penetrating peptide to target mammalian sperm <i>in vitro</i> . Nanomedicine, 2015, 10, 1539-1553.	3.3	26
15	Effective delivery of volatile biocides employing mesoporous silicates for treating biofilms. Journal of the Royal Society Interface, 2017, 14, 20160650.	3.4	26
16	Cytotoxicity, dose-enhancement and radiosensitization of glioblastoma cells with rare earth nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 132-143.	2.8	25
17	Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discovery Today, 2021, 26, 724-739.	6.4	25
18	Ophiobolin A, a sesterpenoid fungal phytotoxin, displays different mechanisms of cell death in mammalian cells depending upon the cancer cell origin. International Journal of Oncology, 2017, 50, 773-786.	3.3	20

#	Article	IF	CITATIONS
19	Comprehensive approach of hybrid nanoplatforms in drug delivery and theranostics to combat cancer. Drug Discovery Today, 2020, 25, 1245-1252.	6.4	20
20	Incorporation of Ophiobolin A into Novel Chemoembolization Particles for Cancer Cell Treatment. Pharmaceutical Research, 2014, 31, 2904-2917.	3.5	18
21	Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma. Nanomedicine, 2017, 12, 2389-2401.	3.3	15
22	Improved delivery of the anticancer agent citral using BSA nanoparticles and polymeric wafers. Nanotechnology, Science and Applications, 2017, Volume 10, 163-175.	4.6	13
23	Macrophage-like THP-1 cells show effective uptake of silica nanoparticles carrying inactivated diphtheria toxoid for vaccination. Journal of Nanoparticle Research, 2020, 22, 23.	1.9	13
24	Rare Earth Doped Titania Nanoparticles Upregulate Cellular Reactive Oxygen Species upon X-ray Irradiation. BioNanoScience, 2014, 4, 307-315.	3.5	6
25	An Assessment of Mesoporous Silica Nanoparticle Architectures as Antigen Carriers. Pharmaceutics, 2020, 12, 294.	4.5	6
26	The common diabetes drug metformin can diminish the action of citral against Rhabdomyosarcoma cells in vitro. Phytotherapy Research, 2021, 35, 1378-1388.	5.8	6
27	Histological Injury to Rat Brain, Liver, and Kidneys by Gold Nanoparticles is Dose-Dependent. ACS Omega, 2022, 7, 20656-20665.	3.5	6
28	Knock-down of ELMO1 in Paediatric Rhabdomyosarcoma Cells by Nanoparticle Mediated siRNA Delivery. Nanobiomedicine, 2016, 3, 4.	5.7	5
29	Augmented phytotoxic effect of nanoencapsulated ophiobolin A. Natural Product Research, 2022, 36, 1143-1150.	1.8	3
30	Nanoparticles as Vectors to Tackle Cancer. Biomolecules, 2021, 11, 1729.	4.0	3