Jean-Yves Ollitrault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/496554/publications.pdf

Version: 2024-02-01

119 papers 7,437 citations

44069 48 h-index 51608 86 g-index

120 all docs

 $\begin{array}{c} 120 \\ \\ \text{docs citations} \end{array}$

times ranked

120

4698 citing authors

#	Article	IF	CITATIONS
1	Bayesian approach to long-range correlations and multiplicity fluctuations in nucleus-nucleus collisions. Physical Review C, 2022, 105, .	2.9	6
2	p-dependent multiplicity fluctuations from PCA and initial conditions. Nuclear Physics A, 2021, 1005, 121892.	1.5	O
3	Effects of initial state fluctuations on the mean transverse momentum. Nuclear Physics A, 2021, 1005, 121999.	1.5	13
4	Skewness of mean transverse momentum fluctuations in heavy-ion collisions. Physical Review C, 2021, 103 , .	2.9	11
5	Correlation between mean transverse momentum and anisotropic flow in heavy-ion collisions. Physical Review C, 2021, 103, .	2.9	21
6	Effective shear and bulk viscosities for anisotropic flow. Physical Review C, 2021, 103, .	2.9	8
7	Fluid velocity from transverse momentum spectra. Physical Review C, 2021, 103, .	2.9	4
8	Intermediate mass dileptons as pre-equilibrium probes in heavy ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 821, 136626.	4.1	8
9	The mean transverse momentum of ultracentral heavy-ion collisions: A new probe of hydrodynamics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 809, 135749.	4.1	7
10	Thermodynamics of hot strong-interaction matter from ultrarelativistic nuclear collisions. Nature Physics, 2020, 16, 615-619.	16.7	48
11	Primordial non-Gaussianity in heavy-ion collisions. Physical Review C, 2019, 100, .	2.9	6
12	Fluctuations in heavy-ion collisions generated by QCD interactions in the color glass condensate effective theory. Physical Review C, 2019, 100 , .	2.9	13
13	Confronting hydrodynamic predictions with Xe-Xe data. Nuclear Physics A, 2019, 982, 371-374.	1.5	5
14	Geometric scaling in symmetric nucleus-nucleus collisions. Nuclear Physics A, 2019, 982, 355-358.	1.5	2
15	Kurtosis of elliptic flow fluctuations. Physical Review C, 2019, 99, .	2.9	11
16	Isolating dynamical net-charge fluctuations. Physical Review C, 2019, 99, .	2.9	5
17	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>p</mml:mi><mml:mi>T</mml:mi> -dependent particle number fluctuations from principal-component analyses in hydrodynamic simulations of heavy-ion collisions. Physical Review C. 2019. 100</mml:msub></mml:math>	<td>sub></td>	sub>
18	Relating centrality to impact parameter in nucleus-nucleus collisions. Physical Review C, 2018, 97, .	2.9	30

#	Article	IF	Citations
19	Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions. Physical Review C, 2018, 97, .	2.9	77
20	Nonlinear coupling of flow harmonics: Hexagonal flow and beyond. Physical Review C, 2018, 97, .	2.9	8
21	Effects of initial-state dynamics on collective flow within a coupled transport and viscous hydrodynamic approach. Physical Review C, 2018, 97, .	2.9	12
22	Reconstructing the impact parameter of proton-nucleus and nucleus-nucleus collisions. Physical Review C, $2018, 98, .$	2.9	17
23	Skewness of elliptic flow fluctuations. Physical Review C, 2017, 95, .	2.9	43
24	Constraining the equation of state with identified particle spectra. Physical Review C, 2017, 96, .	2.9	10
25	Systematic procedure for analyzing cumulants at any order. Physical Review C, 2017, 95, .	2.9	32
26	Relative flow fluctuations as a probe of initial state fluctuations. Physical Review C, 2017, 95, .	2.9	61
27	The fluctuations of quadrangular flow. Journal of Physics: Conference Series, 2017, 779, 012064.	0.4	4
28	Nonlinear hydrodynamic response confronts LHC data. Nuclear Physics A, 2016, 956, 340-343.	1.5	7
29	Symmetric cumulants and event-plane correlations in Pb + Pb collisions. Physical Review C, 2016, 94, .	2.9	48
30	Linear and cubic response to the initial eccentricity in heavy-ion collisions. Physical Review C, 2016, 93,	2.9	79
31	Hydrodynamic predictions for 5.02 TeV Pb-Pb collisions. Physical Review C, 2016, 93, .	2.9	44
32	Non-Gaussian eccentricity fluctuations. Physical Review C, 2016, 94, .	2.9	21
33	Characterizing flow fluctuations with moments. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 742, 94-98.	4.1	62
34	Azimuthal anisotropy distributions in high-energy collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 742, 290-295.	4.1	30
35	Viscous corrections to anisotropic flow and transverse momentum spectra from transport theory. Nuclear Physics A 2015 941, 87-96. Third: matrix minis:mmi = "http://www.w3.org/1998/Math/MathML" altimg="si1.gif"	1.5	14
36	overflow="scroll"> <mml:msub><mml:mrow><mml:mi>v</mml:mi> </mml:mrow><mml:mrow><mml:mn>4<mml:msub><mml:mrow><mml:mi>v</mml:mi>v<mml:mrow><mml:mrow><mml:mn>5<mml:msub><mml. and="" b:="" elementary="" hig<="" letters,="" nuclear,="" particle="" physics="" section="" td=""><td>ıl:mn><td>nl:mrow></td></td></mml.></mml:msub></mml:mn></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mn></mml:mrow></mml:msub>	ıl:mn> <td>nl:mrow></td>	nl:mrow>

#	Article	IF	CITATIONS
37	Principal Component Analysis of Event-by-Event Fluctuations. Physical Review Letters, 2015, 114, 152301.	7.8	54
38	Continuous description of fluctuating eccentricities. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 738, 166-171.	4.1	14
39	Correlations in the Monte Carlo Glauber model. Physical Review C, 2014, 90, .	2.9	20
40	Eccentricity distributions in nucleus-nucleus collisions. Physical Review C, 2014, 90, .	2.9	39
41	Universal parameterization of initial-state fluctuations and its applications to event-by-event anisotropy. Nuclear Physics A, 2014, 931, 1007-1011.	1.5	2
42	Universal Fluctuation-Driven Eccentricities in Proton-Proton, Proton-Nucleus, and Nucleus-Nucleus Collisions. Physical Review Letters, 2014, 112, .	7.8	81
43	Constraining models of initial conditions with elliptic and triangular flow data. Physical Review C, 2014, 89 Constraining models of initial state with <mml:math <="" altimg="sil.gif" overflow="scroll" td=""><td>2.9</td><td>43</td></mml:math>	2.9	43
44	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	1.5	7
45	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.els. Nuclear ph Characterizing the hydrodynamic response to the initial conditions. Nuclear Physics A, 2013, 904-905, 503c-506c.	1.5	8
46	Hydro overview. Nuclear Physics A, 2013, 904-905, 75c-82c.	1.5	16
47	Extracting the shear viscosity of the quark-gluon plasma from flow in ultra-central heavy-ion collisions. Nuclear Physics A, 2013, 904-905, 377c-380c.	1.5	58
48	Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions. Physical Review C, $2013, 87, .$	2.9	85
49	Event-plane correlators. Physical Review C, 2013, 88, .	2.9	56
50	Breaking of factorization of two-particle correlations in hydrodynamics. Physical Review C, 2013, 87, .	2.9	89
51	Directed Flow at Midrapidity insNN=2.76  TeVPb+PbCollisions. Physical Review Letters, 2012, 108, 252	30 2. 8	49
52	Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions. Physical Review C, 2012, 85, . Anisotropic Flow in Event-by-Event Ideal Hydrodynamic Simulations of small math	2.9	238
53	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msqrt><mml:msub><mml:mi>s</mml:mi><mml:mrow><mml:mi>N</mml:mi><mml:mi>N mathvariant="bold">=<mml:mn>200</mml:mn><mml:mtext> </mml:mtext><mml:mtext>a€‰</mml:mtext><mml:mtext>a€‰</mml:mtext></mml:mi>Au<mml:mo></mml:mo></mml:mrow></mml:msub></mml:msqrt>	I <td>><mml:mi< td=""></mml:mi<></td>	> <mml:mi< td=""></mml:mi<>
54	mathvariant="b. Physical Review Letters, 2012, 109, 202302. Phenomenology of the little bang. Journal of Physics: Conference Series, 2011, 312, 012002.	0.4	19

#	Article	IF	CITATIONS
55	Eccentricity and elliptic flow in proton–proton collisions from parton evolution. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 702, 394-397.	4.1	62
56	Reaction plane from Lee-Yang Zeroes for elliptic flow analysis in ALICE. Indian Journal of Physics, 2011, 85, 1069-1073.	1.8	0
57	Directed flow at midrapidity in event-by-event hydrodynamics. Physical Review C, 2011, 83, .	2.9	55
58	Event-plane flow analysis without nonflow effects. Physical Review C, 2011, 83, .	2.9	3
59	Understanding anisotropy generated by fluctuations in heavy-ion collisions. Physical Review C, 2011, 84, .	2.9	75
60	Directed Flow at Midrapidity in Heavy-Ion Collisions. Physical Review Letters, 2011, 106, 102301.	7.8	63
61	Determining initial-state fluctuations from flow measurements in heavy-ion collisions. Physical Review C, 2011, 84, .	2.9	106
62	Eccentricity and elliptic flow inppcollisions at the LHC. Journal of Physics G: Nuclear and Particle Physics, 2011, 38, 124053.	3.6	9
63	New flow observables. Journal of Physics G: Nuclear and Particle Physics, 2011, 38, 124055.	3.6	20
64	Why is larger than predicted by hydrodynamics?. Nuclear Physics A, 2010, 834, 295c-297c.	1.5	0
65	NeXSPheRIO results on elliptic flow and directed flow for Au+Au and Cu+Cu collisions at RHIC. Indian Journal of Physics, 2010, 84, 1657-1661.	1.8	2
66	Are eccentricity fluctuations able to explain the centrality dependence of <i>>v</i> ₄ ?. Journal of Physics G: Nuclear and Particle Physics, 2010, 37, 094024.	3.6	1
67	<mml:math <="" p="" xmlns:mml="http://www.w3.org/1998/Math/MathML"> display="inline"><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>ow_{ż.Ś}/mml</td><td>:msub></td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	ow _{ż.Ś} /mml	:msub>
68	Effects of flow fluctuations and partial thermalization on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mrow><mml:mn>4</mml:mn><td>ow^{2.9}/mml</td><td>:msub></td></mml:mrow></mml:msub></mml:mrow></mml:math>	ow ^{2.9} /mml	:msub>
69	Triangular flow in hydrodynamics and transport theory. Physical Review C, 2010, 82, .	2.9	280
70	Constraining the viscous freeze-out distribution function with data obtained at the BNL Relativistic Heavy Ion Collider (RHIC). Physical Review C, 2010, 82, .	2.9	23
71	Effect of flow fluctuations and nonflow on elliptic flow methods. Physical Review C, 2009, 80, .	2.9	143
72	Does interferometry probe thermalization?. Physical Review C, 2009, 79, .	2.9	6

#	Article	lF	CITATIONS
73	Effect of flow fluctuations and nonflow on elliptic flow methods. Nuclear Physics A, 2009, 830, 279c-282c.	1.5	4
74	The centrality dependence of: the ideal hydro limit and. Nuclear Physics A, 2009, 830, 463c-466c.	1.5	18
75	Effects of partial thermalization on HBT interferometry. Nuclear Physics A, 2009, 830, 817c-820c.	1.5	0
76	Heavy-ion collisions at the LHCâ€"Last call for predictions. Journal of Physics G: Nuclear and Particle Physics, 2008, 35, 054001.	3.6	255
77	Relativistic hydrodynamics for heavy-ion collisions. European Journal of Physics, 2008, 29, 275-302.	0.6	149
78	Covariant transport theory approach to elliptic flow in relativistic heavy ion collision. Physical Review C, 2008, 77, .	2.9	39
79	Centrality dependence of elliptic flow, the hydrodynamic limit, and the viscosity of hot QCD. Physical Review C, 2007, 76, .	2.9	175
80	Eccentricity fluctuations and elliptic flow at RHIC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 641, 260-264.	4.1	117
81	Momentum spectra, anisotropic flow, and ideal fluids. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 642, 227-231.	4.1	131
82	Nucleus-nucleus collisions at RHIC: A review. Pramana - Journal of Physics, 2006, 67, 899-914.	1.8	4
83	Elliptic flow and incomplete equilibration at RHIC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 627, 49-54.	4.1	173
84	First analysis of anisotropic flow with Lee–Yang zeros. Physical Review C, 2005, 72, .	2.9	20
85	Anisotropic flow from Lee–Yang zeros: a practical guide. Journal of Physics G: Nuclear and Particle Physics, 2004, 30, S1213-S1216.	3.6	30
86	Azimuthally sensitive correlations in nucleus-nucleus collisions. Physical Review C, 2004, 70, .	2.9	55
87	Genuine collective flow from Lee–Yang zeroes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 580, 157-162.	4.1	28
88	Directed flow at RHIC from Lee–Yang zeroes. Nuclear Physics A, 2004, 742, 130-143.	1.5	3
89	Multiparticle azimuthal correlations. Pramana - Journal of Physics, 2003, 60, 753-763.	1.8	3
90	Analysis of anisotropic flow with Lee–Yang zeroes. Nuclear Physics A, 2003, 727, 373-426.	1.5	95

#	Article	IF	CITATIONS
91	Analysis of directed flow from three-particle correlations. Nuclear Physics A, 2003, 715, 629c-632c.	1.5	7
92	Directed and elliptic flow in Pb+Pb collisions at 40 and 158 AGeV. Nuclear Physics A, 2003, 715, 583c-586c.	1.5	9
93	Directed and elliptic flow of charged pions and protons inPb+Pbcollisions at40Aand158AGeV. Physical Review C, 2003, 68, .	2.9	282
94	Analysis of directed flow from elliptic flow. Physical Review C, 2002, 66, .	2.9	37
95	Gravitational oscillations of a liquid column in a pipe. Physics of Fluids, 2002, 14, 1985-1992.	4.0	66
96	Effects of momentum conservation on the analysis of anisotropic flow. Physical Review C, 2002, 66, .	2.9	51
97	New method for measuring azimuthal distributions in nucleus-nucleus collisions. Physical Review C, 2001, 63, .	2.9	210
98	Flow analysis from multiparticle azimuthal correlations. Physical Review C, 2001, 64, .	2.9	320
99	Effects of HBT correlations on flow measurements. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 477, 51-58.	4.1	47
100	Transverse Energy Fluctuations and the Pattern of∫l̈Cuppression in Pb-Pb Collisions. Physical Review Letters, 2000, 85, 4012-4015.	7.8	71
101	Is the analysis of flow at the CERN Super Proton Synchrotron reliable?. Physical Review C, 2000, 62, .	2.9	108
102	Last call for RHIC predictions. Nuclear Physics A, 1999, 661, 205-260.	1.5	91
103	Rebounds in a Capillary Tube. Langmuir, 1999, 15, 3679-3682.	3. 5	85
104	Flow systematics from SIS to SPS energies. Nuclear Physics A, 1998, 638, 195c-206c.	1.5	152
105	Damping rates of hard momentum particles in a cold ultrarelativistic plasma. Physical Review D, 1997, 56, 5108-5122.	4.7	26
106	suppression in Pbî—,Pb collisions: A hint of quark-gluon plasma production?. Nuclear Physics A, 1996, 610, 452-457.	1.5	23
107	JÏ^Suppression in Pb-Pb Collisions: A Hint of Quark-Gluon Plasma Production?. Physical Review Letters, 1996, 77, 1703-1706.	7.8	152
108	Collective flow from azimuthal correlations. Nuclear Physics A, 1995, 590, 561-564.	1.5	21

#	Article	IF	CITATIONS
109	Collective fermionic excitations in systems with a large chemical potential. Physical Review D, 1993, 48, 1390-1408.	4.7	62
110	Determination of the reaction plane in ultrarelativistic nuclear collisions. Physical Review D, 1993, 48, 1132-1139.	4.7	108
111	Anisotropy as a signature of transverse collective flow. Physical Review D, 1992, 46, 229-245.	4.7	1,028
112	Impact parameter dependence of transverse momentum in nucleus-nucleus collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 273, 32-36.	4.1	14
113	On the fate of aJ/ψproduced in a nucleus-nucleus collision. Physical Review D, 1989, 39, 232-249.	4.7	75
114	On the A dependence of hadroproduction of $J/\hat{\Gamma}$ on nuclei and the ET dependence of $J/\hat{\Gamma}$ suppression in nucleus-nucleus collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 217, 386-391.	4.1	56
115	The pT dependence of J(Î" production in hadron-nucleus and nucleus-nucleus collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 217, 392-396.	4.1	72
116	Structure of hydrodynamic flows in expanding quark-gluon plasmas. Physical Review D, 1987, 36, 916-927.	4.7	45
117	Equation of state and hydrodynamics of quark-gluon plasmas. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 191, 21-26.	4.1	30
118	J/i̇̀ momentum distribution and lifetime of a quark-gluon plasma. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 199, 499-503.	4.1	92
119	Hydrodynamics of a quark-gluon plasma undergoing a phase transition. Nuclear Physics A, 1986, 458, 745-772.	1.5	49