Jean-Yves Ollitrault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/496554/publications.pdf

Version: 2024-02-01

119 papers 7,437 citations

44069 48 h-index 51608 86 g-index

120 all docs

 $\begin{array}{c} 120 \\ \\ \text{docs citations} \end{array}$

times ranked

120

4698 citing authors

#	Article	IF	Citations
1	Anisotropy as a signature of transverse collective flow. Physical Review D, 1992, 46, 229-245.	4.7	1,028
2	Flow analysis from multiparticle azimuthal correlations. Physical Review C, 2001, 64, .	2.9	320
3	Directed and elliptic flow of charged pions and protons inPb+Pbcollisions at40Aand158AGeV. Physical Review C, 2003, 68, .	2.9	282
4	Triangular flow in hydrodynamics and transport theory. Physical Review C, 2010, 82, .	2.9	280
5	Heavy-ion collisions at the LHCâ€"Last call for predictions. Journal of Physics G: Nuclear and Particle Physics, 2008, 35, 054001.	3.6	255
6	Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions. Physical Review C, 2012, 85, .	2.9	238
7	New method for measuring azimuthal distributions in nucleus-nucleus collisions. Physical Review C, 2001, 63, .	2.9	210
8	Centrality dependence of elliptic flow, the hydrodynamic limit, and the viscosity of hot QCD. Physical Review C, 2007, 76, .	2.9	175
9	Elliptic flow and incomplete equilibration at RHIC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 627, 49-54.	4.1	173
10	JÏ^Suppression in Pb-Pb Collisions: A Hint of Quark-Gluon Plasma Production?. Physical Review Letters, 1996, 77, 1703-1706.	7.8	152
11	Flow systematics from SIS to SPS energies. Nuclear Physics A, 1998, 638, 195c-206c.	1.5	152
12	Relativistic hydrodynamics for heavy-ion collisions. European Journal of Physics, 2008, 29, 275-302.	0.6	149
13	Effect of flow fluctuations and nonflow on elliptic flow methods. Physical Review C, 2009, 80, .	2.9	143
14	Momentum spectra, anisotropic flow, and ideal fluids. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 642, 227-231.	4.1	131
15	Eccentricity fluctuations and elliptic flow at RHIC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2006, 641, 260-264.	4.1	117
16	Determination of the reaction plane in ultrarelativistic nuclear collisions. Physical Review D, 1993, 48, 1132-1139.	4.7	108
17	Is the analysis of flow at the CERN Super Proton Synchrotron reliable?. Physical Review C, 2000, 62, .	2.9	108
18	Determining initial-state fluctuations from flow measurements in heavy-ion collisions. Physical Review C, 2011, 84, .	2.9	106

#	Article	IF	CITATIONS
19	Analysis of anisotropic flow with Lee–Yang zeroes. Nuclear Physics A, 2003, 727, 373-426.	1.5	95
20	J/iˆ momentum distribution and lifetime of a quark-gluon plasma. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 199, 499-503.	4.1	92
21	Last call for RHIC predictions. Nuclear Physics A, 1999, 661, 205-260.	1.5	91
22	Breaking of factorization of two-particle correlations in hydrodynamics. Physical Review C, 2013, 87, .	2.9	89
23	Rebounds in a Capillary Tube. Langmuir, 1999, 15, 3679-3682.	3.5	85
24	Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions. Physical Review C, 2013, 87, . //www.w3.org/1998/Math/Math/ML" altimg="sil.gif"	2.9	85
25	overflow="scroil"> <mmi:msub><mmi:mrow><mmi:mr></mmi:mr></mmi:mrow><mmi:mrow><mmi:mr>4<mmi:msub><mmi:mrow><mmi:mrow></mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mm< td=""><td>l:mn> :mn</td><td>ml:mrow></td></mm<></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:msub></mmi:mr></mmi:mrow></mmi:msub>	l:mn> :mn	ml:mrow>
26	Universal Fluctuation-Driven Eccentricities in Proton-Proton, Proton-Nucleus, and Nucleus-Nucleus Collisions. Physical Review Letters, 2014, 112, .	7.8	81
27	Linear and cubic response to the initial eccentricity in heavy-ion collisions. Physical Review C, 2016, 93,	2.9	79
28	Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions. Physical Review C, 2018, 97, .	2.9	77
29	On the fate of aJ/l̃ produced in a nucleus-nucleus collision. Physical Review D, 1989, 39, 232-249.	4.7	75
30	Understanding anisotropy generated by fluctuations in heavy-ion collisions. Physical Review C, 2011, 84, . Anisotropic Flow in Event-by-Event Ideal Hydrodynamic Simulations of Small math	2.9	75
31	xmlns:mm ="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msqrt><mml:msub><mml:mi>s</mml:mi><mml:mrow><mml:mi>N</mml:mi><mml:mi>N mathvariant="bold">=<mml:mn>200</mml:mn><mml:mtext>â€%</mml:mtext><mml:mtext><mml:mtext>aef%.</mml:mtext></mml:mtext></mml:mi></mml:mrow></mml:msub></mml:msqrt>	l <td>>ext><mml:mi< td=""></mml:mi<></td>	>ext> <mml:mi< td=""></mml:mi<>
32	mathyariant="b. Physical Review Letters, 2012, 109, 202302. The pT dependence of J/Î ⁻ production in hadron-nucleus and nucleus-nucleus collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 217, 392-396.	4.1	72
33	Transverse Energy Fluctuations and the Pattern of JÜSuppression in Pb-Pb Collisions. Physical Review Letters, 2000, 85, 4012-4015.	7.8	71
34	Gravitational oscillations of a liquid column in a pipe. Physics of Fluids, 2002, 14, 1985-1992.	4.0	66
35	Directed Flow at Midrapidity in Heavy-Ion Collisions. Physical Review Letters, 2011, 106, 102301.	7.8	63
36	Collective fermionic excitations in systems with a large chemical potential. Physical Review D, 1993, 48, 1390-1408.	4.7	62

#	Article	IF	CITATIONS
37	Eccentricity and elliptic flow in proton–proton collisions from parton evolution. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 702, 394-397.	4.1	62
38	Characterizing flow fluctuations with moments. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 742, 94-98.	4.1	62
39	Relative flow fluctuations as a probe of initial state fluctuations. Physical Review C, 2017, 95, .	2.9	61
40	Extracting the shear viscosity of the quark-gluon plasma from flow in ultra-central heavy-ion collisions. Nuclear Physics A, 2013, 904-905, 377c-380c.	1.5	58
41	On the A dependence of hadroproduction of J/Î [*] on nuclei and the ET dependence of J/Î [*] suppression in nucleus-nucleus collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 217, 386-391.	4.1	56
42	Event-plane correlators. Physical Review C, 2013, 88, .	2.9	56
43	Azimuthally sensitive correlations in nucleus-nucleus collisions. Physical Review C, 2004, 70, .	2.9	55
44	Directed flow at midrapidity in event-by-event hydrodynamics. Physical Review C, 2011, 83, .	2.9	55
45	Principal Component Analysis of Event-by-Event Fluctuations. Physical Review Letters, 2015, 114, 152301.	7.8	54
46	Effects of momentum conservation on the analysis of anisotropic flow. Physical Review C, 2002, 66, .	2.9	51
47	Hydrodynamics of a quark-gluon plasma undergoing a phase transition. Nuclear Physics A, 1986, 458, 745-772.	1.5	49
48	Directed Flow at Midrapidity insNN=2.76  TeVPb+PbCollisions. Physical Review Letters, 2012, 108, 252	30 2. 8	49
49	Symmetric cumulants and event-plane correlations in Pb + Pb collisions. Physical Review C, 2016, 94, .	2.9	48
50	Thermodynamics of hot strong-interaction matter from ultrarelativistic nuclear collisions. Nature Physics, 2020, 16, 615-619.	16.7	48
51	Effects of HBT correlations on flow measurements. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2000, 477, 51-58.	4.1	47
52	Structure of hydrodynamic flows in expanding quark-gluon plasmas. Physical Review D, 1987, 36, 916-927.	4.7	45
53	Hydrodynamic predictions for 5.02 TeV Pb-Pb collisions. Physical Review C, 2016, 93, .	2.9	44
54	Constraining models of initial conditions with elliptic and triangular flow data. Physical Review C, 2014, 89, .	2.9	43

#	Article	lF	CITATIONS
55	Skewness of elliptic flow fluctuations. Physical Review C, 2017, 95, .	2.9	43
56	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>	row _{}.} √mn	nl:msub>41
57	Covariant transport theory approach to elliptic flow in relativistic heavy ion collision. Physical Review C, 2008, 77, .	2.9	39
58	Effects of flow fluctuations and partial thermalization on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mrow><mml:mn>4<td>row^{3.9}/mn</td><td>nl:msub></td></mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>	row ^{3.9} /mn	nl:msub>
59	Eccentricity distributions in nucleus-nucleus collisions. Physical Review C, 2014, 90, .	2.9	39
60	Analysis of directed flow from elliptic flow. Physical Review C, 2002, 66, .	2.9	37
61	Systematic procedure for analyzing cumulants at any order. Physical Review C, 2017, 95, .	2.9	32
62	Equation of state and hydrodynamics of quark-gluon plasmas. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 191, 21-26.	4.1	30
63	Anisotropic flow from Lee–Yang zeros: a practical guide. Journal of Physics G: Nuclear and Particle Physics, 2004, 30, S1213-S1216.	3.6	30
64	Azimuthal anisotropy distributions in high-energy collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 742, 290-295.	4.1	30
65	Relating centrality to impact parameter in nucleus-nucleus collisions. Physical Review C, 2018, 97, .	2.9	30
66	Genuine collective flow from Lee–Yang zeroes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 580, 157-162.	4.1	28
67	Damping rates of hard momentum particles in a cold ultrarelativistic plasma. Physical Review D, 1997, 56, 5108-5122.	4.7	26
68	suppression in Pbî—,Pb collisions: A hint of quark-gluon plasma production?. Nuclear Physics A, 1996, 610, 452-457.	1.5	23
69	Constraining the viscous freeze-out distribution function with data obtained at the BNL Relativistic Heavy Ion Collider (RHIC). Physical Review C, 2010, 82, .	2.9	23
70	Collective flow from azimuthal correlations. Nuclear Physics A, 1995, 590, 561-564.	1.5	21
71	Non-Gaussian eccentricity fluctuations. Physical Review C, 2016, 94, .	2.9	21
72	Correlation between mean transverse momentum and anisotropic flow in heavy-ion collisions. Physical Review C, 2021, 103, .	2.9	21

#	Article	IF	CITATIONS
73	First analysis of anisotropic flow with Lee–Yang zeros. Physical Review C, 2005, 72, .	2.9	20
74	New flow observables. Journal of Physics G: Nuclear and Particle Physics, 2011, 38, 124055.	3.6	20
7 5	Correlations in the Monte Carlo Glauber model. Physical Review C, 2014, 90, .	2.9	20
76	Phenomenology of the little bang. Journal of Physics: Conference Series, 2011, 312, 012002.	0.4	19
77	The centrality dependence of: the ideal hydro limit and. Nuclear Physics A, 2009, 830, 463c-466c.	1.5	18
78	Reconstructing the impact parameter of proton-nucleus and nucleus-nucleus collisions. Physical Review C, 2018, 98, .	2.9	17
79	Hydro overview. Nuclear Physics A, 2013, 904-905, 75c-82c.	1.5	16
80	<mml:math< p=""> xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>p</mml:mi><mml:mi>T</mml:mi> -dependent particle number fluctuations from principal-component analyses in hydrodynamic simulations of heavy-ion collisions. Physical Review C, 2019, 100, .</mml:msub></mml:math<>	<td>ub}6/mml:ma</td>	ub}6/mml:ma
81	Impact parameter dependence of transverse momentum in nucleus-nucleus collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 273, 32-36.	4.1	14
82	Continuous description of fluctuating eccentricities. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 738, 166-171.	4.1	14
83	Viscous corrections to anisotropic flow and transverse momentum spectra from transport theory. Nuclear Physics A, 2015, 941, 87-96.	1.5	14
84	Fluctuations in heavy-ion collisions generated by QCD interactions in the color glass condensate effective theory. Physical Review C, 2019, 100 , .	2.9	13
85	Effects of initial state fluctuations on the mean transverse momentum. Nuclear Physics A, 2021, 1005, 121999.	1.5	13
86	Effects of initial-state dynamics on collective flow within a coupled transport and viscous hydrodynamic approach. Physical Review C, 2018, 97, .	2.9	12
87	Kurtosis of elliptic flow fluctuations. Physical Review C, 2019, 99, .	2.9	11
88	Skewness of mean transverse momentum fluctuations in heavy-ion collisions. Physical Review C, 2021, 103, .	2.9	11
89	Constraining the equation of state with identified particle spectra. Physical Review C, 2017, 96, .	2.9	10
90	Directed and elliptic flow in Pb+Pb collisions at 40 and 158 AGeV. Nuclear Physics A, 2003, 715, 583c-586c.	1.5	9

#	Article	IF	Citations
91	Eccentricity and elliptic flow inppcollisions at the LHC. Journal of Physics G: Nuclear and Particle Physics, 2011, 38, 124053.	3.6	9
92	Characterizing the hydrodynamic response to the initial conditions. Nuclear Physics A, 2013, 904-905, 503c-506c.	1.5	8
93	Nonlinear coupling of flow harmonics: Hexagonal flow and beyond. Physical Review C, 2018, 97, .	2.9	8
94	Effective shear and bulk viscosities for anisotropic flow. Physical Review C, 2021, 103, .	2.9	8
95	Intermediate mass dileptons as pre-equilibrium probes in heavy ion collisions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 821, 136626.	4.1	8
96	Analysis of directed flow from three-particle correlations. Nuclear Physics A, 2003, 715, 629c-632c. Constraining models of initial state with <a <a="" constraining="" href="mailto:kmml:math.altimg=" initial="" models="" of="" overf<="" overflow="sil.gif" sil.gif"="" state="" td="" with=""><td>1.5</td><td>7</td>	1.5	7
97	xmins:xocs= http://www.eisevier.com/xmi/xocs/dtd xmins:xs= http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/struct-bib/dtd"	1.5	7
98	Nonlinear hydrodynamic response confronts LHC data. Nuclear Physics A, 2016, 956, 340-343.	1.5	7
99	The mean transverse momentum of ultracentral heavy-ion collisions: A new probe of hydrodynamics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 809, 135749.	4.1	7
100	Does interferometry probe thermalization?. Physical Review C, 2009, 79, .	2.9	6
101	Primordial non-Gaussianity in heavy-ion collisions. Physical Review C, 2019, 100, .	2.9	6
102	Bayesian approach to long-range correlations and multiplicity fluctuations in nucleus-nucleus collisions. Physical Review C, 2022, 105, .	2.9	6
103	Confronting hydrodynamic predictions with Xe-Xe data. Nuclear Physics A, 2019, 982, 371-374.	1.5	5
104	Isolating dynamical net-charge fluctuations. Physical Review C, 2019, 99, .	2.9	5
105	Nucleus-nucleus collisions at RHIC: A review. Pramana - Journal of Physics, 2006, 67, 899-914.	1.8	4
106	Effect of flow fluctuations and nonflow on elliptic flow methods. Nuclear Physics A, 2009, 830, 279c-282c.	1.5	4
107	The fluctuations of quadrangular flow. Journal of Physics: Conference Series, 2017, 779, 012064.	0.4	4
108	Fluid velocity from transverse momentum spectra. Physical Review C, 2021, 103, .	2.9	4

#	Article	IF	CITATIONS
109	Multiparticle azimuthal correlations. Pramana - Journal of Physics, 2003, 60, 753-763.	1.8	3
110	Directed flow at RHIC from Lee–Yang zeroes. Nuclear Physics A, 2004, 742, 130-143.	1.5	3
111	Event-plane flow analysis without nonflow effects. Physical Review C, 2011, 83, .	2.9	3
112	NeXSPheRIO results on elliptic flow and directed flow for Au+Au and Cu+Cu collisions at RHIC. Indian Journal of Physics, 2010, 84, 1657-1661.	1.8	2
113	Universal parameterization of initial-state fluctuations and its applications to event-by-event anisotropy. Nuclear Physics A, 2014, 931, 1007-1011.	1.5	2
114	Geometric scaling in symmetric nucleus-nucleus collisions. Nuclear Physics A, 2019, 982, 355-358.	1.5	2
115	Are eccentricity fluctuations able to explain the centrality dependence of <i>v</i> ₄ ?. Journal of Physics G: Nuclear and Particle Physics, 2010, 37, 094024.	3.6	1
116	Effects of partial thermalization on HBT interferometry. Nuclear Physics A, 2009, 830, 817c-820c.	1.5	0
117	Why is larger than predicted by hydrodynamics?. Nuclear Physics A, 2010, 834, 295c-297c.	1.5	O
118	Reaction plane from Lee-Yang Zeroes for elliptic flow analysis in ALICE. Indian Journal of Physics, 2011, 85, 1069-1073.	1.8	0
119	p-dependent multiplicity fluctuations from PCA and initial conditions. Nuclear Physics A, 2021, 1005, 121892.	1.5	O