
J Alex Huffman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4963936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.	12.6	3,374
2	O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environmental Science & Technology, 2008, 42, 4478-4485.	10.0	1,524
3	Primary biological aerosol particles in the atmosphere: a review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 15598.	1.6	988
4	Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research, 2016, 182, 346-376.	4.1	609
5	Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 2010, 329, 1513-1516.	12.6	541
6	Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment. Atmospheric Chemistry and Physics, 2009, 9, 6633-6653.	4.9	525
7	A marine biogenic source of atmospheric ice-nucleating particles. Nature, 2015, 525, 234-238.	27.8	475
8	Characterization of Primary Organic Aerosol Emissions from Meat Cooking, Trash Burning, and Motor Vehicles with High-Resolution Aerosol Mass Spectrometry and Comparison with Ambient and Chamber Observations. Environmental Science & Technology, 2009, 43, 2443-2449.	10.0	365
9	High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmospheric Chemistry and Physics, 2013, 13, 6151-6164.	4.9	355
10	Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite. Atmospheric Chemistry and Physics, 2006, 6, 925-946.	4.9	341
11	Chemically-resolved aerosol volatility measurements from two megacity field studies. Atmospheric Chemistry and Physics, 2009, 9, 7161-7182.	4.9	289
12	Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences. Atmospheric Measurement Techniques, 2012, 5, 37-71.	3.1	267
13	Bioprecipitation: a feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Global Change Biology, 2014, 20, 341-351.	9.5	223
14	Development and Characterization of a Fast-Stepping/Scanning Thermodenuder for Chemically-Resolved Aerosol Volatility Measurements. Aerosol Science and Technology, 2008, 42, 395-407.	3.1	201
15	Chemically-Resolved Volatility Measurements of Organic Aerosol from Different Sources. Environmental Science & Technology, 2009, 43, 5351-5357.	10.0	201
16	Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe. Atmospheric Chemistry and Physics, 2010, 10, 3215-3233.	4.9	199
17	Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer. Aerosol Science and Technology, 2005, 39, 1143-1163.	3.1	196
18	Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. Atmospheric Chemistry and Physics, 2012, 12, 11997-12019.	4.9	187

J ALEX HUFFMAN

#	Article	IF	CITATIONS
19	Biological aerosol particles as a key determinant of ice nuclei populations in a forest ecosystem. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,100.	3.3	144
20	Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Science and Technology, 2020, 54, 465-495.	3.1	144
21	The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition. Atmospheric Chemistry and Physics, 2011, 11, 12387-12420.	4.9	129
22	Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer. Atmospheric Chemistry and Physics, 2009, 9, 8949-8966.	4.9	119
23	Chamber bioaerosol study: human emissions of sizeâ€resolved fluorescent biological aerosol particles. Indoor Air, 2016, 26, 193-206.	4.3	118
24	Size-resolved measurements of ice-nucleating particles at six locations in North America and one in Europe. Atmospheric Chemistry and Physics, 2016, 16, 1637-1651.	4.9	113
25	The impact of rain on ice nuclei populations at a forested site in Colorado. Geophysical Research Letters, 2013, 40, 227-231.	4.0	110
26	An Eddy-Covariance System for the Measurement of Surface/Atmosphere Exchange Fluxes of Submicron Aerosol Chemical Species—First Application Above an Urban Area. Aerosol Science and Technology, 2008, 42, 636-657.	3.1	107
27	Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmospheric Measurement Techniques, 2017, 10, 4279-4302.	3.1	98
28	Autofluorescence of atmospheric bioaerosols: spectral fingerprints and taxonomic trends of pollen. Atmospheric Measurement Techniques, 2013, 6, 3369-3392.	3.1	94
29	Sizeâ€resolved fluorescent biological aerosol particle concentrations and occupant emissions in a university classroom. Indoor Air, 2014, 24, 604-617.	4.3	93
30	Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado. Atmospheric Chemistry and Physics, 2013, 13, 11987-12001.	4.9	85
31	Cloud Activating Properties of Aerosol Observed during CELTIC. Journals of the Atmospheric Sciences, 2007, 64, 441-459.	1.7	81
32	Bioaerosol field measurements: Challenges and perspectives in outdoor studies. Aerosol Science and Technology, 2020, 54, 520-546.	3.1	81
33	Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques. Atmospheric Chemistry and Physics, 2014, 14, 8055-8069.	4.9	79
34	Fluorescent bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and rainy periods in a semi-arid forest. Atmospheric Chemistry and Physics, 2016, 16, 15165-15184.	4.9	73
35	Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber. Atmospheric Chemistry and Physics, 2017, 17, 11227-11245.	4.9	73
36	lce nucleating particles at a coastal marine boundary layer site: correlations with aerosol type and meteorological conditions. Atmospheric Chemistry and Physics, 2015, 15, 12547-12566.	4.9	71

J ALEX HUFFMAN

#	Article	IF	CITATIONS
37	Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements. Atmospheric Environment, 2016, 132, 1-10.	4.1	66
38	Cluster analysis of WIBS single-particle bioaerosol data. Atmospheric Measurement Techniques, 2013, 6, 337-347.	3.1	63
39	Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013. Atmospheric Chemistry and Physics, 2014, 14, 6345-6367.	4.9	62
40	Technical Note: Use of a beam width probe in an Aerosol Mass Spectrometer to monitor particle collection efficiency in the field. Atmospheric Chemistry and Physics, 2007, 7, 549-556.	4.9	57
41	The micro-orifice uniform deposit impactor–droplet freezing technique (MOUDI-DFT) for measuring concentrations of ice nucleating particles as a function of size: improvements and initial validation. Atmospheric Measurement Techniques, 2015, 8, 2449-2462.	3.1	50
42	Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles. Atmospheric Chemistry and Physics, 2015, 15, 6127-6146.	4.9	44
43	Characterisation of bioaerosol emissions from a Colorado pine forest: results from the BEACHON-RoMBAS experiment. Atmospheric Chemistry and Physics, 2014, 14, 8559-8578.	4.9	42
44	Fluorescent biological aerosol particle measurements at a tropical high-altitude site in southern India during the southwest monsoon season. Atmospheric Chemistry and Physics, 2016, 16, 9805-9830.	4.9	33
45	Spectral Intensity Bioaerosol Sensor (SIBS): an instrument for spectrally resolved fluorescence detection of single particles in real time. Atmospheric Measurement Techniques, 2019, 12, 1337-1363.	3.1	33
46	Sources and dynamics of fluorescent particles in hospitals. Indoor Air, 2017, 27, 988-1000.	4.3	30
47	Impacts of Aerosol Aging on Laser Desorption/Ionization in Single-Particle Mass Spectrometers. Aerosol Science and Technology, 2014, 48, 1050-1058.	3.1	24
48	Evaluation of a hierarchical agglomerative clustering method applied to WIBS laboratory data for improved discrimination of biological particles by comparing data preparation techniques. Atmospheric Measurement Techniques, 2018, 11, 4929-4942.	3.1	24
49	Room-level ventilation in schools and universities. Atmospheric Environment: X, 2022, 13, 100152.	1.4	21
50	CCN activity of size-selected aerosol at a Pacific coastal location. Atmospheric Chemistry and Physics, 2014, 14, 12307-12317.	4.9	20
51	Development and characterization of an inexpensive single-particle fluorescence spectrometer for bioaerosol monitoring. Optics Express, 2018, 26, 3646.	3.4	19
52	Characterization of steady-state fluorescence properties of polystyrene latex spheres using off- and online spectroscopic methods. Atmospheric Measurement Techniques, 2018, 11, 3987-4003.	3.1	16
53	Preliminary results from the FARCE 2015 campaign: multidisciplinary study of the forest–gas–aerosol–cloud system on the tropical island of La R©union. Atmospheric Chemistry and Physics, 2019, 19, 10591-10618.	4.9	16
54	A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry. Atmospheric Measurement Techniques, 2022, 15, 459-483.	3.1	15

J Alex Huffman

#	Article	IF	CITATIONS
55	A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate. Atmospheric Measurement Techniques, 2016, 9, 3987-3998.	3.1	12
56	Pollen clustering strategies using a newly developed single-particle fluorescence spectrometer. Aerosol Science and Technology, 2020, 54, 426-445.	3.1	12
57	Modification of lactoferrin by peroxynitrite reduces its antibacterial activity and changes protein structure. Proteins: Structure, Function and Bioinformatics, 2020, 88, 166-174.	2.6	8
58	Development of a sandwich ELISA with potential for selective quantification of human lactoferrin protein nitrated through disease or environmental exposure. Analytical and Bioanalytical Chemistry, 2018, 410, 1389-1396.	3.7	7
59	Drivers of the fungal spore bioaerosol budget: observational analysis and global modeling. Atmospheric Chemistry and Physics, 2021, 21, 4381-4401.	4.9	7
60	Preface for Special Issue "Bioaerosol Research: Methods, Challenges, and Perspectives― Aerosol Science and Technology, 2020, 54, 463-464.	3.1	5
61	Heterogeneous nitration reaction of BSA protein with urban air: improvements in experimental methodology. Analytical and Bioanalytical Chemistry, 2022, 414, 4347-4358.	3.7	4