
Nithi Asavapanumas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4963105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A generation of human induced pluripotent stem cell line (MUi031-A) from a type-3 Gaucher disease patient carrying homozygous mutation on GBA1 gene. Stem Cell Research, 2022, 60, 102698.	0.7	3
2	Targeting the complement system in neuromyelitis optica spectrum disorder. Expert Opinion on Biological Therapy, 2021, 21, 1073-1086.	3.1	33
3	In vivo mechanisms of cortical network dysfunction induced by systemic inflammation. Brain, Behavior, and Immunity, 2021, 96, 113-126.	4.1	12
4	Cell motility and migration as determinants of stem cell efficacy. EBioMedicine, 2020, 60, 102989.	6.1	26
5	Emerging therapeutic targets for neuromyelitis optica spectrum disorder. Expert Opinion on Therapeutic Targets, 2020, 24, 219-229.	3.4	25
6	Role of intracellular Ca2+ stores for an impairment of visual processing in a mouse model of Alzheimer's disease. Neurobiology of Disease, 2019, 121, 315-326.	4.4	5
7	Healthy Brain Aging Modifies Microglial Calcium Signaling In Vivo. International Journal of Molecular Sciences, 2019, 20, 589.	4.1	48
8	Intracellular Ca ²⁺ stores control in vivo neuronal hyperactivity in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1279-E1288.	7.1	97
9	Activation of liver X receptor inhibits OCT2-mediated organic cation transport in renal proximal tubular cells. Pflugers Archiv European Journal of Physiology, 2017, 469, 1471-1481.	2.8	10
10	Bridging the gap between clinicians and systems biologists: from network biology to translational biomedical research. Journal of Translational Medicine, 2016, 14, 324.	4.4	21
11	Potential Therapeutic Benefit of C1-Esterase Inhibitor in Neuromyelitis Optica Evaluated In Vitro and in an Experimental Rat Model. PLoS ONE, 2014, 9, e106824.	2.5	21
12	Greatly improved survival and neuroprotection in aquaporinâ€4â€knockout mice following global cerebral ischemia. FASEB Journal, 2014, 28, 705-714.	0.5	75
13	Experimental mouse model of optic neuritis with inflammatory demyelination produced by passive transfer of neuromyelitis optica-immunoglobulin G. Journal of Neuroinflammation, 2014, 11, 16.	7.2	53
14	Unique neuromyelitis optica pathology produced in naÃ⁻ve rats by intracerebral administration of NMO-lgG. Acta Neuropathologica, 2014, 127, 539-551.	7.7	55
15	Neuromyelitis optica pathology in rats following intraperitoneal injection of NMO-lgG and intracerebral needle injury. Acta Neuropathologica Communications, 2014, 2, 48.	5.2	47
16	Neuroprotective effect of aquaporin-4 deficiency in a mouse model of severe global cerebral ischemia produced by transient 4-vessel occlusion. Neuroscience Letters, 2014, 574, 70-75.	2.1	67
17	C1q-targeted monoclonal antibody prevents complement-dependent cytotoxicity and neuropathology in in vitro and mouse models of neuromyelitis optica. Acta Neuropathologica, 2013, 125, 829-840.	7.7	57
18	Involvement of antibody-dependent cell-mediated cytotoxicity in inflammatory demyelination in a mouse model of neuromyelitis optica. Acta Neuropathologica, 2013, 126, 699-709.	7.7	95

#	Article	IF	CITATIONS
19	Therapeutic Cleavage of Anti–Aquaporin-4 Autoantibody in Neuromyelitis Optica by an IgG-Selective Proteinase. Molecular Pharmacology, 2013, 83, 1268-1275.	2.3	58
20	Biology of <scp>AQP4</scp> and Antiâ€ <scp>AQP4</scp> Antibody: Therapeutic Implications for <scp>NMO</scp> . Brain Pathology, 2013, 23, 684-695.	4.1	95
21	Liver X receptor activation downregulates organic anion transporter 1 (OAT1) in the renal proximal tubule. American Journal of Physiology - Renal Physiology, 2012, 302, F552-F560.	2.7	16
22	Fenofibrate Down-regulates Renal OCT2-mediated Organic Cation Transport via PPARα-independent Pathways. Drug Metabolism and Pharmacokinetics, 2012, 27, 513-519.	2.2	19
23	Liver x receptors regulate human organic anion transporter 1 in renal proximal tubule. FASEB Journal, 2012, 26, 1152.19.	0.5	0